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Droplets
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Carlos A. de Simone 3, Eufrânio N. da Silva Júnior 2* and Marc Vendrell 1*

1Medical Research Council Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom,
2 Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Brazil, 3 Institute of

Physics, University of São Paulo, São Carlos, Brazil

We describe a new synthetic methodology for the preparation of fluorescent

π-extended phenazines from the naturally-occurring naphthoquinone lapachol. These

novel structures represent the first fluorogenic probes based on the phenazine scaffold

for imaging of lipid droplets in live cells. Systematic characterization and analysis of

the compounds in vitro and in cells led to the identification of key structural features

responsible for the fluorescent behavior of quinone-derived π-extended phenazines.

Furthermore, live-cell imaging experiments identified one compound (P1) as a marker

for intracellular lipid droplets with minimal background and enhanced performance over

the lipophilic tracker Nile Red.

Keywords: fluorescence, lapachones, bioimaging, phenazines, lipids

INTRODUCTION

Lipid droplets (LDs) are ubiquitous intracellular organelles which represent the main storage of
fatty acids and neutral lipids within the cytoplasm (Martin and Parton, 2006; Farese and Walther,
2009). As such, they display the unique feature of containing highly hydrophobic phases within the
aqueous environment of the cytosol (Walther and Farese, 2012). While they were first identified by
lightmicroscopy in the 19th century, they were considered structures of little functional importance
until the discovery of perilipin (Greenberg et al., 1991), a protein that coats the surface of LDs and
is key in the regulation of cell metabolism (Brasaemle et al., 2009). Ever since, interest in their
biology and mechanistic dynamics, as well as their interactions with other intracellular organelles
and functions in both health and disease has steadily increased over the last decades (Thiele and
Spandl, 2008). In particular, LDs have a close relationship with endoplasmic reticulum, in a fashion
which strongly points at the existence of an extensive lipids trafficking between these two subcellular
compartments (Robenek et al., 2006). This phenomenon involves complex mechanisms that still
need to be fully elucidated (Martin et al., 2005).Mitochondria (Blanchette-Mackie and Scow, 1983),
peroxisomes (Binns et al., 2006), and endosomes (Liu et al., 2007) have also been proven to
associate with LDs to perform several tasks related to lipid metabolism. Alterations in LDs
physiology are featured in several pathological conditions, such as obesity (Chen et al., 2002),
diabetes (Guilherme et al., 2008), atherosclerosis (Maxfield and Tabas, 2005), fatty liver disease
(Fon Tacer and Rozman, 2011), and cancer (Liu et al., 2017). Therefore, the detection of LDs
in live-cell imaging has emerged as a powerful tool in biomedical research. Fluorescent probes
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are valuable and versatile tools for the visualization of
intracellular biomolecules and structures, as well as for the
differentiation of cell types (Vendrell et al., 2011; Kielland
et al., 2012; Er et al., 2013; Park et al., 2014; Hirayama
et al., 2016; Zhang et al., 2016; Fernandez et al., 2017; Dias
et al., 2018). Unsurprisingly, some hydrophobic dyes such as
BODIPY (Karolin et al., 1994) and Nile Red (Greenspan et al.,
1985) have been used to stain LDs, but they both display
some drawbacks such as limited specificity and short Stokes
shifts; hence, the development of novel probes for LDs is
an ongoing challenge within the chemical biology community
(Cao Y. et al., 2017; Collot et al., 2018). In this context,
environmentally-sensitive fluorophores which display enhanced
emission in non-polar environments are ideal (Nitz et al.,
2002; Vázquez et al., 2005; Shieh et al., 2015; Mendive-Tapia
et al., 2016, 2017; Subiros-Funosas et al., 2017; Aron et al.,
2018; Kuriki et al., 2018). Since the design of innovative and
often unconventional synthetic approaches is often necessary to
assemble new fluorescent scaffolds (De Moliner et al., 2017), we
envisioned a strategy exploiting the potential of natural products
as advanced intermediates toward the generation of phenazine
probes for LDs (Scheme 1) (Carvalho et al., 2004; Emery et al.,
2010; Dias et al., 2016; Gontijo et al., 2016; de Souza et al.,
2017). As a part of our ongoing interest in medicinal chemistry
(Yraola et al., 2004; Vendrell et al., 2007, 2009) and the synthesis
and application of novel fluorescent probes for imaging of
subcellular organelles (Jardim et al., 2015; dos Santos et al., 2017)
phenazines P1 and P3-P7 were prepared from the naturally-
occurring lapachol. Herein we report the chemical synthesis and
photophysical characterization of this new set of compounds as
well as cell imaging experiments that demonstrate their suitability
for the fluorescence staining of LDs in live cells.

MATERIALS AND METHODS

Chemistry
Reagents and General Methods
Starting materials available from commercial suppliers were
used as received, unless otherwise stated. Catalytic reactions
were performed under an atmosphere of dry nitrogen or
argon. Glassware, syringes and needles were either flame dried
immediately prior to use or placed in an oven (200◦C) for at
least 2 h, and allowed to cool either in a desiccator or under an
atmosphere of nitrogen or argon. Liquid reagents, solutions or
solvents were added via syringe through rubber septa. Melting
points were obtained on a Thomas Hoover apparatus and are
uncorrected. Column chromatography was performed on silica
gel (Silica Flash G60 UltraPure 60–200µm, 60 Å). Infrared
spectra were recorded on an FTIR Spectrometer IR Prestige-21-
Shimadzu. 1H and 13C NMR were recorded at r.t. using a Bruker
AVANCE DRX200 and DRX400 MHz instrument in the solvents
indicated. Chemical shifts (δ) are given in parts permillion (ppm)
and coupling constants (J) in Hertz (Hz). Mass spectra were
recorded using a Bruker Daltonics FT-ICRMS Apex 4e 7.0T FT-
MS (ESI+ mode) and Shimadzu GCMS QP2010+ (EI+ mode).
Data were processed employing Bruker Data Analysis software

version 4.0. Compounds were named following IUPAC rules as
applied by ChemBioDraw Ultra (version 12.0).

General Procedure for the Extraction of Lapachol (1)

From the Heartwood of Tabebuia sp. (Tecoma)
In this work, lapachol was extracted from wood that was
purchased from local resources in Brazil. Alternatively, lapachol
is also commercially available from Sigma-Aldrich. A saturated
aqueous sodium carbonate solution was added to the sawdust
of the ipê tree. Upon observing the rapid formation of the
lapachol sodium salt, hydrochloric acid was added, allowing
the precipitation of lapachol. Then, the solution was filtered
off and a yellow solid was obtained. This solid was purified by
recrystallization with hexane (Ferreira, 1996).

Nor-Lapachol (2)
The naphthoquinone (2) was synthesized by Hooker oxidation
methodology and isolated as an orange solid (160mg, 0.7 mmol,
70% yield). Characterization data are consistent with those
reported in the literature (da Rocha et al., 2014; Dias et al., 2015).
m.p. 121–122◦C. 1H NMR (400 MHz, CDCl3,): δ = 8.13 (ddd,
J = 7.5, 1.5, 0.5Hz, 1H), 8.10 (ddd, J = 7.5, 1.5, 0.5Hz, 1H), 7.76
(td, J = 7.5, 7.5, 1.5Hz, 1H), 7.69 (td, J = 7.5, 7.5, 1.5Hz, 1H),
6.03–5.99 (m, 1H), 2.0 (d, J = 1.5Hz, 3H), 1.68 (d, J = 1.2Hz,
3H). 13C NMR (100 MHz, CDCl3,): δ = 184.7, 181.5, 151.1,
143.6, 134.9, 133.0, 132.9, 129.5, 126.9, 126.0, 120.9, 113.6, 26.5,
21.7.

Nor-β-Lapachone (3)
Sulfuric acid was added dropwise to nor-lapachol (2) (4 mmol,
912mg) until complete dissolution of the quinone. Ice and
water were added to solution and the precipitate formed was
filtered off and washed with water and then purified by column
chromatography on silica gel. The product was eluted in 12%
of ethyl acetate in hexane (830mg, 3.6 mmol, 91% yield, m.p.:
169–171◦C). 1H NMR (400 MHz, CDCl3,) δ: 8.05–803 (m, 1H),
7.66–7.52 (m, 3H), 2.93 (s, 2H), 1.60 (s, 6H). 13C NMR (100
MHz, CDCl3,) δ: 181.3, 175.6, 168.7, 134.4, 131.8, 130.9, 129.2,
127.9, 124.5, 115.0, 93.7, 39.3, 28.4.

4,7-dibromo-Benzothiadiazole (5)
In a 100mL three-necked round-bottomed flask, 15mL of 47%
HBr were added to 1.36 g of benzothiadiazole (BTD) (4) (10
mmol). The flask was heated to reflux temperature and 10mL
of a 1:1 mixture of Br2 and 47% HBr were added dropwise via
an addition funnel over 1 h. Further 10mL of 47% HBr were
then added to the reaction mixture all at once and the reflux
was maintained for 6 h. Afterwards, it was cooled to r.t. and
a saturated solution of NaHSO3 was added. The reaction was
stirred at r.t. for additional 30min and then the crude mixture
was filtered off and the white solid obtained thereof was washed
with acetone (2.35 g, 8 mmol, 80% yield, melting point: 190–
191◦C). Characterization data are consistent with those reported
in the literature (Mancilha et al., 2006). 1H NMR (400 MHz,
CDCl3,) δ: 7.68 (s, 2H). 13C NMR (100 MHz, CDCl3,) δ: 153.2,
132.6, 114.2.
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SCHEME 1 | Overview of nor-β-lapachone derivatives and the design of π-extended phenazines for bioimaging applications.

3,6-dibromobenzene-1,2-diamine (6)
Compound 6 was prepared using the method described by
Neto and co-workers with minor modifications (Neto et al.,
2005a). In a 50mL round bottom flask, containing 20mL of
ethanol, 294mg (1 mmol) of 4,7-dibromo-benzothiadiazole (5)
were added and heated to reflux. Then, 76mg (2 mmol) of

NaBH4 and 2mg (0.01 mmol) of CoCl.26H2O were added. The
mixture was refluxed for 2 h, cooled down to r.t. and then
filtered off. The solvent was evaporated, water (100mL) was
added, and the organic product was extracted with Et2O (3 ×

30mL). The combined organic extracts were dried over Na2CO3

and the solvent removed, affording the crude product. Due to
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its instability, the diamine was used in the following reaction
without further purification.

2,2-dimethyl-1,2-dihydrobenzo[a]furo[2,3-

c]phenazine

(P1)
In a 10mL flask, nor-β-lapachone (0.7 mmol, 159mg), ortho-
phenylenediamine (0.9 mmol, 97mg), and sodium acetate (0.7
mmol, 57mg) were added in 3mL of glacial acetic acid. The
reaction was carried out at r.t. upon stirring with a magnetic
bar and monitored by thin layer chromatography. After 5 h, all
nor-β-lapachone was consumed and the reaction was poured into
water with ice. The precipitate was filtered off and then purified
by column chromatography on silica gel. The product was eluted
with 3% of ethyl acetate in hexane. (200mg, 0.66 mmol, 95%
yield, m.p.: 161–162◦C). 1H NMR (400 MHz, CDCl3): δ = 1.68
(s, 6H), 3.54 (s, 2H), 7.67–7.76 (m, 4H), 8.03 (t, J = 4Hz, 1H),
8.15 (d, J = 8Hz, 1H), 8.25 (d, J = 8Hz, 1H), 9.31–9.33 (m, 1H).
13C NMR (100 MHz, CDCl3): δ = 28.4, 41.8, 90.1, 112.8, 122.4,
125.1, 126.0, 127.9, 128.1, 128.5, 129.6, 128.8, 130.0, 132.0, 157.6.
IR (cm−1): 3,130 (C = N) EI/HRMS (m/z): [M+H]+: 301.1335.
Calcd. for [C20H17N2O]+: 301.1341.

9,12-dibromo-2,2-dimethyl-1,2-

dihydrobenzo[a]furo[2,3-c]phenazine

(P2)
In a 25mL flask, nor-β-lapachone (3) (1.0 mmol, 228mg), 3,6-
dibromobenzene-1,2-diamine (6) (0.9 mmol, 97mg) and sodium
acetate (1.0 mmol, 82mg) were added in 6mL of glacial acetic
acid. The reaction was carried out at r.t. upon stirring with a
magnetic bar andmonitored by thin layer chromatography. After
24 h, the reaction was poured into water with ice. The precipitate
was filtered off and then purified by column chromatography
on silica gel. The product was eluted with 10% of ethyl acetate
in hexane. (223mg, 0.49 mmol, 49% yield, melting point: 227–
228◦C). 1H NMR (400 MHz, CDCl3): δ = 1.69 (s, 6H), 3.58 (s,
2H), 7.77–7.82 (m, 2H), 7.85 (d, J = 8Hz, 1H), 7.92 (d, J = 8Hz,
1H), 8.06 (t, J = 4Hz, 1H), 9.40 (t, J = 4Hz, 1H). 13C NMR
(100MHz, CDCl3): δ = 29.0, 41.6, 91.2, 113.0, 122.7, 123.1, 124.8,
125.5, 127.0, 128.8, 130.6, 130.9, 131.5, 132.9, 137.6, 140.8, 142.0,
144.0, 159.0. IR (cm−1): 1030 (C-Br). EI/HRMS (m/z): [M+H]+:
456.9531. Calcd. for [C20H15Br2N2O]+: 456.9551.

2,2-dimethyl-9,12-diphenyl-1,2-

dihydrobenzo[a]furo[2,3-c]phenazine

(P3)
In a Schlenk tube, phenazine dibromide (P2) (0.25 mmol,
115mg), phenylboronic acid (1.0mmol, 122mg), Pd(OAc)2 (0.05
mmol, 12mg), triphenylphosphine (0.03 mmol, 10mg), 2mL of
2M Na2CO3 solution were added. The tube was sealed and the
reaction was carried out at 70◦C upon stirring with a magnetic
bar by 36 h. After that, the reaction was cooled to r.t., filtered
through Celite and then purified by column chromatography
on silica gel. The product was eluted with 5% of ethyl acetate
in hexane (91mg, 0.20 mmol, 80% yield, m.p.: 247–248◦C). 1H
NMR (400 MHz, CDCl3): δ = 1.57 (s, 6H), 3.55 (s, 2H), 7.35–
7.47 (m, 4H), 7.51 (t, J = 8Hz, 2H), 7.59–7.66 (m, 2H), 7.78

(d, J = 8Hz, 1H), 7.84 (d, J = 8Hz, 1H), 7.86–7.89 (m, 4H),
7.95 (d, J = 2Hz, 1H). 13C NMR (100 MHz, CDCl3): δ = 28.9,
41.5, 90.2, 113.4, 122.3, 125.3, 126.4, 127.4, 127.5, 127.9, 128.0,
128.1, 129.5, 129.9, 131.3, 131.4, 132.3, 137.9, 139.0, 139.1, 139.3,
140.1, 140.4, 140.9, 142.3, 155.5, and 157.6. IR (cm−1): 3135
(C=N), 1600, 1500. EI/HRMS (m/z) [M+H]+: 453.1961. Calcd.
for [C32H25N2O]+: 453.1967.

General Procedure for Sonogashira Reactions
In a Schlenk tube, phenazine dibromide (P2) (0.25 mmol,
115mg), Pd(PPh3)2Cl2 (0.06 mmol, 45mg) and CuI (0.06 mmol,
11mg) were added. The tube was vented and filled with nitrogen
three times. Alkyne (1.0 mmol), 3mL of dried toluene and 3mL
of dried triethylamine were added via a syringe. The tube was
sealed and the reaction was carried out at 100◦C upon stirring
with a magnetic bar for 48 h. After that, reactions were cooled to
r.t., filtered through Celite and crudes were purified by column
chromatography on silica gel with ethyl acetate and hexane.

2,2-dimethyl-9,12-bis[(trimethylsilyl)ethynyl]-1,2-

dihydrobenzo[a]furo[2,3-c]phenazine

(P4)
Yellow solid, 103mg, 0.21 mmol, 82% yield, m.p.: 156–159◦C. 1H
NMR (400 MHz, CDCl3): δ = 0.37 (s, 9H), 0.42 (s, 9H), 1.69
(s, 6H), 3.56 (s, 2H), 7.76–7.81 (m, 2H), 9.40–9.44 (m, 1H),
9.42 (dd, J = 3.6 and 3.2Hz, 1H). 13C NMR (100 MHz, CDCl3):
δ = 0.1, 0.2, 28.7, 90.6, 102.0, 102.1, 103.0, 103.2, 113.1, 122.4,
122.7, 124.1, 125.3, 126.0, 126.4, 127.1, 128.2, 129.8, 130.0, 130.8,
131.4, 131.8, 133.4, 134.2, 139.7, 141.3, 142.7, 143.5, 158.6. IR
(cm−1): 3252 (CH3) EI/HRMS (m/z): [M]+: 492.2055. Calcd for
[C30H32N2OSi2]+: 492.2053.

9,12-diethynyl-2,2-dimethyl-1,2-

dihydrobenzo[a]furo[2,3-c]phenazine

(P5)
In a 10mL flask, TMS-phenazine P4 (0.15 mmol, 75mg) and
potassium fluoride (0.60 mmol, 45mg) were added in methanol
(5mL). The reaction was carried by magnetic stirring at r.t. for
48 h. Compound P5 was purified by column chromatography on
silica gel. The product was eluted with 3% of ethyl acetate in
hexane. (yellow solid, 70mg, 0.14 mmol, 95% yield, m.p.: 195–
197◦C). 1H NMR (400 MHz, CDCl3): δ = 1.68 (s, 6H,), 3.59
(s, 2H), 3.64 (s, 1H), 3.72 (s, 1H), 7.77–7.80 (m, 2H), 7.87 (d,
J = 8Hz, 1H), 7.94 (d, J = 8Hz, 1H), 8.06–8.08 (m, 1H), 9.41–
9.44 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 29.9, 41.4, 80.9,
84.8, 85.0, 90.8, 113.2, 122.4, 122.6, 123.8, 125.4, 126.7, 128.5,
130.3, 131.8, 131.9, 134.0, 139.7, 141.7, 142.8, 143.8 and 158.9.
IR (cm−1): 3135 (C = N); 2953, 2149, 852. EI/HRMS (m/z)
[M+H]+: 349.1335. Calcd for [C24H17N2O]+: 349.1341.

2,2-dimethyl-9,12-bis(phenylethynyl)-1,2-

dihydrobenzo[a]furo[2,3-c]phenazine

(P6)
Compound P6 was prepared following the procedure described
above. Yellow solid, 75mg, 0.15 mmol, 69% yield, m.p.: 212–
215◦C. 1H NMR (400 MHz, CDCl3): δ = 1.70 (s, 6H), 3.62
(s, 2H), 7.38–7.44 (m, 6H), 7.70 (d, J = 1.6Hz, 1H), 7.72 (d,
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J = 1.6Hz, 1H), 7.76–7.80 (m, 4H), 7.89 (d, J = 7.6Hz, 1H),
7.96 (d, J = 7.6Hz, 1H), 8.05–8.07 (m, 1H), 9.44 (dd, J = 5.6 and
J = 1.2Hz, 1H). 13C NMR (100 MHz, CDCl3): δ = 29.0, 41.4,
87.5, 87.6, 90.8, 97.5, 97.7, 113.4, 122.6, 122.9, 123.9, 124.3, 125.4,
126.5, 128.3, 128.5, 128.6, 128.7, 128.8, 130.2, 131.3, 132.0, 132.2,
133.2, 139.7, 141.4, 142.8, 143.6, 158.7. IR (cm−1): 3135 (C = N).
EI/HRMS (m/z): [M+H]+: 501.1961. Calcd for [C36H25N2O]+:
501.1967.

9,12-bis[(4-methoxyphenyl)ethynyl]-2,2-dimethyl-1,2-

dihydrobenzo[a]furo[2,3-c]phenazine

(P7)
Compound P7 was prepared following the procedure described
above. Yellow solid, 66mg, 0.17 mmol, 71% yield, m.p.: 254–
255◦C. 1H NMR (400 MHz, CDCl3): δ = 1.70 (s, 6H); 3.62 (s,
2H); 3.84 (s, 3H), 3.86 (s, 3H), 6.63 (d, J = 8Hz, 2H), 6.97 (d,
J = 12Hz, 2H). 7.64 (d, J = 8Hz, 2H), 7.71 (d, J = 8Hz, 2H),
7.76–7.82 (m, 2H); 7.87 (d, J = 8Hz, 1H), 7.94 (d, J = 8Hz, 1H),
8.07 (d, J = 7Hz, 1H), 9.47 (d, J = 8Hz, 1H). 13C NMR (100
MHz, CDCl3): δ = 28.9, 41.4, 55.5, 86.3, 86.4, 90.6, 97.5, 97.7,
113.3, 114.2, 114.3, 116.0, 122.5, 122.8, 124.2, 125.4, 126.4,128.3,
130.0, 130.9, 132.0, 132.8, 133.6, 139.6, 141.2, 142.7, 143.4, 158.5,
160.0, 160.1 and 160.2. IR (cm−1): 3,135 (C = N); 1248, 1040.
EI/HRMS (m/z) [M+H]+: 561.2166. Calcd for [C38H29N2O3]+:
561.2179.

Spectral Characterization
Spectroscopic and quantum yield data were recorded on a
Synergy HT spectrophotometer (Biotek). Compounds were
dissolved at the indicated concentrations and spectra were
recorded at r.t. Spectra are represented as means from at least
two independent experiments with n = 3. Quantum yields were
calculated by measuring the integrated emission area of the
fluorescence spectra and comparing it to the area measured for
fluorescein in basic EtOH.

Cell Imaging
HeLa cells were grown in DMEM cell culture media
supplemented with 10% FBS, antibiotics (100U mL−1 penicillin,
100mg mL−1 streptomycin) and 2mM L-glutamine in a
humidified atmosphere at 37◦C with 5% CO2. Cells were plated
on glass chamber slides Lab-TekTM II (Nunc) the day before the
imaging experiment. Cells were incubated with compounds at
the indicated concentrations at 37◦C for 15min, washed with
PBS, and imaged under a EVOS FL2 epifluorescence microscope
equipped with a live cell imaging stage. Fluorescence images
were acquired using a 40X oil objective. All images were analyzed
and processed with ImageJ.

X-Ray Analysis
X-ray diffraction data collection for the compound was
performed on an Enraf-Nonius Kappa-CCD diffractometer
(95mm CCD camera on κ-goniostat) using graphite
monochromated MoK_radiation (0.71073 Å) at r.t. Data
collection was carried out using the COLLECT software
(Enraf-Nonius COLLECT; Nonius BV: Delft, The Netherlands,
1997–2000) up to 50◦ in 2θ. Integration and scaling of the

reflections, correction for Lorentz and polarization effects were
performed with the HKL DENZO-SCALEPACK system of
programs (Otwinowski and Minor, 1997). The structure of
the compound was solved by direct methods with SHELXS-97
(Sheldrick, 1997a). The model was refined by full-matrix least
squares on F2 using the SHELXL-97 (Sheldrick, 1997b). The
program ORTEP-3 (Farrugia, 1997) was used for graphic
representation and the program WINGX (Farrugia, 1999) for
presentation purposes. All H atoms were located by geometric
considerations (C–H = 0.93–0.97 Å) and refined as riding with
Uiso(H) = 1.5Ueq(C-methyl) or 1.2Ueq(other). The reference
number for the compound is CCDC 1841868. Copies of the
available material can be obtained, free of charge on application
to the Director, CCDC, 12 Union Road, Cambridge CH21EZ,
UK (fax: +44-1223-336-033 or e-mail: deposit@ccdc.cam.ac.uk
or http://www.ccdc.cam.ac.uk).

Particle Size Analysis
The mean aggregate diameters in aqueous media were
determined by dynamic light scattering using a PS90 Particle Size
Analyser (Brookehaven Instrument Corporation). Compounds
P1 and P3–P7 were dissolved in PBS (10µM) and kept
at r.t. to measure the aggregate size after 10min. Data is
represented asmeans± s.e.m from two independent experiments
(n= 5).

RESULTS AND DISCUSSION

Chemical Synthesis
The new fluorescent π-extended phenazines were prepared
according to the synthetic procedures shown in Scheme 2. Our
strategy was based on the preparation of dibromophenazine
P2, which was further subjected to Pd-catalyzed cross-
coupling reactions aiming to produce π-extended derivatives
P3–P7. Compound P1 was instead obtained through a
straightforward condensation between nor-β-lapachone
and ortho-phenylenediamine. All these fluorescent probes
were obtained from lapachol (1), a naturally-occurring
naphthoquinone that can be extracted from the heartwood
of Tabebuia sp. (Tecoma) (Ferreira, 1996). This plant material,
which is known as ipê wood, is widely available throughout
South America, where it can be easily sourced from a variety of
trees and purchased from commercial sources. With compound
1 in hand, nor-lapachol (2) was prepared via Hooker oxidation
(Fieser and Fieser, 1948; Lee et al., 1995; Eyong et al., 2012). The
treatment of compound 2 with sulphuric acid then afforded nor-
β-lapachone 3. In parallel, 3,6-dibromobenzene-1,2-diamine (6)
was prepared via a well-established synthetic route described by
Neto et al. (2005a). Initially, 4,7-dibromo-2,1,3-benzothiadiazole
(5) was prepared from 2,1,3-benzothiadiazole (4) following a
previously reported methodology with minor modifications
(Neto et al., 2013). The sulfur extrusion from compound 5 was
accomplished with NaBH4 in the presence of catalytic amounts
of CoCl2•6H2O (1 mol%) (Neto et al., 2005b). Subsequently,
the reaction between compound 6 and nor-β-lapachone 3

provided the key intermediate phenazine P2 in moderate
yields.
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SCHEME 2 | Synthetic scheme for phenazine derivatives P1–P7 and crystal structure of compound P2.

Compound P2 was used in the preparation of all the
phenazine probes herein described, except for P1. Its structure
was unambiguously determined by crystallographic analysis
upon recrystallization, with high-quality crystals being
obtained by slow evaporation of P2 upon solubilization in
dichloromethane. Single crystal X-ray analysis revealed the
structure of the compound as displayed in Scheme 2, where
the atoms labeling and the displacement ellipsoids at the 50%
probability level are shown. Compound P2 crystallized in the
monoclinic P-1 space group with two molecules in the unit
cell. Additional details about the data collection and structure
refinement are described in the Supporting Information
(Table S1). The molecular structure of compound P2 shows
planarity for all six members rings, where the largest deviation
[0.058(2) Å] from the least-square plane being exhibited by
atom C18. The furan ring has an envelope conformation with
the flap (C12) (0.27 Å) above of the plane of the rings and the
puckering parameters calculated for this conformation were:
q2 = 0.135(3)Å, and φ = 101.9(2)◦ (Cremer and Pople, 1975).

Next, compound P3 was prepared in good yields by cross-
coupling Suzuki reaction from the intermediate P2. Pd-catalyzed
reactions were also employed to derivatize the key intermediate
to obtain compounds P4, P6, and P7. Sonogashira coupling
proved effective for the insertion of terminal alkynes substituted

with aryl groups, leading to compounds P6 and P7 in 69 and
71% yields, respectively. Finally, compound P5 was synthesized
in almost quantitative yields by removal of the trimethylsilane
protecting group with potassium fluoride in methanol.

Photophysical Characterization
Since phenazines P1 and P3–P7 were designed as potential
LD-staining dyes, partly due to their hydrophobicity, screening
of their optical properties in different solvents (e.g., aqueous
media and organic solvents) was undertaken as a preliminary
assessment of their fluorescence behavior. Dioxane was chosen
as the organic solvent given its dielectric constant (ε: 2.25), which
closely mimics the polarity of lipid-rich cellular compartments,
such as phospholipid bilayers with a dielectric constant around
2.0 (Pérochon et al., 1992). The optical readout of phenazines in
aqueous media was weaker than in organic solvents. Absorbance
maxima were observed in the blue region of the visible spectrum
(420–460 nm), regardless of their substitution pattern. Likewise,
fluorescence emission spectra for compounds P1 and P3–P7
were also recorded, with wavelengths and quantum yields being
summarized in Table 1.

As shown in Table 1, compounds P1 and P3, which both
lack alkyne substituents, displayed shorter emission wavelengths
(i.e., 525 and 520 nm, respectively) compared to phenazines with
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TABLE 1 | Summary of photophysical properties for compounds P1 and P3–P7.

Compound λabs. (nm)‡ λem. (nm)‡ Stokes shift (nm)‡ Q.Y.‡ λem. (nm)* Q.Y.* Mean aggregate diameter (nm)

P1 428 500 72 0.22 525 0.04 380 ± 50

P3 437 501 64 0.11 520 0.01 > 10,000

P4 451 524 73 0.19 550 0.01 80 ± 10

P5 450 528 78 0.26 560 0.02 640 ± 160

P6 422 527 105 0.21 555 0.01 > 10,000

P7 434 530 96 0.25 551 < 0.01 > 10,000

Wavelengths determined in dioxane. Quantum yields relative to fluorescein in basic ethanol (Φ = 0.93) (Sjöback et al., 1995).

‡Determined in dioxane; *Determined in water.

alkyne moieties, which showed red-shifted emission wavelengths
around 550–560 nm (Table 1). Fluorescence analysis in dioxane
as an organic solvent with decreased polarity exhibited brighter
quantum yields for most phenazines as well as blue-shifted
emission (e.g., from 500 to 530 nm) maxima for all compounds
(Figure 1).

Based on existing literature on environmentally-sensitive
fluorophores (Levit et al., 2009; Cao X. et al., 2017), we also
decided to examine response to viscosity as it can potentially
affect optical properties of the phenazines. Compounds were
dissolved in water-glycerol mixtures of increasing viscosity,
and their fluorescence intensity was measured. All phenazines
showed brighter fluorescence emission in more viscous media,
with fold increases ranging from 2 (compound P3 and P4) to 10
(compound P5) (Figure S1). Interestingly, compounds P1 and
P5, which lack bulky groups attached to the phenazine core, were
found to be the most responsive to changes in viscosity.

Structure-Activity Relationships
In order to examine the key features of phenazine-based probes
P1 and P3–P7 as fluorophores as well as their capabilities to stain
intracellular hydrophobic environments, we evaluated the impact
of different structural modifications (e.g., different electron-rich
conjugated moieties) on their fluorescence properties. First, we
analyzed the influence of C-C triple bonds by comparing the
behavior of compounds P1 vs. P5 as well as compounds P3

vs. P6. In both cases, the addition of alkyne groups resulted in
30 nm red-shifts of emission maxima [i.e., from 520 to 550 nm
(P3 vs. P6) and 525 to 560 nm (P1 vs. P5)] (Figure 2). Since
the wavelength of emitted photons is related to the energy gap
between the ground and excited electronic state, it can be inferred
that triple bonds lower the energy of the excited state of the
probes, partially due to a greater delocalization of the electrons
across the fluorophore.

Increased sensitivity to polarity was also observed upon
addition of substituents bearing triple bonds to the core of the
probes. Both compounds P5 and P6 proved considerably more
sensitive to changes in polarity compared to their analogs lacking
alkyne groups. Specifically, compounds P5 and P6 showed 9-fold
and 21-fold increases respectively in fluorescence quantum yields
when comparing water to dioxane. On the other hand, P1 and P3
displayed 6-fold and 11-fold increases, respectively.

Next, we also examined the impact of direct C-C coupling
of electron-rich phenyl groups to the phenazine core. For this
purpose, we compared P1 vs. P3 as well as P5 vs. P6. Notably,
unlike alkyne substitution, the C-C addition of phenyl groups
had minor impact on absorption and emission profiles of the
fluorophores. On the other hand, their influence in sensitivity to
viscosity was quite pronounced. Whereas, compound P1 showed
6-fold increase when dissolved in glycerol compared to water,
compound P3 showed only 2-fold increase. A similar trend was
observed for compounds P5 and P6, which exhibited 10-fold and
3-fold increases, respectively. Further insight into the impact of
electron-donating moieties was gained by evaluating the effect
of a methoxy group in the para position of the aromatic ring
in compound P7. A minor 13 nm red-shift in the absorbance
maximum was observed compared to P6, with the emission
spectra of both probes being identical. Likewise, the response to
variations in viscosity was also unaffected by the addition of the
methoxy group.

Finally, the optical properties of trimethylsilane-containing
compound P4 were also analyzed. Although trimethylsilyl
tags primarily serve as protecting groups for terminal alkynes
(Greene and Wuts, 1999), they can also offer insight into the
impact of bulky, non-planar substituents on fluorescence. The
properties of compound P4 were compared to its unprotected
analog P5, showing that trimethylsilyl groups slightly increased
environmental sensitivity (i.e., 19-fold increase from water to
dioxane for compound P4, while P5 shows a 13-fold increase
under the same conditions).

Solubility in aqueous media is an important feature to
be considered in the design of fluorescent probes for live-
cell imaging. Therefore, we assessed the solubility behavior of
compounds P1 and P3–P7 in PBS by measuring the mean size of
aggregates at room temperature using dynamic light scattering.
All compounds endowed with aryl substituents, either directly
connected to the phenazine core as in P3 or linked to it through
a triple bond (P6 and P7) produced very large aggregates in
aqueous medium, showing potential incompatibility for live-cell
imaging. On the other hand, remarkably better water solubility
was observed for probes P1, P4, and P5, which display smaller,
non-aromatic residues. These results suggest that, even though
compounds P6 and P7 displayed the highest environment-
sensitivity, their poor water solubility may hamper their use for
staining intracellular LDs.
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FIGURE 1 | Fluorescence emission spectra of phenazine-derived fluorophores P1 and P3–P7 in water (gray line) and dioxane (black line). Spectra were recorded at

50µM. λexc. : 440 nm.

FIGURE 2 | Comparison of normalized emission spectra of phenazine probes without (P1, P3) and with (P5, P6) alkyne substitution. Spectra were recorded at

50µM. λexc. : 440 nm.

Live-Cell Imaging
In order to assess the properties of compounds P1 and P3–
P7 for live-cell imaging, we performed fluorescence microscopy
experiments in human HeLa cells. Initially, all compounds
were individually incubated at 10µM concentration for 15min
together with the nuclear fluorescent counterstain Hoechst
33342, then washed and imaged under the microscope.

As shown in Figure 3, fluorescence emission was only
detected from cells that had been incubated with compounds P1
or P5, with the former being significantly brighter than the latter.
The lack of fluorescence in cells incubated with other phenazines
(P3, P4, P6, and P7) indicates poor intracellular retention,
which -with the exception of compound P4- may be due to

their scarce water solubility. We further explored the imaging
capabilities of P1 as the most suitable phenazine for fluorescence
imaging. We incubated HeLa cells with different concentrations
of the phenazine, and observed a dose-dependent response with
an optimal working concentration around 10µM (Figure S2).
High-magnification images displayed a distinct punctate pattern
in the cytoplasm of P1-stained cells, suggesting preferential
accumulation at intracellular LDs.

In order to further analyze the subcellular localization of
compound P1 and its potential application of LD imaging in
live cells, we performed co-localization experiments with the
commercially available lipophilic dye Nile Red (λem > 600 nm),
which has been reported for visualizing LDs in cells (Figure S4)
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FIGURE 3 | Fluorescence microscopy images of HeLa cells incubated with compounds P1 and P3–P7 (10µM, green) for 15min and counter-stained with Hoechst

33342 (blue). Scale bar: 50µm.

FIGURE 4 | High magnification fluorescence microscopy images of HeLa cells

incubated with compound P1 (10µM, green), Nile red (10µM, red) and

Hoechst 33342 (blue). Overlaid images indicate co-localization of P1 and Nile

Red in intracellular LDs as shown by punctate yellow signals (white arrows).

Scale bar: 10µm.

(Greenspan et al., 1985). As shown in Figure 4, HeLa cells
were incubated with compound P1 (green), Nile Red (red)
and Hoechst 33342 (blue) as the nuclear counterstain. Notably,
both compound P1 and Nile Red were found in the cytoplasm

with preferential accumulation in punctate intracellular lipid
environments. Overlaying of both channels confirmed the co-
localization of P1 and Nile Red in LDs (yellow dots in Figure 4,
white arrows). Furthermore, compound P1 showed reduced
off-target intracellular fluorescence in the cytosol asserting its
value as a fluorogenic probe for hydrophobic intracellular
environments. Notably, the remarkable environment-sensitivity
of compound P1 allowed us to observe staining of LDs even
under wash-free conditions, opening new opportunities for
imaging LD dynamics in real time (Figure S3). Altogether, these
results validate the utility of compound P1 as a new cell-
permeable fluorophore for live-cell imaging of intracellular LDs.

CONCLUSIONS

In summary, we have prepared a collection of fluorescent
phenazine compounds using a novel and straightforward
synthetic strategy that exploits chemical modifications on the
naturally-occurring lapachol. We characterized their optical
and intracellular staining properties, and identified the first
fluorogenic phenazine for lipid droplet staining in live cells.
Furthermore, we established structure-activity relationships
to analyze the influence of phenazine substitution in their
fluorescent behavior, and to determine key structural features
associated to their fluorescence sensitivity. Furthermore, we
assessed the formation of aggregates in aqueous media in
order to determine the relationship between the phenazine
substitution pattern and their water solubility as one of the key
features for applications in live-cell imaging. This systematic
study will improve current limitations in the rational design
of phenazine fluorogenic agents for bioimaging applications.
Finally, we validated the phenazine derivative P1 as a live-cell
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compatible fluorescent probe for intracellular staining of lipid
droplets with minimal off-target signal and enhanced capabilities
over the commercially available dye Nile Red.
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