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Abstract

Ada Lovelace is widely regarded as an early pioneer of computer science, due to an 1843 paper about Charles Babbage’s An-
alytical Engine, which, had it been built, would have been a general-purpose computer. However, there has been considerable 
disagreement among scholars as to her mathematical proficiency. This paper presents the first account by historians of mathe-
matics of the correspondence between Lovelace and the mathematician Augustus De Morgan from 1840–41. Detailed contextual 
analysis allows us to present a corrected ordering of the archive material, countering previous claims of Lovelace’s mathematical 
inadequacies, and presenting a more nuanced assessment of her abilities.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

Zusammenfassung

Ada Lovelace wird generell als frühe Pionierin der Informatik angesehen. Dies vor allem wegen des 1843 erschienenen Arti-
kels über Charles Babbages ‘Analytical Engine’, die, wäre sie damals gebaut worden, einen Allzweckcomputer dargestellt hätte. 
Allerdings gibt es beträchtliche Meinungsverschiedenheiten unter Historikern hinsichtlich Lovelaces mathematischer Kenntnisse. 
Dieser Artikel präsentiert den ersten Bericht von Mathematikhistorikern über die Korrespondenz der Jahre 1840–41 zwischen 
Lovelace und dem Mathematiker Augustus De Morgan. Detaillierte Kontextanalyse erlaubt es uns, eine korrigierte Anordnung des 
Archivmaterials vorzulegen, die bisherigen Meinungen über die mathematischen Unzulänglichkeiten von Lovelace entgegenwirkt
und die eine nuanciertere Bewertung ihrer Fähigkeiten erlaubt.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

On 21 January 1844, the English mathematician Augustus De Morgan wrote a confidential letter to Lady 
Noel Byron about her 28-year-old daughter, Augusta Ada King, the Countess of Lovelace, who De Morgan 
had tutored as a private pupil in various areas of advanced mathematics for about eighteen months in the 
early 1840s. In his letter, while he was at pains to stress that “I have never expressed to Lady Lovelace my 
opinion of her as a student of these matters” [i.e. mathematics], De Morgan wrote:

I feel bound to tell you that the power of thinking on these matters which Lady L[ovelace] has always shewn 
from the beginning of my correspondence with her, has been something so utterly out of the common way 
for any beginner, man or woman, that this power must be duly considered by her friends, with reference to 
the question whether they should urge or check her obvious determination to try not only to reach but to get 
beyond, the present bounds of knowledge.1

Not content with such high praise, to reinforce his point he continued:

Had any young [male] beginner, about to go to Cambridge, shewn the same power[s], I should have proph-
esied ... that they would have certainly made him an original mathematical investigator, perhaps of first rate 
eminence (LB 339, ADM to Lady Byron, 21 Jan. 1844, f. 2).

De Morgan’s letter was written a few months after the publication of the paper for which Lovelace 
is now famous—her translation, with extensive appendices, of Luigi Menabrea’s Notions sur la Machine 
Analytique de M. Charles Babbage (Lovelace, 1843). Since the dawn of modern computing in the mid-
twentieth century the paper has been regarded as a remarkable account, which presents Charles Babbage’s 
design for a general purpose computer, his Analytical Engine, not in terms of mechanical detail, but as what 
would now be called an “abstract machine”, making it readily understandable to modern readers. As well 
as broader speculation about the potential of the machine, for example to do algebra or compose music, 
the paper contains a large table setting out the calculation of the seventh Bernoulli number, often called the 
“first computer program”.2 A thorough treatment of the content of Lovelace’s paper is given in Haigh and 
Priestley (2015) and Misa (2016) and the references cited therein.

In the two hundred years since her birth, Lovelace’s life and work have received much attention, with 
opinions ranging from “genius” to “charlatan”. In her lifetime she was most famous, not for her scien-
tific work, but as the daughter of the poet Lord Byron, brought up by her mother following her parents’ 
acrimonious separation when she was a few weeks old. An extensive archive of family papers has pro-
vided the subject matter for scholarly biographies, quantities of secondary literature, and numerous popular 
articles and websites: for surveys see (Hollings et al., 2017; Misa, 2016), and references therein. How-
ever our work appears to be the first time that historians of mathematics have studied the material in 
detail.

1 Dep. Lovelace-Byron (Bodleian Library, Oxford), Box 339, De Morgan to Lady Byron, 21 January 1844, f. 1. Hereafter, refer-
ences to the Lovelace-Byron papers will appear in the text within parentheses; ‘Dep. Lovelace-Byron, Box n’ will be abbreviated 
as ‘LB n’. Other abbreviations employed will be ‘ADM’ for De Morgan and ‘AAL’ for Lovelace. Thanks to a partnership of the de-
scendants of Ada Lovelace, the Bodleian Library, and the Clay Mathematics Institute, Lovelace’s correspondence with De Morgan 
can now be found online at www.claymath.org/publications/ada-lovelaces-mathematical-papers.
2 Lovelace observes that the table presents “a complete simultaneous view of all the successive changes” which the components 

“pass through in order to perform the computation” (Lovelace, 1843, p. 727), so that the table is, in modern terms, an execution 
trace (Haigh and Priestley, 2015), and the program would have been a corresponding stack of punched cards used to instruct the 
machine.

http://www.claymath.org/publications/ada-lovelaces-mathematical-papers
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In Hollings et al. (2017), changing opinions of Lovelace’s mathematical ability, and the influence they 
have had on scholarly and popular accounts, are reviewed. In summary, during her lifetime she was held 
in respect by the British scientific community, and deferential references to the 1843 paper and her math-
ematical ability continued through the mid-twentieth-century in literature on computing. However, one of 
the earliest biographies, by Dorothy Stein, which remains the most detailed in its analysis of Lovelace’s 
scientific interests, argues that her elementary mathematical errors and frequent questions to De Morgan 
and others on matters of detail (Stein, 1985, pp. 84, 89–91) are “evidence of the tenuousness with which 
she grasped the subject of mathematics,” claiming that such evidence “would be difficult to credit about 
one who succeeded in gaining a contemporary and posthumous reputation as a mathematical talent, if there 
were not so much of it”.

This work influenced later authors to argue that her contribution to the 1843 paper must have been slight: 
for example Babbage scholar Allan Bromley was fairly neutral in Bromley (1982), whereas his essay in 
Aspray’s overview of computing history (Aspray, 1990), concluded: “Not only is there no evidence that 
Ada ever prepared a program for the Analytical Engine, but her correspondence with Babbage shows that 
she did not have the knowledge to do so” (Bromley, 1990, p. 89). More recently in a thorough survey of 
the ongoing debate, Thomas Misa concluded that Lovelace’s paper of 1843, including its mathematical 
content, was “the product of an intense intellectual collaboration” between Lovelace and Babbage (Misa, 
2016, p. 18). Stein’s largely unquestioned downplaying of Lovelace’s mathematical competence also seems 
to have shifted focus to the more reflective aspects of the paper, with a number of writers building on 
Betty Toole’s view of Lovelace as “a synthesizer and a visionary” who “saw the need for a mathematical 
and scientific language which was more expressive and which incorporated imagination” (Toole, 1992, 
p. 2).

Thus this paper addresses two related questions: whether Lovelace had the mathematical knowledge and 
skills to contribute to the 1843 paper, and whether De Morgan’s claim of her mathematical potential was 
justified. Our work is underpinned by a crucial corrected ordering of the archive material, and by what is, 
surprisingly, the first detailed analysis by historians of mathematics of Lovelace’s mathematical correspon-
dence with Augustus De Morgan. We draw upon recent research in the history of mathematics, in particular 
a close knowledge of De Morgan’s related work, and show that, by the beginning of 1842, Lovelace had 
acquired a solid grounding in several areas of what was then university-level mathematics, a critical attitude 
towards underlying principles, and the ability to make perceptive and far-reaching mathematical observa-
tions. Our work thus challenges earlier judgements impugning her competence to contribute to the 1843 
paper, and her potential, in time, for mathematical research.

The present paper is a sequel to our work on Lovelace’s mathematical education before 1840 (Hollings 
et al., 2017), in which we analyse Lovelace’s eclectic and largely self-administered mathematical educa-
tion, rooted in an older tradition of practical mathematics and synthetic geometry, with a later exposure, 
thanks to Mary Somerville, to the newer analytic approach based on continental mathematics. That de-
tailed contextual study allowed us to challenge Dorothy Stein’s assertion that Lovelace’s correspondence 
with Somerville is evidence of profound lack of ability (Stein, 1985, pp. 55–56), and Doron Swade’s claim 
that in the late 1830s Lovelace lacked the background to have understood accounts of Babbage’s earlier 
Difference Engine (Swade, 2000, pp. 166–168).

In the present paper, Section 2 gives the background to Lovelace’s correspondence course with De Mor-
gan, and an overview of the content and context. Section 3 shows some of the difficulties she encountered, 
and how studying with De Morgan developed her knowledge, skills and approach to learning. Section 4
shows her emerging strengths of attention to detail, interest in big questions, and desire to tackle problems 
from first principles, illustrated with a extended analysis in their historical context of her prescient and 
correct observations on George Peacock’s principle of the permanence of equivalent forms, and her specu-
lation on possible extensions to complex numbers. Section 5 presents our further new research contribution: 
a contextual analysis which provides a corrected ordering of the archive material, enabling further challenge 
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to claims by Stein of Lovelace’s mathematical weaknesses. Section 6 draws together our judgement of her 
mathematical knowledge and potential, and reviews briefly opportunities for further research by historians 
of mathematics.

2. Background

Ada, Countess of Lovelace (1815–1852) was the daughter of the poet Lord Byron (1788–1824) and his 
wife Annabella (née Milbanke) (1792–1860). Under Lady Byron’s guidance, with the assistance of gov-
ernesses and informal tutors, the young girl was introduced to arithmetic and practical geometry, before 
progressing to the study of Euclid’s Elements in her later teenage years: she also developed an interest in 
mechanical devices, and read widely in the popular mathematical and science literature of the day (Hollings 
et al., 2017).

In 1835 she married William, the eighth Baron King of Ockham, becoming the Countess of Lovelace on 
her husband’s elevation to an earldom three years later (Moore, 1977, pp. 69, 92). Although her new married 
life, plus the birth of three children between 1836 and 1839, somewhat interrupted her mathematical studies, 
she endeavoured to maintain them, in part via a friendship and correspondence with the mathematical and 
scientific writer, Mary Somerville (1780–1872).3 But face-to-face interaction was rendered impossible after 
1838, when Somerville moved with her husband to Italy.

By late 1839, Lovelace was actively making enquiries for a suitable mathematical tutor. Letters from 
this time reveal that she recruited her friend and scientific mentor Charles Babbage (1791–1871), who she 
had known since her late teens, to make enquiries to find her an appropriate instructor, but that this search 
was, initially at least, unsuccessful (Huskey and Huskey, 1980, pp. 306, 308). However, by the summer of 
1840, Lovelace could report to her mother that a tutor had been found and that her mathematical studies 
were once more underway (LB 41, AAL to Lady Byron, 29 July [1840], f. 179v). She was now working 
under the tutelage of Augustus De Morgan (1806–1871).

De Morgan was a Cambridge graduate and part-time actuary, who had been appointed the first profes-
sor of mathematics at the London University (now called University College London, or UCL) in 1828. 
A talented and patient teacher (Rice, 1999), De Morgan was a prolific writer on all areas of mathematics, 
publishing numerous research papers, largely on algebra and logic, as well as countless popular articles, 
book reviews, encyclopedia entries and textbooks, several of them written for the contemporaneous Society 
for the Diffusion of Useful Knowledge (S.D.U.K.) of which he was a prominent member (De Morgan, 1882, 
pp. 401–415). His most substantial publication was The Differential and Integral Calculus, an 800-page 
compendium published in 25 instalments by the S.D.U.K. between 1836 and 1842, and which he was 
still in the process of writing while tutoring Lovelace. De Morgan was also actively involved in another 
long-term S.D.U.K. project, the Society’s Penny Cyclopædia, which appeared in 27 volumes from 1833 to 
1843, and for which he wrote almost all the entries on the mathematical sciences, numbering over 700 and 
comprising roughly one-sixth of the entire publication (De Morgan, 1882, pp. 407–414).

Well connected with the scientific and liberal intelligentsia of the day, De Morgan’s marriage to Sophia 
Frend (1809–92) in 1837 had widened his social circle still further and, since his wife had been well known 
to the Byron family since childhood, it was not long before he was introduced first to Lady Byron and 
eventually to Ada Lovelace (De Morgan, 1882, p. 89).4

3 Letters between them from November 1835 show Lovelace studying trigonometry, and asking questions about the algebraic 
derivation of certain identities—a fact used by Dorothy Stein to add weight to her assertion Lovelace was mathematically weak 
(Stein, 1985, pp. 55–56). This claim is challenged in Hollings et al. (2017), where we argue that her difficulties arose from her 
previous exposure to a more old-fashioned, synthetic way of studying trigonometry.
4 Although De Morgan and Babbage had been well acquainted and on cordial terms for over a decade, the tutorial arrangement 

with Lovelace does not seem to have come about via this connection. It appears rather that the professor had agreed to take on 
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The arrangement between the student and her new tutor was simple: Lovelace essentially undertook 
what would nowadays be called a “correspondence course” with De Morgan, which consisted of guided 
independent reading along with a variety of pertinent problem exercises. This material came largely from 
De Morgan’s own published textbooks and articles, supplemented on occasion by other relevant works. 
In addition to this, when Lovelace travelled from her home in the country to her London residence in 
St. James’s Square, there were some occasions when the professor and his pupil would meet face-to-face, 
either in St. James’s or at the De Morgan family home at 69 Gower Street in Bloomsbury. It is clear that 
this arrangement seems to have worked well and certainly appears to have been agreeable to Lovelace, as 
she wrote in July of 1840: “I think the professor suits me exceedingly well” (LB 41, AAL to Lady Byron, 
f. 179v).

Of the correspondence that passed between Lovelace and her teacher, only a subset survives and it is by 
its very nature fragmentary. The 63 letters (43 from Lovelace, 20 from De Morgan) appear to cover a period 
of about eighteen months from around July 1840 to January 1842, although we cannot be certain of this 
since De Morgan and (especially) Lovelace seem to have been rather lax about dating. Nevertheless, we 
can tell that the correspondence proceeded in fits and starts, sometimes moving very rapidly indeed, while 
at other times being interrupted for weeks on end by lack of activity, before eventually coming to a halt.

In her earliest letters, Lovelace left no doubt that the subject on which she wished to focus her attention 
was calculus—and she wanted to get to it as soon as possible. With this goal in view, the first few months of 
her correspondence course with De Morgan (July–October 1840) were concerned with preliminary matters 
such as ensuring that Lovelace had the necessary foundational knowledge. It quickly transpired that there 
were significant gaps, and De Morgan was quick to warn her of the periodic digressions into algebra and 
trigonometry that would be required to fill them: “You understand of course that your Diff[erentia]l Calculus 
must be delayed from time to time while you make up those points of Algebra and Trigonometry which 
you have left behind” (LB 170, ADM to AAL, 27 Sept. 1840, f. 16r).

Very soon, in consequence, we find Lovelace working her way through De Morgan’s textbooks on alge-
bra, trigonometry and ratio and proportion, as she reviewed (or perhaps learnt for the first time) coordinate 
geometry, functions and functional equations, inequalities, logarithmic and exponential functions, and in-
finite series. By November, however, she was taking her first steps in the differential calculus, not just by 
using De Morgan’s publications, but also by studying A Collection of Examples of the Application of the 
Differential and Integral Calculus (1820), written by Babbage’s undergraduate contemporary and De Mor-
gan’s erstwhile Cambridge tutor, George Peacock.5

The winter of late 1840 and early 1841 saw Lovelace working feverishly through De Morgan’s Differen-
tial and Integral Calculus to master the concepts of the differential calculus: limits, continuity, convergence, 
and countless rules and procedures. By February 1841, she reported to her mother that “All is prosperous. 
The Mathematics & Mr De Morgan going on very well indeed. You would be much pleased to see the heap
of papers of my writing, which have now accumulated into honourable & substantial evidence of my steady 
industry for some months past” (LB 42, AAL to Lady Byron, 24 Feb. [1841], ff. 20r–20v). In late February 
the correspondence broke off for some months, apparently because of the distress caused by the revelation 
of her late father’s alleged relationship with his half-sister Augusta Leigh. Although in a letter to Sophia 
De Morgan that spring she maintained that “the Differential Calculus is king of the company;—& may it 

this work as a favour to his wife (and the Byron family). Certainly no money appears to have changed hands—although there are 
quaint references to, and thanks proffered for, partridges and other game received from the Lovelace estate! (LB 170, ADM to 
AAL, ff. 12v, 34r).
5 This book had been written by Peacock to supplement the more theoretical material contained in the famous translation of 

Lacroix’s Traité élémentaire de calcul différentiel et de calcul intégral, published by Babbage, John Herschel and himself in 1816. 
By 1840, it was long out of print and becoming quite rare. Indeed, in one letter Lovelace remarked that her second-hand copy had 
cost £2, 12 shillings and sixpence, equivalent to nearly £200 in today’s money! But De Morgan assured her that this was money 
well spent: “Peacock’s examples will be of more use than any book” (LB 170, ADM to AAL, 15 Sept. 1840, f. 14v).
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ever be so!” (LB 170, AAL to Sophia De Morgan, [Spring 1841], f. 60v), contact with the professor did not 
resume until June 1841 after a four-month break, with Lovelace apologising that “I am a little vexed at this 
interruption. I was going on so nicely” (LB 170, AAL to ADM, [June 1841], f. 50v). By this point, she had 
begun the study of integration, which proceeded throughout the summer of 1841, with brief incursions into 
differential equations and mechanics. By the autumn of that year, she had become interested in the algebra 
of complex numbers, at which point she read De Morgan’s Penny Cyclopædia article on “Negative and 
Impossible Quantities” (De Morgan, 1840a). This article led straight into a subsequent piece entitled “Op-
eration” (De Morgan, 1840b), which contained a reference to an entry in the same volume on the “Numbers 
of Bernoulli” (De Morgan, 1840c).6 In this way, Lovelace was first introduced to the subject of Bernoulli 
numbers—which would ultimately form the mathematical basis of her famous table in the 1843 paper. The 
information that enables us to make this deduction is contained in the very last letter of substance from 
Lovelace to De Morgan, dated November 1841. The next one, from January 1842, merely remarks that she 
has been very mathematically unproductive recently. And from that point, the correspondence, such as it 
now exists, is essentially over.

Although the content of the letters is almost entirely mathematical, there are occasional references to 
current events that help to put the material into historical context. Such matters include the birth of the 
De Morgans’ third child, George, and the pregnancy of Queen Victoria (who was then carrying the future 
king, Edward VII); the Lafarge murder trial7; and the death of De Morgan’s father-in-law in February 1841. 
These contemporary references are useful in helping us to date some of the letters, since the majority are 
either undated, contain only the day and the month (minus the year), or have merely a phrase like “Monday 
evening” to indicate the date of composition. Moreover, Lovelace is particularly guilty of writing what is 
clearly the wrong day of the week for the date indicated.8 To complicate matters further, two of Lovelace’s 
recent biographers Dorothy Stein and Betty Toole have, we believe, fallen into the very understandable trap 
of assigning incorrect dates to a few of her letters.

In the case of Toole’s work, this has little to no effect on the overall picture she presents, merely resulting 
in a couple of letters being presented, in our view, out of sequence. In the case of Stein’s analysis, however, 
the erroneous dating weakens a portion of her argument significantly, since it depends on a particular letter’s 
dating from late 1842. As will be shown in Section 5, our research presents a compelling case for an earlier 
date, which in turn forms the basis of our challenge to Stein’s claims mentioned in Section 1. We therefore 
now present a representative sample of the Lovelace–De Morgan correspondence in detail, beginning with 
a survey of the mathematical areas Lovelace found challenging, followed by a discussion of some of her 
particular strengths.

3. Lovelace’s mathematical challenges

All mathematics students, even the most competent and well-prepared, find some things difficult when 
they first encounter them, but it is rare to have such an articulate record of these difficulties, and the way 
the student learns from overcoming them.

In the intense interactions over this period we see Lovelace not only learning new material and repairing 
the gaps in her previous eclectic education, but also learning better habits of study from De Morgan: going 
more slowly, learning from mistakes, and having a realistic expectation of what can be achieved. She was 

6 All of these Penny Cyclopædia articles were written by De Morgan. The Bernoulli numbers are also featured in Lacroix (1816, 
pp. 559–562), Peacock (1820, pp. 50–51), and De Morgan (1836–1842, pp. 247–248, 553–555, 581).
7 Marie Lafarge was a Frenchwoman whose sensational trial came to an end in September 1840, when she was convicted of 

murdering her husband by arsenic poisoning.
8 For example, two letters from Lovelace to De Morgan, clearly concerning material under discussion in 1841, are dated “Sunday 

6th July” and “Monday 6th July”, respectively (LB 170, ff. 108r–109v, ff. 110r–111r). In fact, 6 July 1841 was a Tuesday!
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Figure 1. Problem in analytical geometry from De Morgan’s Differential and Integral Calculus (De Morgan, 1836–1842, p. 29).

an enthusiastic pupil and, initially at least, impatient to move as quickly as possible. In September 1840 she 
wrote:

I could wish I went on quicker. That is, I wish a human head, or my head at all events, could take in a 
great deal more & a great deal more rapidly than is the case; and if I had made my own head, I would have 
proportioned its wishes & ambition a little more to its capacity. ... When I compare the very little I do, with 
the very much — the infinite I may say — that there is to be done; I can only hope that hereafter in some 
future state, we shall be cleverer than we are now (LB 170, 13 September [1840], ff. 48v–49v).

This eagerness is almost always countered by De Morgan’s steady but reassuring words of caution:

... never estimate progress by the number of pages. You can hardly be a judge of the progress you make, 
and I should say that it is more likely you progress rapidly upon a point that makes you think for an hour, 
than upon an hour’s quick reading, even when you feel satisfied. That which you say about the comparison 
of what you do with what you see can be done was equally said by Newton when he compared himself to a 
boy who had picked up a few pebbles from the shore ... so that you have respectable authority for supposing 
that you will never get rid of that feeling; and it is no use trying to catch the horizon (LB 170, 15 September 
1840, f. 14r).

By November, Lovelace was beginning to see the wisdom of this advice. She reported to her mother:

I work on very slowly. This Mr De Morgan does not wish otherwise. On the contrary he cautioned me 
against a wish I had at one time to proceed rather too rapidly (LB 41, 29 November 1840, f. 187v).

As Toole observes (Toole, 1992, p. 85), Lovelace wrote to De Morgan when she encountered problems, 
and so it is inevitable that the bulk of the correspondence is devoted to her difficulties, those faced by 
many students learning calculus. We now consider examples to illustrate her poor background at the start 
of her studies, her persistence in addressing things she found difficult, often covering many pages with 
speculations before admitting defeat, and her increasing skill in recognising and learning from her mistakes. 
As she wrote to De Morgan:

I used once to regret these sort of errors & to speak of time lost over them. But I have materially altered my 
mind on this subject. I often gain more from the discovery of a mistake of this sort, than from 10 acquisitions 
made at once & without any kind of difficulty (LB 170, 22 December 1840, f. 70r).

3.1. Lack of background

After some preliminary suggested reading from various of De Morgan’s Penny Cyclopædia articles—
such as “Infinite”, “Nothing” and “Limit”—Lovelace began her course of study with the introductory 
chapter of the Differential and Integral Calculus. All seemed to go well, and she appeared to have no 
difficulty in solving a simple algebraic question from mechanics (De Morgan, 1836–1842, p. 29). But she 
was unable to understand the next problem (see Figure 1).
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Figure 2. Lovelace’s attempt to sketch the curve y = x2, together with De Morgan’s comments (LB 170, [1840], f. 11).

As is evident from De Morgan’s reply to her (no longer extant) query, she does not appear to have come 
across the definitions of the words co-ordinate, ordinate and abscissa before, and indeed this material is 
not covered in the textbooks she had previously studied (Hollings et al., 2017). Since the solution to the 
above problem is simply the straight line y = 2

3x, De Morgan explained, “If then PM = 2
3OM , always, we 

have PM
OM

= 2
3 always, or the direction OP is always such as to make the angle POM the same, namely 

that angle which has 2
3 for its tangent.” But, he noted: “To see all this fully something of Trigonometry and 

the application of algebra to geometry is required” (LB 170, 17 Aug. 1840, f. 7v).
It was from this point that Lovelace began working her way through analytical geometry and trigonome-

try, while still reading the calculus text. One of the earliest results of this reading in the existing manuscripts 
is her attempt to sketch the curve of y = x2, which is preserved along with De Morgan’s comment on it (see 

Figure 2). In her sketch, Lovelace took various x-values 
(

1
4 , 1

2 , 3
4 ,1, 3

2 , . . .
)

and drew corresponding lines 

of length 1
16 , 14 , 9

16 , 1, 94 , . . . perpendicular to the x-axis, tracing out the shape of the curve representing the 

function y = x2. But she could not understand why it is that the curve provides the geometric form of the 
function, “as I should have said that the perpendicular straight lines are the representation of the function, 
& I do not see any precise relation that the existing curve holds to them” (LB 170, [1840], f. 11). To this, 
De Morgan answered: “The precise relation is that this one curve, and no other, belongs to y = x2. Of 
course there could be no visible relation unless to a person whose eye was so good a judge of length that he 
could see the ordinate increasing with the square of the abscissa” (LB 170, [1840], f. 11).

This answer may have satisfied her initially, but Lovelace was soon puzzled again, this time by the 
representation of an arbitrary continuous function on page 45 of the Calculus (see Figure 3). To find the 
functional expression for such a curve would, wrote De Morgan, take “more than the skill of the most 
practised algebraist” (De Morgan, 1836–1842, p. 45); but Lovelace’s apparent confusion seems to have 
arisen from his claim in another letter that “There must be an infinite number of different equations which 
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Figure 3. An arbitrary continuous function from De Morgan’s Differential and Integral Calculus (De Morgan, 1836–1842, p. 45).

belong to a curve of a similar form” (LB 170, [1840], f. 12r). As an example, he postulated a curve passing 
through the points (a, A), (b, B) and (c, C), which could be represented by an infinite possible number of 
functions of the form:

y = A
(x − b)(x − c)

(a − b)(a − c)
+ B

(x − c)(x − a)

(b − c)(b − a)
+ C

(x − a)(x − b)

(c − a)(c − b)

+
{

any function of x which
does not become infinite
when x = a, or b, or c

}
× (x − a)(x − b)(x − c).

At this point, De Morgan must have thought Lovelace’s algebraic background was stronger than it was, 
though her reply would have quickly disabused him:

I am afraid I do not understand what you were kind enough to write about the Curve; and I think for this 
reason, that I do not know what the term equation to a curve means. Probably with some study, I should 
deduce that meaning myself; but having plenty else to attend to of more immediate consequence, I do not 
like to give my time to a mere digression of this sort. I should much like at some future period, (when I have 
got rid of the common Algebra & Trigonometry which at present detain me), to attend particularly to this 
subject (LB 170, 13 September [1840], ff. 49v, 164r).

Such a significant gap in her mathematical knowledge must surely have given De Morgan pause, and in 
his reply, he patiently gave as unambiguous a definition as possible (“The equation of a curve means that 
equation which must necessarily be true of the coordinates of every point in it” (LB 170, 15 Sept. 1840, 
f. 15r)) and contented himself with the more elementary example of a circle of radius a, centred at the 
origin.

This appears to have cleared up the misunderstanding, since no further questions of this kind occur in the 
correspondence. However, it shows both the gaps in her mathematical knowledge, and her ingenuity in try-
ing to resolve them, in this case by working with an alternate idea of what the equation to a curve might be.

3.2. Elementary errors

As with many beginners, Lovelace sometimes made elementary errors, particularly in algebraic manipu-
lation, a weakness already apparent before she started to study with De Morgan (Hollings et al., 2017). In a 
letter of 27 November [1840],9 Lovelace was struggling with an exercise in functional equations (De Mor-
gan, 1837, p. 206), introduced in Chapter 10 of De Morgan’s Elements of Algebra.

Shew that the equation

φ(x + y) + φ(x − y) = 2φx × φy

9 We shall have more to say about the date of this letter later (see Section 5).
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is satisfied by

φx = 1

2

(
ax + a−x

)
for every value of a: and also that

φ(x + y) = φx + φy

can have no other solution than

φx = ax.

Although she was able to solve the second part, she admitted to being “completely baffled” by the first, 
unsurprisingly as she had made the beginner’s mistake of misreading the question, thinking that both parts 
asked for the most general solution of the given equation, when in fact the first is only asking for verification 
of a single solution. She exclaimed:

I do not know when I have been so tantalized by anything, & should be ashamed to say how much time I 
have spent upon it, in vain. These Functional Equations are complete Will-o’-the-Wisps to me. The moment 
I fancy I have really at last got hold of something tangible & substantial, it all recedes further & further & 
vanishes again into thin air (LB 170, 27 Nov. [1840], ff. 149r–149v).

As she grew more experienced she began to pose problems for herself, for example in 1841, when she 
tried to prove that d

dx
(xn) = nxn−1. She observed “It had not struck me that, calling (x + θ) = v, the form 

(x+θ)n−xn

θ
becomes v

n−xn

v−x
” (LB 170, [Jan. 1841], f. 91r), and wrote whimsically

And by the bye, I may here remark that the curious transformations many formulae can undergo, the unex-
pected & to a beginner apparently impossible identity of forms exceedingly dissimilar at first sight, is I think 
one of the chief difficulties in the early part of mathematical studies. I am often reminded of certain sprites 
& fairies one reads of, who are at one’s elbow in one shape now, & the next minute in a form the most 
dissimilar, and uncommonly deceptive, troublesome & tantalizing are the mathematical sprites & fairies 
sometimes; like the types I have found for them in the world of Fiction (LB 170, [Jan. 1841], ff. 91r–91v).

This passage and the previous one are often quoted as evidence of her particularly imaginative approach to 
technical material (Toole, 1992, p. 100): however as they are the only ones of this nature in several hundred 
otherwise straightforward pages, we feel that the claim is somewhat overblown.

De Morgan encouraged her to do routine exercises to help her manipulative skills, which no doubt 
reduced the frequency and egregiousness of some of her errors, but she sometimes still struggled with 
algebraic intuition. For example, while reading De Morgan’s Penny Cyclopædia article on “Negative and 
Impossible Quantities” in September 1841, she came across the following passage (De Morgan, 1840a, 
p. 134):

. . . it can be easily shown that any algebraical expression, however complicated, which is a function of √
(−1), can be reduced to the form A + B

√
(−1), where A and B are possible10 quantities. For instance (k

being 
√

(−1))

(a + bk)m+nk = eA cosB + keA sinB (1)

10 i.e. real.
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where A and B are determined as follows. Let

r = √
(a2 + b2), [and] tan θ = b

a
, [then]

A = m log r − nθ, B = n log r + mθ.

Lovelace reported (LB 170, 9 Sept. [1841], f. 123r) that she had “tried a little to demonstrate this Formula” 
(i.e. (1)) and—based on the assumption that tan θ = b

a
gives sin θ = b and cos θ = a—had obtained

(a + bk)m+nk = (cosmθ + k sinmθ) × (cosnθ + k sinnθ)k.

However, since she could get no further, she believed that the complete demonstration “must be a very 
complicated process” (LB 170, 9 Sept. [1841], f. 123v). In fact, she was closer than she realised—if she 
had remembered that sin θ and cos θ are in fact equal to b/r and a/r , respectively, the demonstration would 
have followed easily.

As Lovelace developed her skills she became better at spotting her own mistakes, as we see when she 
started to study calculus. She worked through Peacock’s book and, for example (Peacock, 1820, p. 2), 
tackled the derivative of u = x2(a +x)3(b −x)4, presumably via a repeated application of the product rule, 
obtaining

du = {2ab − (6a − 5b)x − x2}x(a + x)2(b − x)3dx,

whereas the book gave

du = {2ab − (6a − 5b)x − 9x2}x(a + x)2(b − x)3dx

“& I am inclined to think it is a misprint in the latter” (LB 170, 10 Nov. [1840], f. 63r). Nevertheless, it was 
she who was in error since she had forgotten to apply the chain rule to (b − x)4. De Morgan commented: 
“It is very common to suppose that if φx differentiated gives ψx, then φ(−x) gives ψ(−x), but this should 
be ψ(−x)× diff. co.(−x) or ψ(−x) × −1” (LB 170, 14 Nov. 1840, f. 20r). Sure enough, once Lovelace 
rectified the mistake she obtained the correct answer. Nevertheless, she remained puzzled as to why her 
solution to a different question was valid, when it contained exactly the same mistake. But her diagnosis of 
the problem was almost certainly correct: “I am inclined to think that my solution ... comes out right only 
because I have managed to make another blunder of a sign in the course of the proofs, which has corrected 
the first blunder” (LB 170, 16 Nov. [1840], ff. 146r–146v).

3.3. Calculus

Lovelace’s questions to De Morgan as she started to study calculus show challenges that today’s begin-
ners, and their teachers, will recognise, and are echoed in debates on calculus instruction from De Morgan’s 
day onwards.

In the correspondence we see discussion of the possibility of logarithms to a negative base (LB 170, 
21 Aug. [1841], f. 122r), confusion over the distinction between the differential and the differential coeffi-
cient of a function (LB 170, 16 Nov. [1840], f. 146v), perceptive questions about constants of integration 
(LB 170, [July 1841], f. 153r), and examination of the details of limits of series (LB 170, 16 Nov. [1840], 
ff. 147v–148r).

Her understanding was sometimes not helped by De Morgan’s somewhat imprecise definitions, and 
she became increasingly tenacious at questioning these. For example, he explained that the term definite 
integral is used “because the first and last values of the variable, ... a and a + h, are definite, defined, or 
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given” (De Morgan, 1836–1842, p. 99). In contrast he defined an indefinite integral as evaluated from an 
arbitrary constant x = a to x = x, “which is an awkward way of saying that the last value of x is indefinite” 
(De Morgan, 1836–1842, p. 99). Thus, given a primitive function φ1(x) = φ(x) + C of a derivative φ′(x), 
De Morgan said that the definite integral would be

a+h∫
a

φ′(x)dx = φ1(a + h) − φ1(a). (2)

On the other hand, letting x = a + h gave

x∫
a

φ′(x)dx = φ1(x) − φ1(a) (3)

which, since a (and therefore also φ1(a)) was an arbitrary constant, gave the indefinite integral

∫
φ′(x)dx = φ1(x) + C1 = φ(x) + C + C1,

where “C + C1 may be what we please” (De Morgan, 1836–1842, p. 101).
Lovelace could not see why only the indefinite integral had the form φ(x) +C when “the argument at the 

top of page 101 seems to me to apply equally to the Definite Integral” (LB 170, [July 1841], f. 152v). Quite 
apart from the fact that φ(a) is just as much an arbitrary constant in (2) as it is in (3), Lovelace protested 
that “the assumption that when a is arbitrary, then any function of a, say φa, is also arbitrary, or may be 
anything we please, seems to me not always valid”. Giving the example of φ(a) = a0, she asserted that “We 
may assume a = anything we like, but φa will not in this case be arbitrary” (LB 170, [July 1841], f. 153r). 
It is a clever example, and a reasonable argument; however, she has overlooked that in this particular case, 
since φ′(a) would be zero, the value of its integral would indeed be a completely arbitrary constant.

Although she found infinite series difficult, there is no doubt that Lovelace was fascinated by them. One 
particular source of interest was Taylor’s Theorem and its many ramifications; indeed she described herself 
in February 1841 as being “particularly curious about this wonderful Theorem” (LB 170, 6 Feb. [1841], 
f. 98v). De Morgan’s proof of it began with the consideration of a special case, the Mean Value Theorem, 
which he stated as follows:

φ(a + h) − φa

h
= φ′(a + θh) (4)

“for some positive value of θ less than unity” (De Morgan, 1836–1842, p. 67). While Lovelace accepted 
his proof of the theorem, she objected to his assumption that θ was a function of a and h: “I see neither 
the truth of this assertion, nor do I perceive the importance of it (supposing it is true) to the rest of the 
argument” (LB 170, 19 Feb. [1841], f. 100r).

Whether Lovelace’s enquiries ever caused De Morgan any annoyance is unknown, but on this occasion 
his reply does seem to reflect, if not slight irritation, then perhaps a little deadpan humour (LB 170, [22 
Feb. 1841], f. 42v):

Why should θ be independent of a and h[?] we have never proved it to be so: all we have proved is that one
of the numerical values of θ is < 1, or that this equation (4) can be satisfied by a value of θ < 1. As to what 
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θ is, let ψ be the inverse function of φ′ so that ψφ′x = x. Then

φ(a + h) − φa

h
= φ′(a + θh)

ψ

(
φ(a + h) − φa

h

)
= ψφ′(a + θh) = a + θh

θ =
ψ

(
φ(a + h) − φa

h

)
− a

h
.

{
Say that this is not a function
of a and h, if you dare[!]

In this case it was actually the professor, and not the student, who was in error; for in this reply De Morgan 
had made the erroneous assumption that φ′ is always invertible in the domain under consideration, which 
is by no means necessarily true. Consequently, Lovelace’s doubts about the validity of his assertion and 
its use in proving Taylor’s Theorem turned out to be well founded. For a logician of De Morgan’s calibre, 
such a mistake was a rare occurrence, and spotting it must have given his student some confidence of her 
increasing skill.

3.4. Moving on to proof

By early 1841 Lovelace was going beyond working through examples in the text-book, and trying to 
develop her own proofs. Like many beginners, she sometimes found this challenging, but the two exam-
ples below exhibit her developing mathematical maturity in appreciating mistaken circular reasoning, and 
recognising for herself an invalid hypothesis.

Lovelace attempted her own proof of the derivative of xn, where n ∈ N, writing that “It strikes me 
as having the advantage in simplicity, & in referring to fewer requisite previous Propositions” (LB 170, 
10 Jan. [1841], f. 82v). De Morgan’s proof of this had relied on a generalisation of the product rule, namely 
(De Morgan, 1836–1842, p. 51):

If u be the product of n functions PQR . . . then the product of all but P is u
P

, and so on; whence we have

du

dx
= u

P

dP

dx
+ u

Q

dQ

dx
+ u

R

dR

dx
+ · · ·

Letting u = xn = x · x · x · · ·x (n times), the above formula gave him

du

dx
= u

x

dx

dx
+ u

x

dx

dx
+ u

x

dx

dx
+ · · · (n times)

or nxn−1. Although Lovelace’s attempted proof no longer exists in the correspondence, references to it 
enable us to infer that she based it on De Morgan’s definition of the differential coefficient (De Morgan, 
1836–1842, p. 48), constructing the difference quotient

(x + θ)n − xn

θ
,

expanding (x + θ)n into xn + nxn−1θ + · · · + θn, cancelling the xn, dividing by θ and then taking the limit 
as θ → 0. Of course there is nothing wrong with her proof, but as De Morgan noted in his reply, it does rely 
on the binomial theorem for the expansion of (x + θ)n. “Besides,” he added, “if you take the common proof 
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of the binomial theorem,11 you are reasoning in a circle, for that proof requires that it should be shown that 
vn−wn

v−w
has the limit nvn−1 as w approaches v. This is precisely the proposition which you have deduced 

from the binomial theorem” (LB 170, [Jan. 1841], f. 34r). Sure enough, a few days later came Lovelace’s 
acknowledgement that “my proof of the limit for the function xn is a piece of circular argument” (LB 170, 
17 Jan. [1841], f. 85v).

Another example of mistaken reasoning, which a better knowledge of logarithms might have helped 
her to avoid, occurred when De Morgan asked her to “Try to prove the following. It is only when y = ax

(a being constant) that dy
dx

= y
x

” (LB 170, 11 July [1841], f. 112v). Although a little uncertain as to the 
soundness of her answer, she sent it along, writing: “I do not feel quite sure that my proof is a proof. But I 
think it is too.” Her argument ran as follows:

Given as dy
dx

= y
x

, what conditions must be fulfilled in order to make this equation possible? Firstly: I see 

that since dy
dx

means a Differential Co-efficient, which from it’s [sic] nature (being a Limit) is a constant & 
fixed thing, y

x
must also be a constant & fixed quantity. That is y must have to x a constant Ratio which we 

may call a. This seems to me perfectly valid. And surely a Differential Co-efficient is as fixed & invariable
in it’s [sic] nature as anything under the sun can be (LB 170, 15 Aug. [1841], ff. 116r–116v).

Not surprisingly, given her uncertainty as to the logical correctness of her argument, she was a little defen-
sive about its key premise, which she no doubt felt was also its chief weakness (LB 170, 15 Aug. [1841], 
f. 116v):

To be sure you may say that there is a different Differential Co-efficient for every different initial value of x
taken to start from, thus:

d(x2)

dx
= 2x if x = a,

d(x2)

dx
= 2a

if x = b,
d(x2)

dx
= 2b

And this is perhaps what invalidates my argument above.

She spotted the error for herself, reporting a few days later: “As for dy
dx

= y
x

, I see my fallacy about y
x

being 
a fixed quantity” (LB 170, 21 Aug. [1841], f. 122r).

Through the Lovelace–De Morgan correspondence, then, we are able to observe, over a period of ap-
proximately eighteen months, Lovelace progressing from a fairly elementary level to a working knowledge 
of several major branches of what was then university-level mathematics. The letters also reveal gaps in 
her knowledge, particularly in the early stages, and that her difficulties with algebraic manipulation were 
not fully overcome. But they also show the range of problems she encountered during her studies with 
De Morgan and how the problems and her questions about them increased in sophistication as she became 
more technically adept and proficient in handling advanced concepts.

11 As given in De Morgan’s Elements of Algebra (De Morgan, 1837, pp. 207–213). Despite the existence of far more recent (and 
rigorous) proofs by Cauchy and Abel, the proof given by De Morgan was actually a combination of two different 18th-century 
demonstrations, the first being due to the Rev. William Sewell, who published it in the Philosophical Transactions of the Royal 
Society in 1796, and the second being “the well-known proof of Euler” (p. 213).
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4. Lovelace’s mathematical strengths

To further develop our claim that Lovelace managed to attain a respectable level of mathematical com-
petence, we now present in some detail four examples which show the increasing sophistication of the 
material she was studying, and exhibit qualities consistent with mathematical capability, understanding and 
insight: a keen eye for detail; an aptitude for critical thinking; the ability to make insightful observations; 
and a passing acquaintance with elements of contemporaneous mathematical research. We give a detailed 
account of her challenge to De Morgan’s use of Peacock’s “Principle of the Permanence of Equivalent 
Forms”, where she was correct; explore her prescient speculation about a possible extension of the com-
plex numbers to higher dimensions; and exhibit some of the research material to which she was being 
introduced.

4.1. A keen eye for detail

In his autobiography, Charles Babbage recalled that, during the composition of Lovelace’s paper on his 
Analytical Engine, while it was he who had performed the algebraic manipulations necessary to explain the 
machine’s computation of Bernoulli numbers, it was Lovelace who had “detected a grave mistake which 
I had made in the process” (Babbage, 1864, p. 136). Her studies with De Morgan also display this keen 
eye for mathematical detail, and their correspondence contains multiple claims by Lovelace to have spotted 
errors or misprints in the various textbooks she was reading, most of which turned out to be valid.

Some of the errors were simple typos, others presumably careless mistakes by De Morgan; in a few extant 
cases, he acknowledged the errors, either in his correspondence to her, or in a subsequently printed errata 
section of the publication. Indeed, one wonders whether De Morgan might have appreciated Lovelace’s 
utility as a proof reader for some of his publications! Of course, despite this careful reading, not all of 
Lovelace’s corrections were correct. In an interesting example from the correspondence, we see Lovelace 
spotting an apparent mistake in De Morgan’s Calculus, only to discover while writing that it was she who 
was in error.

The matter concerned the definite integral

+a∫
−a

xndx, where n is an integer,

which De Morgan claimed was “= 0 when n is odd, = 2an+1

n + 1
when n is even” (De Morgan, 1836–1842, 

p. 117). Lovelace, however, begged to differ:

It seems to me just the reverse, thus:

= 0 when n is even, = 2an+1

n + 1
when n is odd.

I have it as follows:

+a∫
−a

xndx = an+1

n + 1
− (−a)n+1

n + 1
= an+1 − (−a)n+1

n + 1

= an+1 − an+1

or 0 if n + 1 be even

n + 1
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(I now see it while working; for if

n + 1 be even, n must be odd and vice-versa.)

= an+1 + an+1

n + 1
or

2an+1

n + 1
if n + 1 be odd, in which

case n must be even.

So I need not trouble you upon this; as I have solved my difficulty whilst stating it (LB 170, 21 Aug. [1841], 
f. 122v).

As well as spotting mistakes, Lovelace would also sometimes draw attention to unclear statements. For 
example in September 1841, she wrote to complain about a passage in his Calculus, in which De Morgan 
tried to argue that adherence to the standard rules of algebra would produce consistent results, regardless 
of the meanings of the various symbols. Given a set of symbols a, b, c, . . . representing real numbers, and 
a given algebraic process, De Morgan claimed the result obtained would be consistent with that obtained 
using the expressions

a + √
m − √

n, b + √
m′ − √

n′, c + √
m′′ − √

n′′, . . .

regardless of whether the symbols under the square roots represented positive real numbers or not. What 
he wrote was somewhat misleading: “[S]o far as results are concerned, the application of rules will have 
the same effect whether 

√
m, 

√
n, &c, represent [real] quantities or not, provided only that they be used as 

if they were [real] quantities. If, then, instead of m, n, &c., we write −1 at the end of the process, we shall 
produce the same results as if we had commenced with a +√−1 −√−1, &c., that is, with a, &c. (because 
since 

√−1 is to be used as a quantity, 
√−1−√−1 = 0)” (De Morgan, 1836–1842, pp. 119–120). Lovelace 

challenged him, writing: “It is true that in the form a + √
m − √

n, if (−1) be substituted for m and n, the 
results come out the same as if we work with a only, but were the form a + √

m, a − √
m, a × √

m, or 
fifty others one can think of, surely the substitution of (−1) for m will not bring out results the same as if 
we worked with a only; and in fact can only do so when the impossible expression is so introduced as to 
neutralize itself, if I may so speak” (LB 170, 19 Sept. [1841], f. 128r). Thus Lovelace’s concern was not 
the use of imaginary quantities, but the lack of sufficient generality in the example used by De Morgan to 
corroborate his point—a valid criticism to which we shall return.

Such examples confirm the intensity of Lovelace’s attention to detail and her keen eye for clarity and 
consistency, and provide further evidence of her increasingly sophisticated understanding.

4.2. Independent thinking

Lovelace’s letters to De Morgan contain abundant evidence of the independence of thought that appeared 
to characterise much of her intellectual endeavour: she often sent De Morgan her attempts to independently 
verify certain formulae, give alternative proofs of theorems, or develop further consequences of them. In the 
words of Stein, “Lovelace refused simply to follow a derivation by rule but insisted on trying her own chain 
of inferences” (Stein, 1985, p. 76), and she would doggedly continue to ask awkward questions on a subject 
(be it a theorem, problem, or definition) until she was fully satisfied that she understood it completely.

Perhaps the most striking example of her persistence occurs early on in the correspondence, in November 
1840, when she was making her way through the proof of the binomial theorem in De Morgan’s Ele-
ments of Algebra. In the final stage of the proof, described by Lovelace as “rather cumbrous” (LB 170, 
10 Nov. [1840], f. 65r), De Morgan had shown that, if the function φ(n) is defined as (1 + x)n, then 
φ(n)φ(m) = φ(n + m) for m, n ∈ Z+. But it was what followed that prompted her chief objection. Having 
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proved the result true for natural number exponents, De Morgan then announced the following “principle” 
(De Morgan, 1837, p. 212):

When an algebraical multiplication, or other operation, such as has hitherto been defined, can be proved to 
produce a certain result in cases where the letters stand for whole numbers, then the same result must be 
true when the letters stand for fractions, or incommensurable numbers, and also when they are negative.

Given this assumption, it was now easy for him to finish his demonstration and to declare the binomial 
theorem proved “in all cases” (De Morgan, 1837, p. 213).

But for Lovelace, this principle was highly dubious: “I am not at all sure that I like the assumption in 
the last paragraph of page 212. It seems to me somewhat a large one, & much more wanting of proof than 
many things which in Mathematics are rigorously & scrupulously demonstrated” (LB 170, 10 Nov. [1840], 
f. 65v). De Morgan nevertheless assured her that the assumption of the principle was merely a consequence 
of “the nature of the method by which algebraical operations are performed”. In other words, he wrote: 
“There is no difference of operation in the fundamental rules (addition subtn multn & divn) whether the 
symbols be whole nos or fractions. Hence if a theorem be true when the letters are any wh[ole] nos, it 
remains true when they are fractions” (LB 170, 14 Nov. 1840, f. 21v). In a subsequent letter, he tried 
to outline the logic behind this questionable reasoning, but the result was equally unsatisfying (LB 170, 
[Nov. 1840], f. 24r):

A is true when m is a whole number.
Whenever A is true, B is true.
B is of that nature, that if true when m is a whole number, it is also true when m is a fraction.
When B is true C is true.
∴ C is true if A be true when m is a whole number.

The principle upon which De Morgan was so insistent had been used implicitly by British algebraists 
for years, but it had only been formalised relatively recently when, in his Treatise on Algebra of 1830, 
George Peacock had formulated it as the “Principle of the Permanence of Equivalent Forms” (Peacock, 
1830, p. 104):

Whatever form is Algebraically equivalent to another, when expressed in general symbols, must be true, 
whatever those symbols denote. Whatever equivalent form is discoverable in arithmetical Algebra consid-
ered as the science of suggestion, when the symbols are general in their form, though specific in their value, 
will continue to be an equivalent form when the symbols are general in their nature as well as in their form.

Peacock’s Principle appeared towards the end of a debate that had been rumbling on for the best part 
of a century among British scholars on the legitimacy of the use of negative and imaginary numbers in 
mathematics (Pycior, 1997). Prior to 1830, the question of what such algebraic concepts actually meant 
was central to these discussions. But in his Treatise on Algebra, Peacock took a different approach (Pycior, 
1981; Fisch, 1999). Instead of trying to assign interpretation or significance to negative and imaginary 
numbers, he postulated two different algebraic systems. The first, which he styled “arithmetical algebra”, 
was essentially little more than a generalised version of common arithmetic, where letters represented 
non-negative real numbers and no results outside that domain were considered valid. By contrast, in the 
second system, called “symbolical algebra”, letters could now represent any arbitrary kind of quantity, 
including negatives or imaginaries, provided that all operations performed on them obeyed the commonly 
accepted laws of arithmetic (commutativity, distributivity, etc.). Indeed, as has been argued in Rice (2001, 
p. 158), “given that the question posed was to legitimise negatives and imaginaries in algebra, Peacock had 
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answered, not by attempting to clarify the meaning of such entities, but by redefining what was meant by 
algebra itself”.

Peacock’s work was particularly influential on the generation of mathematicians whose careers began in 
the immediate wake of the Treatise’s publication. This generation included De Morgan and other British 
contemporaries such as Duncan Gregory and George Boole, who were instrumental in furthering the trend 
towards abstraction in early Victorian mathematics.12 By 1840, the emphasis was not on what symbols 
such as −x or 

√−1 actually meant but under what formal laws they operated. Peacock’s Principle was 
essentially a contrivance designed to facilitate the very necessary extension of the concept of number. 
Thus, for example, because it was an accepted arithmetical fact that (a + b)(c + d) = ac + bc + ad + bd , 
for specific positive numerical values of a, b, c and d , by the Permanence Principle the same result would 
automatically be true whether a, b, c and d were positive, negative, fractional, irrational, or even complex. 
De Morgan’s invocation of this principle to generalise his proof of the binomial theorem would thus have 
been a perfectly acceptable mode of procedure among many British mathematicians at this time, although 
as he admitted to Lovelace, it “requires some algebraical practice to see the necessity of its truth” (LB 170, 
14 Nov. 1840, f. 22r).

Given her near obsessive attention to detail and her thirst for a thorough understanding of the mate-
rial she studied, it is hardly surprising that Lovelace was critical of the Permanence Principle, as such an 
unproven assumption was at considerable variance with the standards of rigour she would have assumed 
were uniformly applied throughout mathematics. As we now know, the principle (at least in its strongest 
form as stated by Peacock) was fundamentally flawed, and the flaw was exposed within three years of 
Lovelace’s comment. The discovery was linked to a further perceptive and highly prescient observation 
made by Lovelace to De Morgan, concerning extensions to the complex numbers.

4.3. A prescient speculation

The attentive reader will have noticed that our final example of Section 4.1 also included an appeal by 
De Morgan to the Permanence Principle, in which he tried to argue that, provided the standard laws of 
algebra were adhered to, the expressions a +√

m−√
n, b +√

m′ −√
n′, c +√

m′′ −√
n′′, . . . could all be 

manipulated to produce coherent results, regardless of the algebraic entities they represented. He pointed 
out that “all algebraical expressions are combined and reduced by rules, which, although derived from 
notions on quantity, will produce the same results, if we alter the form of the primitive expressions in any 
manner, consistently with the rules, even though the new forms should no longer admit of being considered 
as quantities” (De Morgan, 1836–1842, p. 119).

Although we have seen that Lovelace disagreed with De Morgan over his presentation of this example, 
she was not at all concerned by the extension of algebra to include the two-dimensional consideration of 
complex numbers. Indeed, in the same letter of September 1841, she wrote (LB 170, 19 Sept. [1841], 
f. 128r):

It cannot help striking me that this extension of Algebra ought to lead to a further extension similar in nature, 
to Geometry in Three-Dimensions; & that again perhaps to a further extension into some unknown region, 
& so on ad-infinitum possibly.

This was a strikingly accurate prediction, the more so as it was related to developments of which she must 
have been quite unaware.

In the early nineteenth century, as complex numbers finally entered the mathematical mainstream, both 
algebraically and geometrically, the question arose as to whether the concept could be extended further, 

12 See, for example, Richards (1980), Pycior (1983), Richards (2011), Parshall (2011), Lambert (2013).
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to so-called “hypercomplex numbers” capable of representation in three-dimensional space (Katz and 
Parshall, 2014, chapter 13). British mathematicians such as De Morgan were intensely interested in this 
question during the 1830s and 1840s, and attempted to construct systems of “triple algebra” by defining 
number triples as a + bi + cj , where a, b, c ∈ R, i2 = j2 = −1 and i �= j . Of course, as we now know, 
this search for three-dimensional division algebras over the reals was doomed to failure, but an unexpected 
consequence was William Rowan Hamilton’s discovery of the four-dimensional algebra of quaternions in 
October 1843, followed by that of the eight-dimensional octonions by John Graves two months later.

Aside from the realisation that mathematicians were essentially free to invent new algebras, subject 
to certain laws of operation (Parshall, 2011), one of the most significant consequences of Hamilton and 
Graves’ discoveries was the existence of generalised forms of numbers which violated one or more of the 
fundamental laws of arithmetic. In other words, whereas the commutative law of multiplication is a standard 
and inviolable relation in N, Z, Q, R and C, it does not hold for quaternions or octonions. This provided 
the first violation of the Permanence Principle discussed above.

It would therefore seem that Lovelace’s speculation of the extendability of the complex numbers was 
remarkably visionary in its scope and accurate in its ultimate realisation. But before we rush to praise her 
too highly, it is worth reading her letter a little more closely. A sentence or two later she remarks: “You do 
hint in parts of page 136 at the possibility of something of this sort” (LB 170, 19 Sept. [1841], f. 128v). 
Although she does not give an exact citation, it is not difficult to find that on page 136 of De Morgan’s 
Penny Cyclopædia entry on “Negative and Impossible Quantities”, he writes (De Morgan, 1840a, p. 136):

The subject-matter of the preceding algebra is geometry of only two dimensions; whereas it might be sup-
posed that the application would never be complete until it embraced geometry of three dimensions. No 
such extension has however yet been made; though it is not unreasonable to suppose that it may be made at 
some future time.

Thus she was merely echoing back De Morgan’s own sentiments, and, although he probably was “delighted 
at Lovelace’s grasping the idea that a two-dimensional treatment could be generalized” (Stein, 1985, p. 80), 
the idea of extending the algebra of complex numbers to three dimensions was certainly not her own.

However, quite the reverse is true of her belief that algebra could perhaps be susceptible to “further ex-
tension into some unknown region, & so on ad-infinitum”; indeed this is a far more abstract notion than 
anything suggested by De Morgan, who never mentioned or implied anything of the kind. Indeed, exten-
sions of complex numbers to dimensions greater than three were not even considered prior to 1843, whereas 
once quaternions had been discovered, a host of multi-dimensional algebraic systems, such as Grassmann 
algebras, Clifford algebras and Cayley–Dickson algebras quickly followed. It is possible that De Morgan 
would have stopped short of making such an ambitious prediction because he was aware of the difficul-
ties inherent in extending the algebra of C to three dimensions, let alone some n > 3, whereas Lovelace’s 
ignorance of these complexities might have meant that her speculations were less inhibited. Nevertheless, 
her conjecture illustrates her ability to make perceptive and consequential mathematical observations, and 
remains a significant mathematical statement, not simply by virtue of its prescience, but also because of its 
timing, its imagination and ultimately its accuracy.

4.4. Research-awareness

At the very end of 1839, De Morgan had presented the first of four papers entitled “On the Foundation 
of Algebra” to the Cambridge Philosophical Society. A development of Peacock’s formal approach to the 
subject, this paper would ultimately influence the course of De Morgan’s research in both algebra and logic. 
But it also had a more immediate effect, via a particularly intriguing passage on the fifth page (De Morgan, 
1839, p. 177):



C. Hollings et al. / Historia Mathematica 44 (2017) 202–231 221
An extension to geometry of three dimensions is not practicable until we can assign two symbols, � and ω, 
such that

a + b� + cω = a1 + b1� + c1ω gives a = a1, b = b1 and c = c1 :
and no definite symbol of ordinary algebra will fulfil this condition. Again, in passing from x to −x by two 
operations, we make use in ordinary algebra of one particular solution of

φ2x = −x,namely φx = √−1.x.

An extension to three dimensions would require a solution of the equation φ3x = −x, containing an arbitrary 
constant, and leading to a function of triple value, totally unknown at present.

As William Rowan Hamilton later recalled, this paper by De Morgan, and this passage in particular, was one 
of the catalysts for the eventual discovery of his algebra of quaternions: “...among the circumstances which 
assisted to prevent me from losing sight of the general subject, and from wholly abandoning the attempt 
to turn to some useful account those early speculations of mine, on triplets and on sets, was probably the 
publication of Professor De Morgan’s first Paper on the Foundation of Algebra, of which he sent me a copy 
in 1841” (Hamilton, 1853, p. 41).

A letter from November of that year reveals that Lovelace too was reading this paper, and she questioned 
De Morgan on the following (De Morgan, 1839, p. 177):

A general solution of φ2x = αx can be expressed when any particular solution �x is known. For if 
f �f −1x be the general solution,13 we have

φ2x = f � 2f −1x = f αf −1x = αx, or f αx = αf x :

so that it is only necessary that f and α should be convertible.14 Since then (−1)
1
2 x is a particular solution of 

φ2x = −x, a general solution is f {(−1)
1
2 f −1x} where f (−x) = −f x. But with our very limited knowledge 

of the laws of inversion, no solution which we can now express in finite terms will afford any help.

This passage is hard enough for a present-day reader to understand, but Lovelace asked for clarification 
of the notation, introduced by John Herschel in 1813 and still not in universal use nearly three decades 
later (Herschel, 1813, p. 10). She explained: “In the treatise you sent me on the ‘Foundation of Algebra’, 
I cannot make out in the least (page 5) about the general solution of φ2x = αx. I suspect I do not understand 
the notation f −1x. I quite understand f 2x or φ2x, f nx or φnx. Judging by analogy, from page 82 of the 
Differential & Integral Calculus, (where 	−1x is explained), I conceive f −1x or φ−1x may mean ‘the 
quantity which having had an operation f or φ performed with & upon it, is = x’ ” (LB 170, 8 Nov. [1841], 
f. 135v).

We can thus deduce that by November 1841, her algebraic abilities had clearly progressed to the point 
where De Morgan was sending her his own research, and by this stage, she was able to investigate the 
source of her difficulty in the literature available to her, and make an educated (and correct) guess as to its 
solution. She may still have been some way from doing independent research, but De Morgan seemed to 
believe that she was ready to read research-level mathematical publications.

In addition to his work on the foundations of algebra, the early 1840s also saw De Morgan investigating 
the then controversial subject of divergent series. His chief contribution was a lengthy paper in 1844, in 

13 Note that φ, α, � and f are all functions.
14 i.e. commutative functions.
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which he argued strongly against their total rejection by the likes of Cauchy and Abel. Although admitting 
that “many series are such as we cannot at present safely use, except as means of discovery,” he maintained 
that “to say that what we cannot use no others ever can ... seems to me a departure from all rules of 
prudence” (De Morgan, 1844, p. 183). Similar sentiments were expressed in a chapter of his Differential 
and Integral Calculus, in which he cautioned: “the history of algebra shows us that nothing is more unsound 
than the rejection of any method which naturally arises, on account of one or more apparently valid cases 
in which such method leads to erroneous results” (De Morgan, 1836–1842, p. 566). In short, he intoned, 
“remember 

√−1” (De Morgan, 1844, p. 183).
Lovelace would have become aware of his thinking on this issue while reading his Elements of Algebra, 

in which he extended the meaning of the “=” sign to include what he termed “arithmetical equality” and 
“algebraical equality” (De Morgan, 1837, p. 195). By the former, he meant essentially results that made 
numerical sense, whereas by the latter he meant that the two expressions on either side of the equals sign 
were algebraically equivalent. He also pointed out that “we do not say that every algebraical use of = will 
produce arithmetical equalities, but only that whenever an algebraical use of = does produce an arithmetical 
equation, we shall find that equation to be arithmetically true” (De Morgan, 1837, p. 198). Taking the series

1

1 − x
= 1 + x + x2 + x3 + x4 + · · · (5)

he noted that the value of x = 1
2 would result in the arithmetical equality

1 + 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · = 2

while letting x = −1 and x = 2 would give

1 − 1 + 1 − 1 + · · · = 1

2
and 1 + 2 + 4 + 8 + 16 + · · · = −1

as respective algebraical equalities.
Since De Morgan’s correspondence with Lovelace coincided with the period when divergent series were 

prominent in his mind, it is not surprising that she was on occasion privy to matters immediately pertaining 
to his research. One such example appeared in a letter of October 1840, in which he gave the example of 
series (5), which he said “is certainly true in the arithmetical sense when x < 1. But if x > 1, say x = 2, we 
have

1

1 − 2
or − 1 = 1 + 2 + 4 + 8 + 16 + &c

which, arithmetically considered is absurd. But nevertheless −1 and 1 + 2 + 4 + 8 + &c have the same 
properties” (LB 170, 15 Oct. 1840, ff. 19r–19v). In his 1844 paper, he also showed that the arithmetical 
value of 1 + 2 + 4 + 8 + · · · was ∞, but he was insistent that ∞ and −1 were both legitimate values of 
the series. As he said: “let it come out any thing but −1 or ∞ ... and I shall then be obliged to confess 
that divergent series must be abandoned” (De Morgan, 1844, p. 187). Until that time, he reiterated, mathe-
maticians would be unwise to reject entirely what they do not understand, since even “the most determined 
rejector of all divergent series doubtless makes use of them in his closet” (De Morgan, 1844, p. 183).

Of course, De Morgan’s general view of the subject turned out to be well-founded, even if his paper was 
later (accurately) described by G.H. Hardy as “a remarkable mixture of acuteness and confusion” (Hardy, 
1949, p. 19). Divergent series would have to wait a further half century before the work of Poincaré and 
Cesàro brought the subject back into the mathematical mainstream. Nevertheless, via her correspondence 
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with De Morgan, Lovelace had been given a brief but tantalising glimpse of what were then cutting-edge 
research-level opinions on the matter, even if as De Morgan warned her,

It is fair to tell you that the use of divergent series is condemned altogether by some modern names of 
very great note. For myself I am fully satisfied that they have an algebraical truth wholly independent of 
arithmetical considerations; but I am also satisfied that this is the most difficult question in mathematics 
(LB 170, 15 Oct. 1840, f. 19v).

We can therefore be fairly certain that Lovelace was beginning to become acquainted with elements of 
De Morgan’s research, as well as being passingly familiar with a couple of the broad research-level is-
sues under discussion by British mathematicians circa 1840. In the 1842 preface to his calculus textbook 
De Morgan justified introducing his students to the uncertain boundaries of known mathematics, by claim-
ing that “the way to enlarge the settled country has not been by keeping within it, but by making voyages 
of discovery” (De Morgan, 1836–1842, p. vii). He continued:

... the few in this country who pay attention to any difficulty of mathematics for its own sake come to 
their pursuit through the casualties of taste or circumstances and the number of such casualties should be 
increased by allowing all students whose capacity will let them read on the higher branches of applied 
mathematics (De Morgan, 1836–1842, p. viii).

By the end of 1841, after eighteen months of working under his guidance, Lovelace seemed to be on the 
cusp of blossoming into real mathematical maturity. Her questions were becoming more sophisticated and 
her studies had diversified to include independent reading on matters of particular interest.15 But it was at 
this point that her mathematical education suddenly came to a stop: her correspondence with De Morgan 
broke off and, with the exception of a couple of isolated (and brief) messages, it would seem that it was 
never resumed.

5. A temporal readjustment

We now come to the apparent assignment of incorrect dates to some of Lovelace’s letters to De Morgan, 
which has caused biographers to misrepresent her abilities. As we explained in Section 2, the primary cause 
was the looseness and inaccuracy of the original dating by the correspondents. A secondary reason was that 
the order into which the letters were catalogued by the Bodleian Library on their receipt of the papers in the 
1970s, while mostly accurate, did not take into account the mathematical content. Thus, the consideration 
of a specific issue in, say, trigonometry might appear in August 1840, then disappear, before re-appearing 
in a letter catalogued (erroneously) as being from August 1841. The two main publications to suffer from 
these previously unnoticed errors are Toole (1992) and Stein (1985).

In the first publication, Toole presented, inter alia, edited transcriptions of many items from the 
Lovelace–De Morgan correspondence, the vast majority of which were given in the correct chronologi-
cal order. There are, however, a couple of erroneously placed items. Indeed, in introducing them she stated 
that “The dating of the next two letters was difficult ... [since] there are no other letters in August 1842 from 
Ashley Combe” (Toole, 1992, p. 189). The reason for this is simple: these two letters date from 1841, not 
1842. In a series of letters written in the late summer of 1841, Lovelace sent De Morgan four papers she 
had written on the subject of accelerating force,16 the first of which accompanied a letter given (correctly) 

15 In a letter of September 1841, for example, Lovelace remarked that she was reading Robert Murphy’s Treatise on the Theory of 
Algebraical Equations (1839) “to gain some light on the subject” of cubic equations (LB 170, 19 Sept. [1841], f. 127r).
16 Mis-transcribed by Toole as “Circulating Force” (Toole, 1992, p. 168).
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by Toole as dating from 15 August 1841 (Toole, 1992, pp. 168–169). Subsequent letters referring to these 
papers on force date from 16, 21 and 28 August 1841; the last one, however, was actually transcribed by 
Toole as dating from August 1842, along with another from 4 September (Toole, 1992, pp. 189–190). But 
given the subject matter under discussion in these letters, it is hard to believe that Lovelace wrote four 
papers on a subject of current interest to her in August 1841, sent three of them to De Morgan in quick 
succession, and then—precisely one year and one week later—sent along the fourth paper! It seems more 
likely that Toole’s dating of these two items is mistaken.

A similar mistake, with more serious implications, is contained in Stein’s biography of Lovelace from 
1985. To begin our refutation of it, we need to quote it in full (Stein, 1985, p. 90):

The last surviving letters in Lovelace’s mathematical correspondence with De Morgan are dated 16 and 27 
November 1842 (hence shortly before she translated the Menabrea memoir). In them we find her wrestling 
with an elementary problem in functional equations. (The problem was: Show that f (x + y) + f (x − y) =
2f (x)f (y) is satisfied by f (x) = (ax + a−x)/2.) She was still unable to take a mathematical expression 
and substitute it back into the given equation. It was the same “principle” that had plagued her in her 
correspondence with Mary Somerville and in earlier letters to De Morgan.

Stein then gives the quote from the letter cited in our Section 3.2, in which Lovelace exclaimed that “These 
Functional Equations are complete Will-o’-the-Wisps to me”. The impression given is thus of a young 
lady, whose mathematical skills have barely progressed over a period of seven years, including two years 
of intensive study with one of the foremost British mathematicians of the age—an image that hardly fits 
our picture of Lovelace as someone capable of finding derivatives from first principles by early 1841. It 
is hardly surprising therefore that neither Stein nor many of the scholars who have followed her analysis 
could give credence to the idea that Lovelace was competent enough to produce a paper for publication 
on a mathematical subject. And indeed, were Stein’s analysis correct, it would seem somewhat far fetched 
that someone, incapable of making a simple algebraic substitution in November 1842, could write the 
mathematically informed and erudite work that appeared in print in August of 1843.17

But of course, this analysis is not correct. And the reason, again, is that the letter of 27 November (and 
indeed that of 16 November) has been misdated to 1842, when in fact it dates from precisely two years
earlier—when Lovelace was puzzling over functional equations in Chapter 10 of De Morgan’s Elements 
of Algebra (see Section 3.2). To see this clearly, and to present the most convincing case for our proposed 
re-dating of the items in question, we present here short extracts from these letters, along with samples 
from De Morgan’s contemporaneous replies:

10 November [no year given]: AAL to ADM:

“I do not know why it is exactly, but I feel I only half understand that little Chapter X [on Notation 
of Functions], and it has already cost me more trouble with less effect than most things have. 
I must study it a little more I suppose.” (LB 170, ff. 66r–66v)

14 November 1840: ADM to AAL:

“The notation of functions is very abstract. Can you put your finger upon the part of Chapt. X at 
which there is difficulty”. (LB 170, f. 22r)

17 Although, as Joan Baum points out, “difficulty with algebra is not a litmus test of theoretical comprehension or imagination” 
(Baum, 1986, p. 116, note 21).
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16 November [no year given: 1842 or 1847 added by later reader]: AAL to ADM:

“I can explain exactly what my difficulty is in Chapter X. ... That I do not comprehend at all the 
means of deducing from a Functional Equation the form which will satisfy it, is I think clear from 
my being quite unable to solve the example at the end of the Chapter ‘Shew that the equation 
φ(x + y) + φ(x − y) = 2φx × φy is satisfied by φx = 1

2 (ax + a−x)’. I have tried several times, 
substituting first 1 for x, then 1 for y but I can make nothing whatever of it, and I think it is 
evident there is something that has preceded, which I have not understood. The 2nd example 
given for practice ‘Shew that φ(x + y) = φx + φy can have no other solution than φx = ax’, 
I have not attempted.” (LB 170, ff. 147r–147v)

Friday [no date given]: ADM to AAL:

“If φ(x + y) = φx + φy be always true (hypothesis) It is true when x = 0. It is also true when 
y = −x. This equation being always true, is the representation of a collection of an infinite number 
of truths. I do not say that these truths coexist.” (LB 170, f. 25v)

27 November [no year given]: AAL to ADM:

“I have I believe made some little progress towards the comprehension of the Chapter on Notation 
of Functions, & I enclose you my Demonstration of one of the Exercises at the end of it : ‘Show 
that the equation φ(x + y) = φx + φy can be satisfied by no other solution than φx = ax.’ At the 
same time I am by no means satisfied that I do understand these Functional Equations perfectly 
well, because I am completely baffled by the other Exercise [on page 206]: ‘Shew that the equation 
φ(x +y) +φ(x −y) = 2φx ×φy is satisfied by φx = 1

2 (ax +a−x) for every value of a’. ... These 
Functional Equations are complete Will-o’-the-Wisps to me.” (LB 170, ff. 149r–149v)

Monday [no date given]: ADM to AAL:

“I can soon put you out of your misery about p. 206. You have shown correctly that φ(x + y) =
φ(x) + φ(y) can have no other solution than φx = ax, but the preceding question is not of the 
same kind; it is not show that there can be no other solution except 1

2

(
ax + a−x

)
but show that 

1
2

(
ax + a−x

)
is a solution: that is, try this solution. ... I think you have got all you were meant to 

get from the chapter on functions.” (LB 170, ff. 27r–27v)

It thus becomes evident that we have a series of six sequential letters, clearly written back-and-forth 
within days of each other, concerning the same algebraic issue, namely, how to solve a particular kind 
of functional equation. The dating by both Lovelace and De Morgan is very lax, but crucially, one letter 
from De Morgan bears the date “Nov 14/40”, verifying that this sequence of letters dates from 1840 and 
not 1842. Since a significant portion of Stein’s portrayal of Lovelace as mathematically weak relies on 
the 27 November letter dating from 1842, our re-dating of it to 1840 leaves her argument with very little 
foundation. Consequently, we can be as near certain as possible that Stein’s picture of Lovelace as barely 
mathematically competent by as late as 1842 is indeed incorrect.

6. Conclusion

We have thus seen that, by the end of her correspondence with De Morgan, Lovelace had acquired good 
habits of study, a grounding in certain areas of higher mathematics, a critical attitude towards foundational 
principles, the ability to make perceptive mathematical observations, and exposure to ideas then current in 
British mathematical research. Our conclusions are based on a reordering of the archive material and a new 
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close reading of it, both of which, in contrast to previous authors, draw upon recent research in the history 
of mathematics, and other mathematical work of the day, in particular a close knowledge of De Morgan’s 
related work. In the rest of this section we draw attention to two larger areas of enquiry that are beyond the 
scope of this paper, before reassessing our original research questions.

First of all, we have not in this paper addressed questions concerning Lovelace’s life beyond her scientific 
interests (which are already covered in a number of biographies), in particular why her mathematical studies 
might have come to a halt. We have not looked at the broader social and cultural context of Lovelace’s life 
and work, or the shaping by that context of opinions of her work, both in her lifetime, and by later writers. 
As we sketch above, and in more detail in Hollings et al. (2017), the tone of scholarly biographies, and 
of the secondary and popular works they influence, varies remarkably. A metabiography in the sense of 
Sapp (1990) might assess both the archival record, and its interpretation in later accounts of Lovelace’s 
life and contribution, in the context of class, gender, or health, as well as broader trends in the history of 
science and varying perceptions of mathematics amongst mathematicians, other scientists, and the general 
public. Such a fuller account might question, for example, how Lovelace’s aristocratic background, her 
supposed mental state, views of “appropriate” womanly behaviour, or changing concepts of science and 
scientific contribution had influenced later accounts. In particular we do not address questions of Lovelace’s 
persistent health problems, and sometimes volatile frame of mind, or the perceptions by her and her circle 
of the dangers of mathematical studies: as De Morgan wrote to Lady Byron these “might be injurious to a 
person whose bodily health is not strong. ... The reason is obvious: the very great tension of mind which 
they require is beyond the strength of a woman’s physical power of application” (LB 339, ADM to Lady 
Byron, 21 Jan. 1844, ff. 1–2). Lovelace herself seems to have believed this: in December 1841, as her 
correspondence with De Morgan began to falter, she wrote to his wife:

“I have been very unwell indeed ... for there has been no end to the manias & whims I have been subject to 
... Many causes have contributed to produce the past derangements; & I shall in the future avoid them. One
ingredient, — (but only one among many) has been too much Mathematics (Stein, 1985, pp. 80–81).

A fuller account is given in Winter (1998): a modern biographer would be unlikely to follow Stein (1985, 
pp. 281–297) and devote a substantial appendix to a posthumous psychiatric diagnosis.

We also do not address the very broad questions of gender, mathematics and nineteenth-century science, 
but adopt the approach of other recent work on women and science—for example Jones and Hawkins 
(2015), introducing a special issue of Notes and Records devoted to women and science, and articles therein 
by Waring (2015) and Orr (2015)—in treating Lovelace as a member of a scientific community, alongside 
Babbage, De Morgan and Somerville. Further analysis might address varying perceptions of how to present 
women scientists (Jones and Hawkins, 2015), the misremembering of women’s contributions (Summerfield, 
2004), or masculine identity and scientific discourse in the nineteenth century (Ellis, 2017). Alternative 
framings in the context of women’s studies are given in the recent volume by Krämer (2015), although 
some of these are based on secondary sources that are a little out of date.

Secondly, we have not addressed questions of Lovelace’s broader study and writing on mathematics. 
We observe that Lovelace and her mother and husband read widely in the latest scientific works, for ex-
ample by Babbage, Somerville, von Humboldt and Whewell (Hollings et al., 2017), part of an emerging 
trend of works, alive to broader scientific, societal and religious debate, which set out to explain scientific 
and mathematical material to the general reader in mathematical terms, but without explicit mathematics. 
Lovelace continued such reading during and after her studies with De Morgan, and although she kept her 
letters to him free of what she termed “metaphysical enquiries & speculations” (LB 170, 6 Feb. [1841], 
f. 98r), such reflections occurred frequently in her letters to her other correspondents, and undoubtedly in-
formed her broader contributions to the 1843 paper. A recent thorough analysis by Forbes-Macphail (2013)
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treats these writings in the context of nineteenth-century poetry, but they await further study by historians 
of mathematics for the light they shed on the thinking of Lovelace and her circle, and on broader issues.

We return now to our two main research questions and consider, first, whether Lovelace had the math-
ematical knowledge and skills to contribute to the 1843 paper: for the purposes of this paper we take the 
view (see Section 1 and Misa, 2016) that it was a collaboration with Babbage. On the basis of our work we 
challenge the assertions (see Section 1), originating from Stein, and developed by others, that she did not. 
Lovelace’s paper would certainly have been considered a work of mathematics at the time and it shows ev-
idence of skill and originality, even if then, as now, the mathematical content was not especially significant. 
Mathematically, the paper relied on methods of finite differences and the approximation of functions by 
finite power series. Lovelace drew on her exposure to the more abstract “science of operations,” by specu-
lating that functional domains for the Analytical Engine need not be restricted merely to real numbers, and 
pointed out that this could allow computations with complex numbers or even the composition of pieces 
of music. She also introduced an elegant cycle notation for describing the internal representations used 
by the Analytical Engine, which was then used in the discussions illustrating the choice of power series 
representation for the Bernoulli numbers. All this drew heavily from ideas and concepts (functions, series, 
notation, algebraic abstraction) that she had first learnt in her studies with De Morgan. But as he noted, it 
was the content of her letters to him, rather than her paper on Babbage’s engine, that he believed contained 
evidence of her true mathematical potential:

The tract about Babbage’s machine is a pretty thing enough, but I could I think produce a series of extracts, 
out of Lady Lovelace’s first queries upon new subjects, which would make a mathematician see that it was 
no criterion of what might be expected from her (LB 339, ADM to Lady Byron, 21 Jan. 1844, f. 2).

Surprisingly, while the paper is widely known, and aspects of it, such as whether there was a bug in the 
“program” and who might have put it there, have been discussed at length (see Misa, 2016), there is as 
yet no full scholarly edition of the work, which might address the broader, and perhaps more interesting, 
questions of the cultural, mathematical and scientific context. In particular, there are questions that need 
further investigation by historians of mathematics, such as a full understanding of what was meant by the 
statement that the machine could “do algebra”, or the content and context of the broader reflections on 
the mathematical powers of the machine, both of which would seem to draw on Lovelace’s deepening 
mathematical knowledge, and her broader scientific interests.

Turning to the question of Lovelace’s potential as “an original mathematical investigator, perhaps of first 
rate eminence” (LB 339, ADM to Lady Byron, 21 Jan. 1844, f. 2), we assert that by the end of her studies 
with De Morgan in 1842, while Lovelace’s abilities were consistent with De Morgan’s judgement, she was 
probably not yet ready to enter the world of mathematical research. As we see in her reading of his research 
paper in November 1841, her skills in critical thinking and flashes of insight were balanced with the need of 
remedial work to address the gaps in her mathematical knowledge, particularly the lack of skill in algebraic 
manipulations: “my Algebra wits, as you say, not having been quite proportionally stretched with some 
of my other wits” (LB 170, 19 Sept. [1841], f. 127r). This weakness was largely due, not to lack of drive 
or talent, but to her patchy mathematical education prior to 1840, in which algebra barely featured (see 
Hollings et al., 2017). Furthermore, when it is recalled that in September of 1840 she barely understood 
the meaning of an equation of a curve, to have become familiar with higher algebra and the differential and 
integral calculus in eighteen months of non-continuous semi-independent study represents a considerable 
achievement. Had this rate of learning been sustained, one might speculate that she may have reached 
research-level ability in a further one or two years. As she herself wrote to Babbage in July 1843: “I am in 
good spirits; for I hope another year will make me really something of an Analyst” (Toole, 1992, p. 215). 
More experience might also have given her more confidence to pursue her own work independently—as she 
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wrote: “I don’t yet know enough to be sure always of the solidity or appositeness of my findings” (Baum, 
1986, p. 88).

De Morgan clearly believed that Lovelace had some kind of latent mathematical talent, but he may not 
have been the best, or most unbiased, judge. Although he insisted that, in order not to over-encourage 
Lovelace, “I have therefore contented myself with very good, quite right, and so on” (LB 339, ADM to 
Lady Byron, 21 Jan. 1844, f. 1), it could be argued that his inclination (perhaps influenced by both her 
gender and class), and that of others, to praise her work instead of giving substantive criticism, ultimately 
retarded the development of her mathematical skills.

Yet she certainly had the capacity to ask the right kind of questions, the tenacity to work things out, and 
the persistence to strive for a deeper understanding. So it is certainly plausible, given what she had learnt 
with De Morgan, that in time a paper on the calculus of functions or a note on the theory of equations—
bearing the signature “A.A.L.”—might have appeared in the Philosophical Magazine or the Cambridge and 
Dublin Mathematical Journal, both publications to which he was a frequent contributor. Indeed, early Vic-
torian journals contain many contributions from long-forgotten amateur mathematicians solving a particular 
differential equation here or giving a new geometrical proof there. Such papers may not have been very pro-
found or influential—very few (then as now) were—but they were mathematics nonetheless. De Morgan 
may have thought Lovelace capable in time of writing an original monograph or major research paper, but 
her mathematical skills were probably not sufficiently developed in 1843.

Perhaps De Morgan had more documentary evidence to substantiate his views than currently exists, but 
today we have little other evidence that Lovelace might eventually have produced major results. Apart 
from the 1843 paper, and the broader speculation mentioned above, her surviving mathematical writings 
are slight, and although Stein (1985) has a substantial narrative account, there has to date been no serious 
scholarly analysis by historians of mathematics. A number of letters reflect on her interest in mesmerism, 
which led her to speculate that she might one day “bequeath to the generations a Calculus of the Nervous 
System” (Somerville Papers (Bodleian Library, Oxford), Dep. c.367, Folder MSBY-9, AAL to Woronzow 
Greig, 15 Nov. 1844, f. 255r), an undertaking intended to do for the science of the brain what Newton 
had done for the study of physics. She sought out collaborators: though she wanted to work further with 
Babbage, he remained a friend but declined further scientific collaboration (Stein, 1985, p. 120; Toole, 
1992, pp. 232–233). So too did Michael Faraday, who in a letter to Lovelace tactfully cited his recent 
ill health as evidence that, while he would have liked to have been of assistance, “nature is against you” 
(James, 1996, p. 265). And although Lovelace remained in contact with Mary Somerville after her erstwhile 
mentor moved to Italy in 1838, direct collaboration with her was simply not practicable.

As for a collaboration with De Morgan, Lovelace seems to have remained far too in awe of him to 
propose anything of the kind.18 Besides, the professor was a busy man, and far too mathematically self-
sufficient to enter into a collaboration with anyone, let alone a former student. In fact, after 1843, the only 
mathematics Lovelace published was in the form of two substantial footnotes appended to a paper on the 
effect of climate on crop management, published by her husband, in the Journal of the Royal Agricultural 
Society (Lovelace, 1848, pp. 322–324, 325–326). It was this publication that occasioned Lovelace’s final, 
brief and undated letter to De Morgan, with which she enclosed an early printed, but uncorrected, version of 
Lord Lovelace’s paper. She observed that “Much of the Paper, tho’ on so dry a subject, is amusing enough,” 
requesting that “If you look at it, & should discover any inaccuracies or anything which might be made 
clearer, pray be kind enough to mention it” (LB 170, [1848], ff. 157v–158r). And with the words “I will not 
now detain you further”, she brought the Lovelace–De Morgan correspondence, or at least what survives 
of it, to an end.

18 As she confessed to Babbage in 1843, after receiving “De Morgan’s kind & approving letter about my article[,] I never expected 
that he would view my crude young composition so favourably” (Toole, 1992, p. 264).
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This correspondence has provided us with a unique perspective on the mathematical development of Ada 
Lovelace. It is in these letters that we observe a dedicated and talented student working with a remarkable 
and insightful teacher to overcome the limitations of her prior knowledge and the inevitable difficulties of 
any beginner in learning mathematics. They show both the problems she had with some basic skills, and 
also that she was capable of moments of great insight and understanding that belied her lack of formal 
training. Indeed, certain questions and remarks evince an intellectual acuity that has tantalised and beguiled 
scholars from De Morgan to the present day.

It is the contrast between the mathematics that she actually wrote and her mathematical potential that has 
fuelled much of the debates regarding Lovelace’s mathematical ability; for despite De Morgan’s prediction 
that she would “get beyond the present bounds of knowledge”, we have no evidence that she created original 
mathematics in either published or unpublished form. The reasons for this await further research, but were 
probably a combination of a lack of training, lack of good health, lack of a collaborator and ultimately a 
lack of time before her death in 1852 at the early age of 36.

Just as Babbage’s Analytical Engine remained, and remains, a hypothetical construct and Lovelace’s fa-
mous “program” merely a theoretical algorithm designed to run on it, so Lovelace’s mathematical potential 
remained just that: latent and unfulfilled. And yet the fact that her work is still the focus of ongoing research 
more than a century and a half later could be regarded as a posthumous realisation of that potential, since 
it has brought Lovelace a level of influence and recognition that she never attained in her lifetime. Indeed, 
as we have shown above, our work opens up many further questions: about Lovelace’s life; about the 1843 
paper; about broader nineteenth-century mathematical culture; women and nineteenth-century mathemat-
ics; and what the various presentations of Lovelace tell us about the diverse scientific and cultural contexts 
which produced them. Our work shows the importance of historians of mathematics for the study of math-
ematical archives, and raises the question of why such a well-known figure, and such a substantial archive, 
have not yet received more attention from professional historians of mathematics.
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