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Computationally simple MMSE (A-optimal)
adaptive beam-pattern design for MIMO active

sensing systems via a linear-Gaussian approximation
Steven Herbert, James R. Hopgood, Member, IEEE, Bernard Mulgrew, Fellow, IEEE

Abstract—This paper presents an approximate minimum mean
squared error (MMSE) adaptive beam-pattern design (ABD)
method for MIMO active sensing systems. The proposed approx-
imate MMSE ABD method leverages the physics of the MIMO
arrays to provide a linear-Gaussian approximation that is specific
to MIMO active sensing systems, and yields a computationally
simple optimisation problem. Computational complexity analysis
confirms this theoretical reduction in the number of floating-point
operations required, most notably that evaluation of the proposed
approximate optimisation cost function grows polynomially with
the number of targets being tracked, whereas for evaluation of
the exact cost the growth is exponential. Additionally, numerical
results indicate that, even for a simple scenario with a single
target being tracked, the proposed approximate MMSE ABD
method does indeed reduce the mean squared error of target
parameter estimation compared to the non-adaptive case, with
a reduction in computation time of four orders of magnitude
compared to exact MMSE ABD.

Index Terms—Adaptive waveform design, adaptive beam-
pattern design, adaptive beamforming, minimum mean squared
error, active sensing, MIMO, radar, Bayesian, particle filters,
optimal design, adaptive beam-forming.

I. INTRODUCTION

ADAPTIVE beam-pattern design (ABD) in active sensing
systems is a currently active area of research. In partic-

ular, there is interest in the development of cognitive radar
systems [1]–[3], in which one important feature is the use of
the current estimate of target parameters to design the next
transmitted beam-pattern such that it is expected to improve
the target parameter estimation after the next measurement
(received reflected signal). Huleihel et al show the general
architecture of ABD in active sensing systems [4, Fig. 1]. In
this paper, we are concerned with adaptive shaping the beam-
pattern generated by a multiple-input-multiple-output (MIMO)
array, which is also known as adaptive waveform design in
some of the iterature [4], [5]. Specific MIMO active sens-
ing system modalities to which this analysis applies include
MIMO sonar [6] as well as the aforementioned MIMO radar.
A comparison of the various common optimisation criteria for
problems of this sort led to the conclusion that minimising the
expected mean squared error is a good overall choice of cost
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function [7], and hence it is this criteria that we employ in this
work. In signal processing this is generally denoted minimum
mean squared error (MMSE) design, whereas in the optimal
design literature this is referred to as ‘A-optimal’ design [8].

The cost function for MMSE design in active sensing
systems has been expressed [5, Eq. (11)], however evaluation
thereof is shown to be computationally expensive and thus
in this paper we provide an approximate method for MMSE
ABD that is less computationally expensive than the exact
solution. Our approach is to use the current estimates of
the target parameters to artificially construct a multivariate
Gaussian distribution for the unique terms of the channel
response (a non-linear function of the target parameters), and
to optimally design the beam-pattern for the resultant linear
Gaussian system accordingly. This approximate channel model
is expressed in the standard form for linear Gaussian channels
[9], and indeed yields an optimisation problem that is shown
to be significantly less computationally complex than the exact
MMSE ABD algorithm [5], and also the approximate MMSE
ABD algorithm proposed by Huleihel et al [4], which has
similar complexity to the exact MMSE ABD algorithm [5,
Fig. 7]. Notably, the ABD method proposed here explicitly
uses the physics of the MIMO array to construct the Gaussian
covariance matrix, which distinguishes it from techniques for
handling non linear-Gaussian problems such as the extended
Kalman filter [10] and Unscented Kalman filter [11], [12].

Additionally, it is pertinent that the approximation detailed
herein requires that the target parameters are fully estimated.
That is both the angle at which it is located and its complex
attenuation – in the numerical results presented in [5] only
the location angle is estimated. Thus, an additional significant
contribution of this work is that the results included herein
represent a shift towards an actual implementable system, in so
far as that we consider a more representative physical model.

A. Contributions
The main contributions of this work are:
• We propose an approximate MMSE ABD method for

MIMO active sensing systems.
• We provide numerical results that demonstate that our

proposed method improves the target parameter estima-
tion relative to the non-adaptive case, for a much reduced
computational cost compared to the exact MMSE ABD
method.

• We include analysis of the computational complexity to
confirm that this computational saving is an essential
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property of the algorithm and will therefore be present
in any implementation. Notably, for the exact method
[5], the number of operations required for cost function
evaluation grows exponentially with the number of tar-
gets being tracked, whereas for the approximate method
proposed herein evaluation of the cost function grows
polynomially with the number of targets.

• We take an important step towards a MMSE ABD al-
gorithm that can be deployed in an actual MIMO active
sensing system by estimating the target attenuation as
well as angle.

B. Notation

Our aim is to use standard and simple notation in this
paper. In some parts of the analysis it is convenient to express
functions and variables as some letter ‘primed’. This is used
to denote a variation of the primed variable/function and does
not denote either differentiation, which is always explicitly
expressed, or the Hermitian transpose, which we express (·)H .
Other notation used in this paper includes transpose, which
we express (·)T and complex conjugation, which we express
(·)∗. The Kronecker product is denoted ⊗, and on occasion it
is necessary to define a single (ith) element of a sum/ set as
(.)(i), which should not be mistaken for a raised power, where
the superscript is not in parentheses. Finally, note that a and
a are not the same.

C. Paper organisation

The remainder of the paper is organised as follows: in
Section II we define the MIMO active sensing system model;
in Section III we derive and express the linear-Gaussian
approximation of the MMSE cost function; in Section IV we
show how this cost function can be optimised; in Section V we
present our main results; in Section VI we present and discuss
the computational complexity of the approximate MMSE ABD
method we propose herein relative to the exact MMSE ABD
method [5]; and finally in Section VII we draw conclusions.

II. SYSTEM MODEL

We use the same system model as that considered when
expressing the exact MMSE cost function [5], itself based on
that used by Huleihel et al [4]. Our expressions concern the
kth step (opportunity to adaptively design the beam-pattern),
which consists of L different beam-patterns (snapshots). By
definition, the MIMO active sensing system consists of NT
transmit elements and NR co-located receive elements. Sk ∈
CNT×L denotes the transmitted beam-pattern, the lth column
of which is a column vector corresponding to the lth snapshot
(where l = 1, . . . , L), and whose rows correspond to the
complex signal transmitted at the given snapshot by each of
the NT transmitting elements. Xk ∈ CNR×L denotes the
received beam-pattern, and again the columns correspond to
the snapshots, with each row corresponding to the complex
signal received on the respective receiving element. It follows
that the channel is defined by:

Xk = Hk(θk)Sk + Nk, (1)

where Hk(θk) ∈ CNR×NT represents the channel response
as a non-linear function (in general) of θ, a vector of the
Q parameters of the target, i.e., θk ∈ CQ×1. For simplicity,
we assume that the target parameters do not vary within any
given step. Nk ∈ CNR×L denotes additive white Gaussian
noise (AWGN). The noise is circularly symmetric complex,
i.e., each element of Nk is a complex number whose real part
is an independent zero mean Gaussian random variable with
variance σ2

n and whose imaginary part is also an independent
zero mean Gaussian random variable with variance σ2

n, and
the various elements of Nk are mutually independent. This
channel model represents the situation where the received
signal is a linear function of the transmitted signal (plus
AWGN), but a non-linear function of the model parameters.

In general, the target parameters may vary from step to step,
according to a statistical process:

θk = f(θk−1,vk−1), (2)

where f(.) is an arbitrary function and vk−1 is noise, which is
independent of Nk. The formulation developed in this paper
would apply if f(.) were to change at each step, however to
simplify the notation in the following analysis we fix f(.). For
simplicity, we do not allow a mismatch between the actual
target motion and the statistical model available to the MIMO
active sensing system. It is, however, worth noting that the
results in [13] indicating that MMSE ABD is still effective
even when there is such a mismatch.

On a similar note, a more physically reasonable model
would include the possibility of signal dependent interference,
however we do not include this here for consistency with the
formulations used in [4], [5], [7], [13]. It should, however, be
noted that there exists literature which does address this sce-
nario [14]–[17]. Likewise, we assume that calibration, range
and Doppler measurements are achieved using conventional
methods [18], and their specific realisation is independent of
the ABD method proposed herein and therefore outside of the
scope of this paper.

III. EXPRESSION OF A LINEAR-GAUSSIAN APPROXIMATE
COST FUNCTION FOR ABD

As related in Section I, the cost function for MMSE ABD
can be expressed exactly [5, Eq. (11)], however numerical
evaluation thereof is computationally expensive. Specifically,
this high computational cost arises because of the existence
of a double integral that is approximately evaluated using two
nested sums over a large number of particles / samples in the
implementation. Clearly there is a benefit in finding a compu-
tationally simple approximate alternative, and to achieve this
it is first necessary to take a fresh look at the basics of the
non-linear parameter estimation.

A. Determination of θk from H(θk)

First, we address the capability of the MIMO active sensing
system to determine θk from H(θk), by addressing how the
physics of the MIMO arrays enables the calculation of θk.
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From the standard form of MIMO active sensing systems [4],
[5], [19]:

H(θk) =

Q′∑
q=1

[αk]qaR([φk]q)a
T
T ([φk]q), (3)

where θk = [φk;<(αk);=(αk)] in which φk ∈ RQ′×1 is a
vector of the target angles and αk ∈ CQ′×1 is a vector of
the target attenuations, where Q′ is the number of targets, and
aT (·) and aR(·) are the steering vectors of the transmit and
receive arrays, respectively. For ease of exposition, let both
the transmit and receive arrays have the same spacing, λ̃ (we
later relate our analysis to the general case), then:

aR([φk]q) = [[ak]0q, [ak]1q, . . . , [ak]NR−1
q ]T , (4)

aT ([φk]q) = [[ak]0q, [ak]1q, . . . , [ak]NT−1
q ]T , (5)

where [ak]q = exp(2π
√
−1(λ̃/λ) sin([φk]q)), in which λ is

the wavelength. Thus the qth term of the sum in (3), defined
as H(q), can be expressed:

H(q)

= [αk]qaR([φk]q)a
T
T ([φk]q)

= [αk]q


[ak]0q [ak]1q . . . [ak]NT−1

q

[ak]1q [ak]2q . . . [ak]NT
q

...
...

. . .
[ak]NR−1

q [ak]NR
q [ak]NT+NR−1

q

 ,(6)

for q = 1, . . . , Q′. We now consider the determination of
[φk]q . Following convention [4], [5], we measure angle in
degrees, and by definition −90 ≤ [φk]q < 90 thus [φk]q can
only be uniquely determined from the complex value of [ak]q
if λ̃ ≤ λ/2. So it follows that we must determine 2Q′ complex
numbers in order to find θk (i.e., each of the Q′ targets is
parameterised in terms of [ak]q and [αk]q). According to (6), if
H(q) is exactly known for all q (i.e., H(θk) is exactly known),
it is composed of NT +NR−1 distinct complex numbers, and
thus θk can be determined if, and only if, NT +NR−1 ≥ 2Q′.
However, the simultaneous equations are polynomial and thus
there are potentially multiple solutions (roots) spread across
the complex plane. We know that the relevant solution has
the property that |[ak]q| = 1 by definition, and we assume
that this additional constraint is sufficient to identify which of
the solutions is the ‘correct’ one, thus effectively meaning we
have a procedure leading to a unique solution. This solution
can be justified theoretically by the fact that the probability
of an arbitrary root (i.e., other than the ‘correct one’) having
the property |[ak]q| = 1 + ε vanishes as the magnitude of ε
tends to zero. This theoretical justification is based on the
is supported by the empirical evidence that MIMO active
sensing systems do enable the estimation of target parameters,
as exemplified by the results included in Section V, and indeed
in the abundance of literature on the subject (including [4]–[7]
etc.).

It is important to note that this is a purely algebraic
argument for the determination of θk, assuming that H(θk) is
known. As such, it does not depend on Sk or L, which can
be varied to improve the estimation of H(q) through noisy

measurement, but cannot help to resolve θk if the underlying
system is under-determined (i.e., if there are too many targets
for the size of the MIMO arrays).

B. Re-arrangement of cost function in terms of ψ

Let ψk ∈ C(NR+NT−1)×1 be such that

[ψk]i =

Q′∑
q=1

[ψ
(q)
k ]i, (7)

where

[ψ
(q)
k ]i = [αk]q[ak]iq (8)

i.e., [ψk]i is a vector of the unique elements of H(θk). Accord-
ingly, we can alternatively express the state-space definition of
the channel,

Xk = H(θk)Sk + Nk, (9)

as

vec(Xk) = S′kψk + vec(Nk), (10)

where S′k = [S′′1 ;S′′2 ; . . . ;S′′L], in which S′′l ∈
CNR×(NT+NR−1) (where 1 ≤ l ≤ L) is such that its jth row
has the form [01,j−1, [Sk]1l, [Sk]2l, . . . , [Sk]NT l,01,NR−j ],
and 01,j′ is a row vector of zeros of length j′. This re-
arrangement is a standard property of the Hankel matrix [20],
of which (6) is an instance. For example, let NT = NR = 3
and L = 1, we have that:x11x21

x31

 =

ψ1 ψ2 ψ3

ψ2 ψ3 ψ4

ψ3 ψ4 ψ5

s11s21
s31

+

n11n21
n31

 , (11)

which we can express:

x11x21
x31

 =

s11 s21 s31 0 0
0 s11 s21 s31 0
0 0 s11 s21 s31



ψ1

ψ2

ψ3

ψ4

ψ5

+

n11n21
n31

 .
(12)

Note that in each of (11) and (12) we have omitted the
subscript k to aid readability.

Such a formulation again leads us to address the subject of
the determination of θk, this time from Xk. For observing
(12), we can see that with L = 1 the linear system is
under-determined, and thus it is not possible to determine
ψk from Xk. The subtlety here is that S′k is not ‘inverted’
to estimate ψk, but rather in a Bayesian framework Sk is
designed to minimise the expected mean squared error after the
next received reflected signal, Xk+1. As we shall see, it is the
correlations between the elements of ψk that enable us to do
this. Importantly, however, if the beam-pattern is not adapted
and remains constant throughout, then it is necessary to have
Sk with a sufficient number of linearly independent columns.
Typically this requirement is achieved by the sufficient condi-
tion that L ≥ NR, with mutually orthogonal columns.
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R
(q)
k = var([αk]q)


1 〈[ak]q〉∗ 〈[ak]2q〉∗ . . . 〈[ak]NT+NR−2

q 〉∗
〈[ak]q〉 1 〈[ak]q〉∗ . . . 〈[αk]NT+NR−3

q 〉∗
〈[αk]2q〉 〈[αk]q〉 1 . . . 〈[αk]NT+NR−4

q 〉∗
...

...
...

. . .
〈[αk]NT+NR−2

q 〉 〈[αk]NT+NR−3
q 〉 〈[αk]NT+NR−4

q 〉 1

 (21)

C. Treating ψk as multivariate complex Gaussian
To manipulate ψk to develop a computationally efficient

ABD algorithm, it is first necessary to define a suitable model
for θ0, that is the distribution for the parameters prior to any
received signals. For consistency with the literature [4], [5],
we define:

[φ0]q ∼ U(−90o, 90o), (13)

where q = 1, . . . , Q′. That is, a priori we treat all targets
to be uniformly distributed between −90o and 90o. In the
results presented for the exact MMSE optimisation [5], α was
assumed to be known, however in the work by Huleihel et al
the a priori distribution of the target attenuation was treated
as a circularly symmetric complex Gaussian random variable
for each target:

[α0]q ∼ CN (0, var([α0]q)), (14)

where q = 1, . . . , Q′ and all targets angles and attenuations
are independent. We also have that

|[ak]q| = | exp(2π
√
−1(λ̃/λ) sin([φk]q))| = 1, (15)

i.e., a complex number with magnitude 1. So it follows that
substituting (14) and (15) into (8) (i.e., for k = 0) and
using the phase invariance of the circularly symmetric complex
Gaussian distribution [21, Definition 3.7.2] yields:

[ψ
(q)
0 ]i = [a0]q[α0]q ∼ CN (0, var([α0]q)), (16)

and using the standard summing properties of independent
Gaussian distributions to substitute (16) into (7) yields:

[ψ0]i ∼ CN
(
0, σ2

0

)
, (17)

where σ2
0 = ΣQ

′

q=1var([α0]q) for all i.
Whilst each element of ψ0 is distributed as a circularly

symmetric complex Gaussian (as specified in (17)), it does
not follow that the joint distribution of ψ0 is necessarily
a multivariate complex Gaussian (e.g., [22, pp. 372–373]).
However, in our approximate method we depart from the
actual mathematical nature of ψ0 and assume that ψ0 is a
multivariate circularly symmetric complex Gaussian:

ψ0 ∼ CN
(
0, σ2

0INT+NR−1
)
. (18)

Moreover, our method is to treat ψk as multivariate circu-
larly symmetric Gaussian for all k, for we know that this will
yield a relatively simple optimisation problem. That is,

ψk ∼ CN (µk,Rk) , (19)

where µk is not required, and:

Rk =

Q′∑
q=1

R
(q)
k , (20)

where R
(q)
k is defined in (21), in which 〈[ak]iq〉 ,

E([ak]iq|Xk−1), determined by p(θk|Xk−1). As in the exact
MMSE ABD method [5], p(θk|Xk−1) is available (or ap-
proximately available) from the underlying estimation of θk,
for example by a particle filter (PF). Likewise, var([αk]q) is
found in the same manner. Specifically, we treat each element
of [ψ

(q)
k ], defined in (8), as a circularly symmetric complex

Gaussian, where the mean is not required, and the variance
used is that of the current PDF of the target parameters:

[ψ
(q)
k ]i∼CN (µ

(q)
i , var([αk]q)). (22)

For each target the covariance matrix, R
(q)
k has been con-

structed from point estimates of [ak]iq . Formally, for qth target,
we consider the covariance between the ith and jth elements
(where j > i) and express the jth element as a sum of a
correlated and uncorrelated component of the ith element:

[ψ
(q)
k ]j = 〈[ak]j−iq 〉[ψ

(q)
k ]i + ψ̃, (23)

where
ψ̃ ∼ CN (µ̃, σ̃2) (24)

from which we can express:

[R
(q)
k ]i,j =E

((
[ψ

(q)
k ]i − µ(q)

i

)(
[ψ

(q)
k ]j − µ(q)

j

)∗)
=E

((
[ψ

(q)
k ]i − µ(q)

i

)
(
〈[ak]j−iq 〉[ψ

(q)
k ]i + ψ̃ − 〈[ak]j−iq 〉µ

(q)
i − µ̃

)∗)
=
(
〈[ak]j−iq 〉

)∗ (E([ψ
(q)
k ]i[ψ

(q)
k ]∗i

)
− µ(q)

i µ
(q)∗
i

)
+
(
E
(

[ψ
(q)
k ]iψ̃

′∗
)
− µ(q)

i µ̃∗
)

=
(
〈[ak]j−iq 〉

)∗ (E([ψ
(q)
k ]i[ψ

(q)
k ]∗i

)
− µ(q)

i µ
(q)∗
i

)
=
(
〈[ak]j−iq 〉

)∗
var([αk]q), (25)

where E
(

[ψ
(q)
k ]iψ̃

′∗
)
− µ(q)

i µ̃∗ = 0 because of the definition

of ψ̃ as independent of [ψ
(q)
k ]i. An equivalent derivation

can be made for terms in the lower half of the covariance
matrix, thus we have derived the covariance matrix shown
in (21). As the total received signal corresponds to the sum
of the received signal for all the targets, this translates into
a circularly symmetric complex Gaussian whose covariance
matrix is the sum of the covariance matrices of all the targets,
as indicated in (20), which thus yields (19).

The key property of this construction of the covariance
matrix is that the MIMO physics is implicitly encoded in the
point estimate of 〈[ak]j−iq 〉, which distinguishes our method
from general linear-Gaussianisation of a non-linear-Gaussian
problem. Furthermore, we can physically reason about the
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∂Σ(S′k)

∂(S′k)i,j
= tr

{
σ−2n (σ−2n S′Hk S′k + R−1k )−1((J(i,j))HS′k + S′Hk J(i,j))(σ−2n S′Hk S′k + R−1k )−1

}
, (29)

form of the covariance matrix. For we can see that 〈[ak]iq〉 ,
E([ak]iq|Xk−1) 6= exp(2π

√
−1(λ̃/λ) sin(E([φk]iq))). This

property enables us to make a qualitative justification for
this method. Given that the [ak]iq has support only on the
unit circle, |〈[ak]iq〉| ≤ 1 (for all 〈aq〉), which is a required
property for the covariance matrix to be valid. Moreover, we
can interpret this property that, as we gain more knowledge
about the angle φ, then |〈[ak]iq〉| becomes closer to one and
the correlation between the elements of ψ(q)

k becomes stronger,
as we would expect from physical reasoning. Finally, we can
see that, as i increases, |〈[ak]iq〉| decreases, which means that
more separated powers of 〈[ak]iq〉 are treated as less correlated.
That is, more separated elements are treated as less correlated,
which is consistent with what we would expect from physical
reasoning including spatial diversity.

It is also worth noting that, throughout this section we have
used simplified notation for the complex Gaussian, as the
relation matrix is always zero (the circularly symmetric sce-
nario), for our method this property is upheld throughout the
successive reconstruction of Rk, regardless of p(θk|Xk−1).

D. Relating the cost function of ψ to that of θ

The purpose of the above re-formulation is that the MSE
of ψk can be minimised, rather than that of θk directly.
Intuitively, given that θk is a deterministic function of ψk,
it seems reasonable that designing the beam-pattern to reduce
the trace of the expected covariance matrix of the estimate of
ψk should reduce the trace of the expected covariance matrix
of the estimate of θk. More formally, the trace of the variance
of θk can be expressed (by definition):

tr {covar (θk)} =

Q′∑
q=1

var([αk]q) + var([φk]q), (26)

whereas from (21):

tr {Rk} = (NT +NR − 1)

Q′∑
q=1

var([αk]q). (27)

From (26) and (27), we can see that minimising the trace of the
covariance matrix associated with the estimate of ψk only min-
imises the variance of the target attenuation, and not the target
angle. However, the non-diagonal terms have been artificially
constructed to account for the physics of the MIMO array and
encode information about the target angles (as described in
Section III-C), and these are a contributing factor in the cost
function formulation (to be given in Section IV), and therefore
optimisation of the cost function implicitly estimates the target
angles. In simple terms, the non-diagonal terms dictate the
correlations between the target attenuations, which depend on
the respective target angles. Therefore designing the waveform
such that uncertainty of the target angles (and therefore the

correlations between the target attenuations) is reduced will in
turn reduce the uncertainty of the target attenuations, as is the
explicit aim of the cost function optimisation.

In Appendix A we show that Rk can be constructed for
the case where the element spacing is not the same for the
transmit and receive arrays (and indeed, need not be equal
within each array), therefore the following optimisation applies
to the general MIMO active sensing system case.

IV. OPTIMISATION OF LINEAR-GAUSSIAN APPROXIMATE
COST FUNCTION

Having expressed the state-space model as a linear function
of ψk, as given in (10) (i.e., as opposed to the prior, non-
linear function of θk), and argued that designing a beam-
pattern to minimise the mean squared error of ψk will have
the effect of minimising the mean squared error of θk, it
remains to formulate this minimisation problem. This can be
achieved by applying the analysis leading to [9, Eq. (13)],
to our problem. Using our nomenclature we formulate the
proposed approximate optimisation as the minimisation of the
cost function, Σ(S′k), subject to maximum power P:

min
S′

k

Σ(S′k) = tr
{

(σ−2n S′Hk S′k + R−1k )−1
}

(28)

s.t.
1

L
tr
{
SHk Sk

}
≤ P

Owing to the constraints on the construction of S′k, described
in Section III-B, we cannot use the additional analysis detailed
by Yang and Blum [9] to find S′k directly. It is also the case that
this is not a convex optimisation [23]. However, it is possible
to express the gradient of Σ with respect to the (i, j)th element
of S′k (for any element not constrained to be equal to zero in
the construction of S′k, as defined in Section III-B). This is
shown in (29), in which J(i,j) is a matrix of zeros except
for a single entry of 1 at (i, j). Let the elements of S′k not
constrained to be zero be stacked in a vector s′k, such that

s′k = Bvec(Sk), (30)

where B ∈ RLNTNR×LNT (B is fully defined in Appendix B),
thus the dimensions of B are such that we can express:

vec(Sk) = B†s′k, (31)

where B† = (BTB)−1BT , i.e., (.)† denotes the pseudo-
inverse. So it follows that:

∇vec(Sk)(Σ) = B†∇s′k
(Σ), (32)

where the elements of ∇s′k
(Σ) can be calculated according

to (29), thus enabling us to express the gradient of Σ with
respect to the elements of Sk. In Appendix B we show that
the structure of B is such that the elements of ∇vec(Sk)(Σ)
can be calculated using fewer operations than performing the
matrix pseudo-inverse – both for when the transmit and receive
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Algorithm 1 Simple pseudo-code for optimisation of the
linear-Gaussian approximation

Initialise: p(θ0)
For: k = 1 : K

from p(θk|Xk−1) determine Rk according to (20) i
use gradient descent to design Sk (28) ii
transmit Sk iii
receive Xk iv
determine p(θk+1|Xk) v

arrays have the same spacing, and for when they do not.
This enables (28) to be optimised using gradient descent, as

detailed in Algorithm 1. As in [5], it is possible to handle the
power constraint by descending in the direction of the compo-
nent of the gradient perpendicular to vec(Sk) and subsequently
renormalising (assuming that the power constraint is always
satisfied with equality):

∇⊥vec(Sk)
(Σ) = ∇vec(Sk)(Σ)−vec(Sk)

(∇vec(Sk)(Σ))T vec(Sk)

(vec(Sk))T vec(Sk)
.

(33)

V. MAIN RESULTS

We present some results to demonstrate that the proposed
ABD method does indeed lead to a reduction in root mean
squared error (RMSE) compared to the non-adaptive case, in
which the transmit beam-pattern is such that the same power
is transmitted at all angles. To do so, we simulate a MIMO
active sensing system with half-wavelength spacing on both
the transmit and receive arrays and NT = NR = 7, we also
set L = 7. The MIMO active sensing system must estimate
both the target attenuation and the target angle. We simulate
three scenarios: a single moving target; two moving targets;
and two static targets, and in each case consider the first 20
steps.

A. Single moving target

The single target was initially located at φ1 = −50o,
and thereafter moved in a random walk: that is, φk+1 ∼
N (φk, σ

2
φ), for which set the standard deviation σφ = 0.5o,

and arg(α) and |α| did not vary. The statistical definition of
the random walk was available to the MIMO active sensing
system (i.e., there was no model mismatch). We set the
array signal-to-noise ratio (ASNR) at 3 dB, where ASNR
, |α|2PNRL/(0.5σ

2
n) (in which the factor 0.5 in the denom-

inator is introduced owing to our definition of σ2
n as the noise

variance for each of the real and imaginary components).
The underlying estimation of θk was conducted by a PF

with 6120 particles, initially placed on a grid with resolution
10o for both φ and arg(α) and 0.3 for |α| out to 3 (the noise
was set such that α = 1). The particles were resampled at
each step of the PF, and then each new particle was randomly
perturbed such each of arg(α), |α| and φ were moved to a new
location according to a normal random process whose mean
was the previous location, and whose standard deviation was
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Fig. 1. RMSE for a single moving target (averaged over 500 trials) for no
ABD, approximate MMSE ABD and exact MMSE ABD.

5 × 0.85k−1 for both arg(α) and φ, and 0.15 × 0.85k−1 for
|α|. The rationale behind this operation of the PF was to allow
a relatively small number of particles to ultimately cover the
entire support of the PDF. The factor 5×0.85k−1 was used to
reduce the variance throughout the simulated trials, with the
aim of ultimately attaining an accurate estimation of the target
parameters.

For the single moving target simulation, we also include
results for the exact MMSE ABD method [5] with the same
PF and gradient descent set-up as for the approximate MMSE
ABD method. In addition to the PF particles, the exact MMSE
ABD method also samples from the PF a number of times, NS ,
which we set to be 250. Unlike for the approximate MMSE
ABD method proposed herein, for the exact MMSE ABD it
was necessary to weight the relative importance of the error
in the estimation of the target angle as well as the argument
and magnitude of the target attenuation. This was done such
that the target angle and target attenuation magnitude had
approximately equal weighting and zero weighting was given
to the argument of the target attenuation. This set-up is
physically justified as the target attenuation magnitude may
be useful in practise, for example indicating range, whereas
the argument of the target attenuation is unlikely to be of
interest. We also include results for the non-adaptive case,
again with the same PF set-up. The results are shown in Fig. 1,
with the RMSE approximated by averaging over 500 trials. In
Section V-D we discuss the results.

B. Two moving targets

We also include results for two target parameter estimation
(estimation of ψ, arg(α) and |α|), for a scenario, ASNR=3 dB
where |α1| = |α2| (i.e., the two targets reflect the same
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Fig. 2. RMSE for two moving targets (averaged over 500 trials) for no ABD,
approximate MMSE ABD and exact MMSE ABD.
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Fig. 3. RMSE for two static targets (averaged over 500 trials) for no ABD,
approximate MMSE ABD and exact MMSE ABD.

magnitude of power).
Such was the high dimensionality of the two target problem,

that is was no longer feasible to initialise the particles on
a grid, and instead NP = 10000 particles, were placed at
random. Additionally, we implemented a slightly different
resampling policy: when the number of effective particles
(Neff = 1/

∑NP

i=1(w(i))2, see [24, ch. 3]) fell below 0.2×NP .
Once again to increase the diversity of the particle locations,

we took the resampled particle parameter values not as the
values of the new particles themselves, but as the mean of
a random variable, drawn from a normal distribution, where
the standard deviation was 5o for φ and arg(α) and 0.01 for
|α| (again the ASNR was set such that |α| = 1). Unlike for
the one target scenario, we found that it was not beneficial to
reduce these standard deviations throughout using the factor
0.85k−1.

We simulated a scenario with moving targets, with initial
location φ1 = [−70;−10], evolving as a random walk with
each target having the same standard deviation as in the single
target case, i.e., φk+1 ∼ N

(
φk, σ

2
φI2

)
, and arg(α) and |α|

did not vary. Fig. 2 shows the RMSE for this set-up, again
found by averaging over 500 trials.

C. Two static targets

For the two static target set-up we used the same simulation
set-up as that for two moving targets, except that we set
φk = [−70;−10] for 1 ≤ k ≤ 20. The results for the RMSE
(averaged over 500 trials) are shown in Fig. 3. We also show
an example of a beam-pattern designed by the approximate
MMSE ABD method we propose, shown in Fig. 4 (in which
the transmit power, shown on the vertical axis, is defined as
(1/L)aHT (φ)(S∗kS

T
k )aT (φ)).

D. Discussion of results

The results show that the proposed approximate MMSE
ABD method improves the RMSE performance in comparison
to the no ABD case, but not as much as the exact MMSE
ABD method, as would be expected. Note that we do not
compare to the method proposed by Huleihel et al [4], as
this had inferior performance compared to the exact MMSE
ABD method for similar computational complexity [5]. For
the multiple target tracking, such was the high dimensionality
of the estimation that it was not possible to set-up the PF to
yield an good ultimate convergence of the target parameters.
Thus, in the results presented, we have used a relatively low
ASNR to highlight the improved performance in the early
stages of convergence. It should, however, be noted that there
exists a large body of existing work on how to adapt PFs to
handle adverse estimation scenarios (for example [25]–[27]),
but detailed examination thereof is outside of the scope of this
paper. It is important to note that, as long as the conditions to
avoid under-determination set-out in Section III-A are adhered
to and the number of particles in the PF is sufficiently large,
then there is no reason in principle why the proposed method
should not yield good target parameter estimation for scenarios
where there is a large number of targets.

VI. COMPUTATIONAL COMPLEXITY

It is possible to quantify the reduction in computational
complexity of this proposed method by considering how
the number of floating point operations required varies as a
function of the generalised set of parameters that defines the
operational set-up.
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Fig. 4. Example of approximate MMSE ABD for the first 8 pulses of the scenario with two static targets. The second and fourth rows correspond to cumulative
density functions, and the vertical dotted lines indicate the actual target locations.

Task Number of operations
Method in [5] Method proposed herein

Draw NS samples O(NS) –
Construct Rk – O(QNp(NT +NR))
Evaluate cost function O(NcN2

S(Q+ LNTNR)) O(Nc((NT +NR)3 + LNR(NT +NR)2))
Evaluate derivative of cost function O(NdN

2
S(LNTQ+ L2N2

TNR)) O(Nd((NT +NR)3 + LNR(NT +NR)2))
TABLE I

COMPUTATIONAL COMPLEXITY AS A FUNCTION OF ALL PARAMETERS

A. Complexity as a function of all parameters

There are three functions that contribute to the overall com-
putational load, which are required at each step: construction
of Rk; evaluation of the cost function (by definition, Nc times
per step); and evaluation of the derivative of the cost function
(by definition, Nd times per step).

1) Construction of Rk requires O(Q) sums over Np
particles for each of O(NT + NR) powers of
〈[ak]q〉, resulting in an overall computational complexity
O(QNp(NT +NR)).

2) Evaluation of the cost function computational load is
dominated by the inversion of Rk, which requires
O((NT + NR)3) operations and the matrix multipli-
cation S′Hk S′k, which requires O(LNR(NT + NR)2)
operations, leading to an overall computation complexity
O((NT +NR)3 + LNR(NT +NR)2).

3) The computational load of the evaluation of the deriva-

tive of the cost function is dominated by the same terms
as those for the cost function.

This information, along with the corresponding terms in [5]
is presented in Table I, which clearly illustrates the primary
computational saving of the proposed method: that, unlike
the exact MMSE ABD method [5], evaluation of the cost
function and its derivative (each potentially required a large
number of times per step) is not a function of the number
of samples/particles (which is likely to be large). It should,
however, be noted that the more sophisticated algebra of
the method proposed herein manifests itself as a greater
complexity associated with the number of array elements. For
simplicity of exposition let NT = NR = NTR, then we
the cost function evaluation grows as O(N3

TR) rather than
O(N2

TR) (the derivative evaluation grows as O(N3
TR) for both

methods). Whilst, to reiterate, this is not a significant factor
for the types of problems we consider, it may become so if
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Fig. 5. Computation time for ABD in single target scenario.

Task Number of operations
Method in [5] Method proposed herein

Draw NS samples O(exp(Q)) –
Construct Rk – O(exp(Q))
Evaluate cost function O(Nc exp(Q)) O(NcQ3)
Evaluate of derivative O(Nd exp(Q)) O(NdQ

3)
TABLE II

COMPUTATIONAL COMPLEXITY AS A FUNCTION OF THE NUMBER OF
TARGETS

this method is applied to very large MIMO arrays, thus it is
worth explicitly raising this point.

To further demonstrate the computational complexity reduc-
tion of the approximate method we propose here, we include
an example of the computation time for the approximate
method and the exact MMSE ABD method [5]. For this we
performed a single run of each method using Matlab on an
Intel Core 1.9 GHz i3 4030U processor with memory of 4 GB
1600 MHz DDR3L SSDRAM. For comparison we also show
the computation time for the non-adaptive case, where just
the computation required for updating the PF is required.
Fig. 5 shows the computation times for the three methods.
The approximate MMSE ABD method clearly consumes much
less time than the exact MMSE ABD method: the former
has an average computational time per step of 1.99 × 103 s,
whereas the latter has an average computational time per
step of 0.237 s, i.e., a factor of 8.40 × 104 reduction in
computation time. Such a large computation time saving is
not unexpected, as the primary purpose of the approximate
MMSE ABD method proposed herein is to remove the need
for computationally expensive summing over particles.

B. Complexity as a function of number of targets

Rather than independently setting all of the MIMO active
sensing system parameters, in reality the system will be
designed to a specification that includes a maximum number
of targets to be tracked. Therefore it is of interest to express
the computational complexity of the method proposed herein,
compared to the exact method [5], as a function of the
number of targets parameters, Q (which is proportional to

the number of targets, Q′). To do this, we need to express
the MIMO active sensing system parameters in terms of their
relationship with the number of target parameters. As noted
in Section III-A, NT + NR must grow linearly with Q′ so
that the system of linear equations is not under-determined. In
Section III-B we note that L need not grow with the number
of target parameters. For a specified resolution, the number
of particles, NP , in the PF must grow exponentially with the
number of targets (i.e., each additional target parameter to be
estimated introduces a new dimension into the PF estimation,
which therefore requires a multiplicative factor increase in the
number of targets to retain the same resolution for estimation
of the target parameters). In order to retain ABD performance,
the number of samples, NS must grow at least as fast as the
number of particles. The resultant computational complexity
expressions are shown in Table II.

Table II shows that for both methods there is an unavoidable
complexity growth with the number of targets to prepare the
cost function, drawing samples for the exact method [5] and
constructing Rk for the method proposed herein. This is not
necessarily a problem, as this only occurs once, and given its
nature as preparation for the actual cost function optimisation,
the cost can be absorbed into the PF itself (whose complexity
grows with the number of particles, by definition). Of more
concern is the complexity associated with the cost function
and derivative evaluations, which will typically be conducted
many times in the optimisation process. For these, we can
see that the exact method has a computational complexity that
grows exponentially with the number of targets, whereas the
for approximate method the complexity is polynomial. This
represents a distinct advantage of the approximate method for
scenarios where a large number of target parameters are to be
estimated.

One consequence of this reduction of complexity class from
exponential to polynomial is that there exists scenarios where
the exact method has both longer run-time and worse MMSE
performance than the approximate method. This is because, for
large Nc and Nd the computational complexity associated with
the exact method will always exceed that of the approximate
method for sufficiently large Q, even if we reduce the required
resolution (i.e., average concentration of particles) to such an
extent that the PF doesn’t function properly, and therefore
attempting ABD is futile. To give an example of this, which is
somewhat imprecise but nevertheless suffices to illustrate the
principle, consider that we could specify that the required PF
particle resolution corresponds to particles initially placed on
a Q dimensional grid, with two particles per target parameter,
therefore NP = 2Q. In such a case, the number of particles
would be insufficient for the PF (and therefore ABD) to
function effectively (apart from perhaps after many iterations,
if the PF particular re-distribution method is very good), even
though the computational complexity will eventually exceed
that of the approximate method, with an appropriate number
of particles (and therefore with the ABD working properly),
as Q is increased (i.e., because exponential will always exceed
polynomial).
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VII. CONCLUSIONS

In this paper, we have expressed the cost function for
MMSE ABD in MIMO active sensing systems as a linear-
Gaussian approximation that enables computationally simple
optimisation. Analysis of the computational complexity in-
dicates the potential of the proposed method to reduce the
computation time of MMSE ABD, most significantly that
the number of operations required grows only polynomially,
rather than exponentially (as is the case for the exact method)
with the number of targets being tracked. Numerical results
support this theoretical reduction in computational complexity,
showing that the proposed approximate MMSE ABD method
leads to a reduction in RMSE compared to the no ABD case,
and a four orders of magnitude reduction in computation time
compared to the exact MMSE ABD method (which slightly
out-performs the proposed approximate MMSE ABD method
in terms of RMSE performance). The proposed approximate
MMSE ABD method relies on both the target angle and
attenuation being estimated, which is a more general case
compared to that considered in the numerical results in the
paper in which the exact MMSE ABD method was proposed
[5]. Therefore the numerical results included herein, for both
the exact and approximate MMSE ABD methods estimate
the target attenuation as well as angle, demonstrating good
performance of each in this more general, and physically
reasonable set-up.

The results we present in this paper are for the case where
the elements in transmit and receive arrays have the same
uniform spacing, however we present analysis demonstrating
that the proposed approximate ABD method applies to MIMO
adaptive sensing systems in general, regardless of array spac-
ing. Therefore an important extension to this work is to apply
the method to MIMO adaptive sensing systems with unequal/
non-uniform arrays.

Another extension concerns the fact that the analysis in
this paper implicitly treats all reflective objects as targets,
however it may be the case that motion analysis reveals some
of these reflective objects to be clutter rather than targets. In
such a scenario, it would be interesting to introduce additional
constraints in the MMSE optimisation formulation such that
the transmitted power in the direction of the clutter does not
exceed some defined threshold, thus achieving joint clutter
suppression and MMSE ABD.

APPENDIX A
CONSTRUCTION OF Rk FOR UNEQUAL AND/ OR

NON-UNIFORM ARRAY SPACING

The analysis in Section III, leading to the approximate
ABD method relies on two features of ABD in MIMO active
sensing systems: firstly, that the elements of H(q) can also be
expressed as the same complex number to a power as in (6);
and secondly that the system model can be re-written such
that the unique elements of H are expressed as a vector, that
is then pre-multiplied by a matrix where each element is equal
to zero or an element of Sk, as in (9). From the definitions of
steering vectors, it is trivial to see that the first of these features
is common to all such problems – if the transmit and receive

arrays are unequal and/or non-uniform fractional powers may
be required, but that would not invalidate the ABD method.

For the second feature, when H(q) is such that all of the
elements therein are distinct, then vec(H) is equivalent to ψk
(i.e., each is a vector of the distinct elements of H for its
respective system model). In this case, dropping the subscript
k, we have that:

X=HS + N

= INR
HS + N, (34)

where INR
is the identity matrix of size NR. From (34) we

can express the vectorised form:

vec(X) = vec(INR
HS) + vec(N)

=ST ⊗ INR
vec(H) + vec(N), (35)

from [28], which is the desired form with a simple function of
S where each element is equal to either zero or an element of
S (in this case ST ⊗INR

) pre-multiplying a vectorised version
of H.

APPENDIX B
PSEUDO-INVERSION OF B

Noticing that each non-zero element of S′k is equal to
exactly one of the elements of Sk, according to the definition
in (10), without loss of generality we can re-order vec(Sk)
and s′k (denoted s̃k and s̃′k respectively) such that:

s̃′k = B̃s̃k, (36)

where B̃ = [I
(1)
LNT

, . . . , I
(NR)
LNT

]T , i.e., NR identities vertically
stacked. This enables us to express:

B̃†= (B̃T B̃)−1B̃T

=

[I
(1)
LNT

, . . . , I
(NR)
LNT

]


I
(1)
LNT

...
I
(NR)
LNT



−1

[I
(1)
LNT

, . . . , I
(NR)
LNT

]

= (NRILNT
)−1[I

(1)
LNT

, . . . , I
(NR)
LNT

]

=
1

NR
[I

(1)
LNT

, . . . , I
(NR)
LNT

], (37)

which allows us to calculate the elements of ∇vec(Sk)(Σ)
in (32) by taking the average of corresponding elements of
∇vec(S′

k)
(Σ). Consider the example in (12), we can see that

s1,1 appears three times in S′k (at s′11, s′22 and s′33), so we
would calculate the differential of the cost with respect to
s1,1 by summing one third of the differential of the cost with
respect to s′11, s′22 and s′33, as found in (29).
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