

Edinburgh Research Explorer

Automatic Parameter Tuning of Motion Planning Algorithms

Citation for published version:
Cano Reyes, J, Yang, Y, Bodin, B, Nagarajan, V & O'Boyle, M 2019, Automatic Parameter Tuning of Motion
Planning Algorithms. in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2018. IEEE, Madrid, Spain, pp. 8103-8109, 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Madrid, Spain, 1/10/18. DOI: 10.1109/IROS.2018.8594183

Digital Object Identifier (DOI):
10.1109/IROS.2018.8594183

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/195267822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/IROS.2018.8594183
https://www.research.ed.ac.uk/portal/en/publications/automatic-parameter-tuning-of-motion-planning-algorithms(74bead4a-08a4-4092-badd-08fd77d86b32).html

Automatic Parameter Tuning of Motion Planning Algorithms

José Cano, Yiming Yang, Bruno Bodin, Vijay Nagarajan, and Michael O’Boyle
School of Informatics, University of Edinburgh, UK

Abstract— Motion planning algorithms attempt to find a good
compromise between planning time and quality of solution. Due
to their heuristic nature, they are typically configured with
several parameters. In this paper we demonstrate that, in many
scenarios, the widely used default parameter values are not
ideal. However, finding the best parameters to optimise some
metric(s) is not trivial because the size of the parameter space
can be large. We evaluate and compare the efficiency of four
different methods (i.e. random sampling, AUC-Bandit, random
forest, and bayesian optimisation) to tune the parameters of two
motion planning algorithms, BKPIECE and RRT-connect. We
present a table-top-reaching scenario where the seven degrees-
of-freedom KUKA LWR robotic arm has to move from an
initial to a goal pose in the presence of several objects in the
environment. We show that the best methods for BKPIECE
(AUC-Bandit) and RRT-Connect (random forest) improve the
performance by 4.5x and 1.26x on average respectively. Then,
we generate a set of random scenarios of increasing complexity,
and we observe that optimal parameters found in simple envi-
ronments perform well in more complex scenarios. Finally, we
find that the time required to evaluate parameter configurations
can be reduced by more than 2/3 with low error. Overall,
our results demonstrate that for a variety of motion planning
problems it is possible to find solutions that significantly
improve the performance over default configurations while
requiring very reasonable computation times.

I. INTRODUCTION

Motion planning is the fundamental problem of finding a
valid path from a start to goal pose [1]. In particular, a large
number of sampling-based motion planning algorithms have
been developed during the past few decades, such as Rapidly-
exploring Random Tree (RRT, [2]), Probabilistic Roadmap
(PRM, [3]), and many others [4]. Sampling-based methods
are often used for efficiently finding globally valid solutions
in complex environments. Thus, a common demand from the
users when deploying motion planning to solve real problems
is that they want to have a valid solution as quick as possible,
i.e., with minimum planning time. However, the planning
time can be significantly affected by the set of parameters
associated with a particular planning algorithm. Typically,
the users (especially non-expert ones) adopt the default
parameter values provided by the algorithm designers, since
these default configurations may be reasonable settings for
the average case, although their behavior may be far from
optimal (minimum planning time) for any specific planning
problem. In this paper, we demonstrate that default config-
urations give sub-optimal performance and that there exists
other configurations that provide significant improvement in
particular cases. Note that we focus on the performance of
the application (in our case the planning time) and not on
the system, so we don’t consider energy efficiency.

However, for some algorithms the high number of pa-
rameter combinations is translated into a large search space.
Finding the best parameter configuration within this search
space is tedious and time consuming. As an example, we pro-
pose two categories of environments where a seven Degrees-
of-Freedom (DoF) KUKA LWR robot arm has to find a
collision-free trajectory to move from an initial to a goal
pose in the presence of several collision objects, using two
different planning algorithms, the Bidirectional RRT (RRT-
Connect, [5]) and the Bidirectional Kinodynamic motion
planning by Interior-Exterior Cell Exploration (BKPIECE,
[6]). BKPIECE can be configured through five parameters
that generate a search space of 1, 760, 000 possible combi-
nations, and fully exploring it to find optimal solutions may
require weeks. Thus, a tool that can automatically find the
optimal parameters for particular planning algorithms and/or
environments in short times is of interest to the robotics
community and the main target of this work.

There have been some previous works addressing parame-
ter configuration of motion planning algorithms. In [7], there
are only two parameters to configure that generate a very
small search space, thus they are explored manually. Luo
and Hauser [8] compare the performance of various planning
algorithms by tuning the parameters of some of them to
“stable values”. The number of parameters tuned is at most
three, but the tuning process itself was not specified. The
closest related work in the literature is [9], where the SMAC
tool was proposed to tune the parameters of several motion
planners on specific problems. However, this work evaluates
only one tuning method (SMAC which is based on random
forest), targets less complex environments than us and does
not perform robustness and randomness experiments, as we
do. In [10] it is proposed a benchmarking infrastructure
to compare the performance of different planners, however
nothing is said about tuning the individual parameters of
each algorithm. Finally, [11], [12], [13] address the config-
uration problem within a distributed system where several
processes/algorithms can be tuned with only one parameter.
However, the parameter values can be affected by the specific
allocations of processes to processors within the system.

In this paper we evaluate and compare four parameter
tuning methods: 1) simple random sampling; 2) the AUC-
Bandit approach; 3) bayesian optimisation; and 4) random
forest. It is important noting that the time required for each
method to find the optimal parameters is also critical. The
users may not be interested in finding the optimal parameters
in hours (or days) while the actual reduction in planning time
is only a few seconds or less. We limit this time to two hours.

The two main contributions of the paper are as follows:
• We find that for specific real-world motion planning

problems table-top-reaching, it is possible to find pa-
rameters that make the motion planner 4.5x faster than
using the default parameters under two hours.

• We show that optimal parameters found in simple envi-
ronments perform well also in more complex scenarios.
This is a critical discovery, meaning that one can train
the system quickly in simple environments while being
able to use the parameters in complex scenarios.

II. PROBLEM DEFINITION

Let q ∈ C ⊂ RN denote the state of a N Degrees-of-
Freedom (DoF) robot, where C is the configuration space.
In an environment Env , let Cobs denote the manifold on
which the robot is in collision with environmental obstacles
or itself, and Cfree = C\Cobs the manifold of collision-free
states. Given a start and goal state, qs and qg , a motion
planning problem is defined as:

q[s:g] = MotionPlan(qs ,qg)

s.t. q[s:g] ⊂ Cfree
, (1)

Let A denote a motion planning algorithm that can solve
(1). A can be configured by a set of parameters P =
{p1, ..., pn} ∈ P, where each parameter pi can have one
or multiple possible values, |pi| ∈ N, pi ∈ R, and P is
the parameter space, i.e., set of all possible P for A. Let
M = {m1, ...,mn} be a set of cost metrics, where each mj

is defined for A (e.g. planning time, path cost, etc).
For a particular planning algorithm A, the objective is to

find a parameter combination P ∗ = {p∗1, ..., p∗n}, by using
which the planning algorithm A will be able to perform a
valid trajectory while optimising M ,

P ∗ = argmin
P∈P

M(A,P). (2)

A parameter tuning algorithm is a method that solves (2),
preferably finding the optimal parameter set P ∗ in minimum
time. However, a near-optimal solution can be returned if
the tuning algorithm exceeds a predefined time limit, for
instance, a two hours limit (7, 200 s) is used in this work.

III. SOLUTION METHODS

The main difference between the four proposed methods
is how they explore the parameter space P. For example,
random sampling explores it without following any rule nor
based in any previous knowledge. The other three methods
make use of existing information to explore the next configu-
ration in the search space more intelligently, but according to
different search strategies. All methods use a given planning
algorithm A, optimise the set of metrics M , use the default
configuration Pdef as the initial best result known, and test
a fixed number of parameter configurations nConfs.

Algorithm 1 describes the general tuning method common
to all the solution methods, where the TERMINATE() function
returns true if a termination criteria is met, e.g., exceeds time

Algorithm 1 General tuning method
Require: A, M , Pdef

Ensure: P ∗ ⊂ P
1: P ∗ = Pdef

2: nConfs = 0
3: # Search space exploration
4: while NOT TERMINATE() do
5: P ′ = NEWPARAMETERSET(P ∗,P)
6: if M(A,P ′) < M ′(A,P ∗) then
7: P ∗ = P ′

8: end if
9: nConfs = nConfs+ 1

10: end while
11: return P ∗

limits. The NEWPARAMETERSET() is subject to different
tuning algorithms (i.e. our four proposed methods).

Note that we chose the previous four methods incremen-
tally in the following way: i) random sampling (rs) is a good
starting point due to its simplicity; ii) bayesian optimisation
(bo) is a solution widely used in robotics; iii) random forest
(rf) has also shown to be an efficient method in the systems
community; iv) and finally AUC-Bandit (ab) is commonly
used as an optimisation heuristic in many domains. Next we
provide more details about each solution method used.

A. Random Sampling

This method is based on selecting individual parameter
configurations from the given search space randomly, where
each configuration has the same probability of being chosen
and is selected independently, i.e. any selected configuration
might be repeated. The number of configurations selected,
called sample, is a subset of the total search space, and each
subset of k individuals also has the same probability of being
chosen for the sample as any other subset of k individuals
[14]. Note that the best solution within the sample typically
improves as the sample size increases.

B. Bayesian Optimisation

This method is based on a sequential design of exper-
iments strategy for global optimisation of black-box func-
tions/systems (i.e. systems where an algebraic model is
entirely unknown) based on using Bayesian statistics [15].
It is assumed that the black box can be queried either by
simulation or using real data from experiments that provide
a system output for specified values of system inputs.

Bayesian optimisation works well with functions that are
very expensive to evaluate. This method uses a mathematical
data-driven model (called surrogate model) that mimics the
behaviour of another model as closely as possible while
being computationally cheap(er) to evaluate. The model
includes a utility function to guide the exploration. We use
the Upper Confidence Bound (UCB) as our utility function,
which has the free parameter κ that controls the balance
between exploration and exploitation. We set κ = 3 which,
in this case, makes the algorithm quite bold.

C. Random Forest

A decision tree represents a recursive binary partitioning
of the input space, and uses a simple decision (a one-
dimensional decision threshold) at each non-leaf node that
aims at maximising an ”information gain” function. A Ran-
dom Forest predictor is a set of randomised decision trees.

Random Forest has been proved to be an efficient tech-
nique in the context of optimising parameters [16], [17].
In [17] the discovery of new points is done by using
an active learning methodology. An initial set of random
configurations are generated, then the predictor is used to
generate the most promising configurations. Once they are
run, those configurations are used to improve the quality of
the predictor. This scenario is repeated as long as necessary.
In [17] the size of the initial set was greater than 2000,
and more than 100 new points were selected every iteration.
Given the timing constraints which have been set in our
experimental context, in our experiments we will limit the
size of the initial set to one element and the number of new
points to be selected to only one element as well.

D. AUC-Bandit

Multi-armed bandit with AUC (Area Under the Receiving
Operator Curve) credit assignment is a comparison-based
strategy implemented by OpenTuner [18]. OpenTuner is
a generic tuning framework for building domain-specific
multi-objective program auto-tuners. It features customisable
configuration representations used to define the space of solu-
tions. A key capability of OpenTuner is the use of ensembles
of disparate search techniques simultaneously. Techniques
which perform well will receive larger testing budgets and
techniques which perform poorly will be disabled.

We used OpenTuner to build an auto-tuner for Motion
Planning Algorithms. OpenTuner is composed of two main
components, the manipulator function and the run func-
tion. The manipulator specifies the set of configuration
parameters and their possible value ranges. The run executes
the algorithm given those parameters and determines a score
for them. Given those two components OpenTuner will then
generate an auto-tuner for our given scenario.

IV. EVALUATION

In this section we define a set of robotic environments and
then we analyse and compare the four different tuning meth-
ods using BKPIECE and RRT-Connect with the objective of
answering the following research questions:

• RQ1: How well do the tuning methods perform in dif-
ferent environments, e.g. a realistic table-top-reaching
scenario and randomly generated scenarios?

• RQ2: How robust are the selected tuning methods with
respect to random scenarios of increasing complexity?

• RQ3: How does the parameter space of our problem
look like when considering the solution cost?

• RQ4: How can the randomness in sampling-based algo-
rithms affect our evaluation methodology and results?

Fig. 1. Table-top-reaching scenario where a 7-DoF KUKA robot arm needs
to move from upright posture to a goal configuration via a narrow passage.
left: side view, right: front view.

TABLE I
PARAMETERS DEFINITION.

Parameter Range Step Default

R
R

T-
C

on
ne

ct Max steering distance (P1) [0.1, 2.0] 0.1 1

Simplification trails (P2) [0, 10] 1 0

B
K

PI
E

C
E

Max steering distance (P1) [0.1, 2.0] 0.1 1

Border fraction (P2) [0.05, 1.0] 0.05 0.5

Failed exp. score factor (P3) [0.05, 1.0] 0.05 0.5

Min valid path fraction (P4) [0.05, 1.0] 0.05 0.5

Simplification trails (P5) [0, 10] 1 0

A. Setup

In this section we describe the experiment set we used to
evaluate the performance of the proposed tuning methods.
Note that we focus on the planning time metric. A motion
planning algorithm needs to plan a collision-free trajectory
for a 7-DoF KUKA LWR robot arm to move from an initial
to a goal configuration in two categories of environments.
The first one is a typical table-top-reaching scenario that in-
cludes three objects, as shown in Fig. 1, and the second type
is composed of random scenarios of increasing complexity,
i.e. populated with 10, 50, 100, 200 and 300 ball obstacles
at random locations, as shown in Fig. 2.

Two motion planning algorithms, BKPIECE and RRT-
Connect, are selected in our evaluation. The reason for
choosing these two algorithms is as follows. RRT-Connect
is one of the most widely used sampling-based planners;
thus finding the optimal parameters of RRT-Connect will
bring great benefit to the robotics community. BKPIECE is
also a commonly used algorithm; furthermore, in contrast to
RRT-Connect that only has two parameters, BKPIECE can
be configured by five different parameters which creates a
huge parameter search space, making it a suitable algorithm
for testing the tuning methods. The parameters of RRT-
Connect and BKPIECE are highlighted in Table I. Due to
the randomness present in sampling-based methods, we run
1, 000 trials for each problem and average the result.

Fig. 2. Random scenarios: 10 objects (left), 50 objects (second left), 100 objects (center), 200 objects (second right), 300 objects (right).

0 1440 2880 4320 5760 7200
Time spent exploring solutions (Sec)

0.8

1.6

2.4

3.1

3.9

4.7

S
pe

ed
-u

p
ov

er
 d

ef
au

lt

rf bo rs ab default

Fig. 3. Speedup of BKPIECE using different auto-tuning techniques over
time for the table-top-reaching scenario.

We have used the RRT-Connect and BKPIECE implemen-
tations from the EXOTica framework [19]. We developed the
random sampling method and modified OpenTuner [18] to
use the heuristics-based solution and also to integrate the
random forest method in it. Finally, we adapted the bayesian
optimisation implementation from [20]. The evaluations were
carried out on Intel Core i7-6700K 4.0GHz CPU desktop
machines with 32GB 2133MHz RAM.

B. Environment 1: Table-top-reaching scenario

Fig. 3 and Fig. 4 show the global speedup when using
the optimal parameters found by the four methods discussed
against the planning time of using the default parameter
configuration (speedup = 1). Recall that we run each
method for 7200 seconds (2 hours) and we repeated the
experiment ten times. Therefore, each point in the graph
represents the average value of ten runs. There are three
important aspects to analyse in these graphs: i) the maximum
average speedup achieved over the default configuration; ii)
the differences among the proposed solution methods: iii) the
computation time required to obtain solutions that improve
the default performance significantly.

Answering RQ1, we can see in Fig. 3 that AUC-Bandit
(ab) appears to be the best method at all times, achieving a
maximum speedup of 4.5x over the default configuration.
Random forest (rf) and random sampling (rs) provide
a speedup of 4x after the 2 hours period, and bayesian

0 1440 2880 4320 5760 7200
Time spent exploring solutions (Sec)

1.01.0

1.1

1.21.2

1.3

S
pe

ed
-u

p
ov

er
 d

ef
au

lt

rf bo rs ab default

Fig. 4. Speedup of RRT-Connect using different auto-tuning techniques
over time for the table-top-reaching scenario.

optimisation (bo) roughly 3.8x. We also observe how after
1400 seconds (approx. 23 minutes), ab and rf are able to
provide solutions that improve the default planning time by
more than 3.5x, whereas bo and rs are only able to provide
roughly 2x of speedup. When using RRT-Connect, as shown
in Fig. 4, the speedup is much less than in BKPIECE. The
optimal parameters found by random forest (rf) achieved
a 1.26x speedup. However, considering that RRT-Connect
only has 2 parameters, the improvement is still significant.
Note that the methods that provide the best solution for both
planning algorithms are different, and the user will use those.

The reason for the differences observed in Fig. 3 and Fig. 4
resides in the nature of each method, which defines how the
solutions are explored along the time. For example, rs can
select any configuration at any time, and some configurations
in the search space are much slower to evaluate than others
because they need more time to find a valid path. However,
the other three methods explore the search space more
intelligently, focusing more and more on good configurations
as time progresses. This means that after the 2 hours period
each method will be able to explore a different number of
configurations, on average.

Tables II and III show the best parameter configura-
tion, the planning time, and the total number of parameter
sets explored after 2 hours (nConfs), on average, for each
method. The tables also show the default configuration and
its planning time. We see how ab and rf are the methods

TABLE II
BEST CONFIGURATIONS FOR BKPIECE AND THE ENVIRONMENT 1.

Method Parameters (P1-P5) Time(s) nConfs

rs {0.4, 0.1, 0.95, 0.7, 6} 0.31 15
ab {0.3, 0.95, 0.2, 0.35, 3} 0.29 29
rf {0.3, 0.65, 0.35, 0.9, 8} 0.34 17
bo {0.3, 0.4, 0.7, 0.5 8} 0.34 17
default {1, 0.5, 0.5, 0.5, 0} 1.45 -

TABLE III
BEST CONFIGURATIONS FOR RRT-CONNECT AND THE ENVIRONMENT 1.

Method Parameters (P1-P2) Time(s) nConfs

rs {1.6, 8} 3.58 17
ab {1.5, 8} 3.53 19
rf {1.5, 2} 3.32 24
bo {1.4, 6} 3.65 9
default {1, 0} 4.49 -

that explore the greatest number of configurations for both
planners respectively, thus providing the best results. We
also see how all the methods almost provide the same value
for P1, which seems to be the parameter that most affects
the planning time. Note that for BKPIECE, although the
planning time of the best configuration for rs is lower
than rf , on average they perform equally after two hours.
Similarly, the best parameter set for rf and bo produces the
same planning time but bo is worse than rf on average.

C. Environment 2: Random scenarios

To generate random scenarios of increasing complexity,
we add a number of random objects in the environment.
The greater the number of objects added, the more complex
the scenario, and the more challenging it is to find a valid
trajectory. Specifically, we consider five different scenarios
each with 10, 50, 100, 200, and 300 objects randomly
distributed, as shown in Fig. 2. For each problem, a random
trajectory is first generated in free-space connecting the start
and goal states, collision objects are then randomly populated
into the environment without colliding with the trajectory.
In this case, we guarantee that at least one valid solution
exists for every problem. Since we run 1, 000 samples for
each parameter configuration analysed, we generate 1, 000
random instances for each number of objects.

Tables IV and V show the difference for the planning time
between the default configuration and the best solution found
(by any of the methods) for the five scenarios considered and
the two planning algorithms respectively.

Completing the answer for RQ1, there are two main obser-
vations in these tables: i) the difference for the planning time
between the default and the best configuration increases with
the complexity of the scenario; ii) the maximum difference
(30% for 300 objects in BKPIECE, 22% for 300 objects
in RRT-Connect) is much less than in a realistic scenario.

TABLE IV
PLANNING TIME OF BKPIECE USING THE DEFAULT AND THE BEST

SOLUTION FOUND FOR EACH SCENARIO (IN SECONDS).

objects Parameters (P1-P5) Method Default Best

10 {0.55, 1, 1, 0.05, 5} bo 0.06 0.05
50 {0.6, 0.4, 0.5, 0.1, 4} bo 0.12 0.10
100 {0.7, 0.35, 0.5, 0.1, 0} ab 0.24 0.18
200 {0.7, 0.8, 0.95, 0.3, 5} ab 0.87 0.67
300 {0.6, 0.9, 0.9, 0.7, 8} rf 2.06 1.43

TABLE V
PLANNING TIME OF RRT-CONNECT USING THE DEFAULT AND THE BEST

SOLUTION FOUND FOR EACH SCENARIO (IN SECONDS).

objects Parameters (P1-P2) Method Default Best

10 {1.5, 4.0} ab 0.004 0.003

50 {0.8, 6.0} rf 0.015 0.012

100 {1.5, 3.0} rs 0.063 0.071

200 {0.8, 4.0} rf 0.995 0.553

300 {1.7, 7.0} rf 2.177 1.703

These results make sense as we are testing each parameter
configuration across 1, 000 different random instances, thus
we are actually solving the average case (i.e. training the
scenario) for each number of objects.

Tables IV and V also show the parameter configuration
that provides the best planning time for each scenario along
with the method that obtained it. For BKPIECE, we see that
for scenarios of low (10 objects) and medium complexity
(50 and 100 objects) bayesian optimisation (bo) and AUC-
Bandit (ab) provide the best results. However, for scenarios
of high complexity (200 and 300 objects) AUC-Bandit (ab)
and random forest (rf) are the best methods. In addition,
as it happened with the table-top-reaching scenario, we
observe that the value of P1 for BKPIECE falls within
a small interval. However, for RRT-Connect we observe
greater differences for P1 and random forest (rf) is the best
method for three of the scenarios. Therefore, we see how the
improvement when we solve a more realistic environment
(e.g. the table-top-reaching scenario) is significantly higher
than for the general case, but even if we randomly generate
the number of objects present in the scenario we obtain a
solution that performs better than the default.

D. Robustness analysis: Training vs Testing

We now analyse the robustness of the methodology pro-
posed by running the best parameter configuration for each
type of random scenario (obtained in the training phase) in
all the random scenarios including itself (we call it matching
scenario). These testing experiments need to be repeated only
once, since the training phase requires to run each experiment
ten times. Small differences among different runs of the same

10 50 100 200 300
#Objects

0.0

0.5

1.0

1.5

2.0
P

la
nn

in
g

tim
e

Configurations
Best 10
Best 50
Best 100

Best 200
Best 300
Default

Fig. 5. Robustness analysis: for each random scenario (10, 50, 100, 200
and 300 objects), we run BKPIECE with its default configuration and with
the best configuration obtained for each scenario (including itself).

testing experiment can only be attributed to the inherent
randomness present in sampling-based algorithms.

Answering RQ2, Fig. 5 shows the results of these experi-
ments for BKPIECE. Comparing the values obtained for the
matching scenarios with the values in Tables IV and V we
see that the results are almost the same, which demonstrates
the robustness of the best solution found for each type of
random scenario. Fig. 5 also shows that for scenarios of
low and medium complexity (i.e. 10, 50, and 100 objects)
the best configuration for each type of scenario provides
the lowest planning time, although the best configurations
for other scenarios can provide similar results. For complex
scenarios (200 and 300 objects) the differences among the
best configurations are more apparent. However, we see how
the best configuration for 10 objects provides the best result
also for the complex scenarios. This is an excellent result,
since it means that we can train scenarios on small number of
objects (with lower training times) to give good performance
on more complex scenarios with more obstacles, and also
outperforming the default configuration.

E. Parameter space of the algorithms

In order to answer RQ3, we now analyse both the planning
time and the path cost (given by its length) of each solution.
Fig. 6 and Fig. 7 show the data points obtained for all the
experiments performed for the table-top-reaching scenario
according to the two metrics. The ”X” represents the location
of the default configuration in the parameter space.

As we see in Fig. 6, the data points for BKPIECE are quite
scattered, ranging from 0.3 to 6 seconds for the planning time
and from 7 to 12 for the path cost. We also observe that there
are many data points that improve the default configuration.
More specifically, the points that provide the best planning
time also improve the solution cost by 10-12%. For RRT-
Connect, as shown in Fig. 7, the data points are more dense.
While there was no significant reduction in planning time,
the solution cost can be optimised up to 15%.

0 1 2 3 4 5 6
Executions time (sec)

6

8

10

12

14

S
ol

ut
io

n
C

os
t (

#S
te

p)

Configurations Default

Fig. 6. All the configurations of BKPIECE explored so far.

0 10 20 30 40
Executions time (sec)

6

7

8

9

10

11

12

S
ol

ut
io

n
C

os
t (

#S
te

p)

Configurations Default

Fig. 7. All the configurations of RRT-Connect explored so far.

F. Randomness analysis

Evaluating sampling-based algorithms in robotics typically
implies to repeat every experiment a great number of times in
order to obtain an average value (and variance) for some met-
ric that can give the user confidence in the system behaviour.
Common repetition values for sampled-based experiments
are 1, 000 or even 10, 000 times. However, this number
of repetitions is typically performed systematically, without
analysing if it is actually required for the corresponding
system and experiment. As we pointed out previously, each
parameter configuration is tested 1, 000 times. We now study
if this number was actually required. Note that increas-
ing/decreasing this repetition value generates higher/lower
evaluation times for each configuration tested.

To answer this question, we compared for any number of
executions of a specific configuration, the deviation of the
average execution time against the average execution time for
1, 000 executions of the same configuration. Fig. 8 shows this

0 200 400 600 800 1000
#Executions

0

5

10

15

20

25

30
E

rr
or

 (
%

)
Mean Error (%)
Max Error (%)

Fig. 8. Randomness of BKPIECE for the table-top-reaching scenario.

deviation considering all the experiments performed for the
table-top-reaching scenario and BKPIECE. The graph shows
two curves, which represent the maximum (Max Error) an
average deviation (Mean Error) of the current average value
(obtained considering the number of repetitions so far).

As we see in the graph and answering RQ4, for the
planning time after 300 repetitions the average deviation is
under 5%, going to 2.5% for 600 repetitions, compared with
1, 000 repetitions. Therefore, depending on the maximum
deviation that (the user of) a given application can tolerate,
we could reduce the number of repetitions and thus the
evaluation time of each experiment dramatically. In the table-
top-reaching scenario, considering the planning time and
assuming an average error tolerance of 5% we would reduce
the evaluation time by more than 2/3.

V. CONCLUSIONS

We have analysed and compared four tuning methods
(random sampling, bayesian optimisation, random forest
and AUC-Bandit) for configuring the parameters of two
sampling-based motion planning algorithms, RRT-Connect
and BKPIECE, with the objective of minimising the overall
planning time. We have proposed a real-world table-top-
reaching scenario and we have seen how all the proposed
methods provide a better configuration than the default one,
where the best method (AUC-Bandit) clearly outperforms
the rest of solutions, reducing the planning time provided
by the default configuration by up to 4.5x. We have also
analysed the robustness of our methodology across a set of
randomly generated scenarios, and we have found that we
can train random scenarios with a small number of objects
in a short time and obtain excellent performance in scenarios
with many objects that require long training times. Finally, to
further reduced the required evaluation times we have seen
that the number of samples required for the experiments can
be dramatically reduced within low error rates. Therefore,
the proposed tuning methodologies may be interesting for
users, as they provide significant performance improvements
for specific scenarios with reasonable computation times.

ACKNOWLEDGMENTS

This work was supported by the AnyScale Applications
project under the EPSRC grant EP/L000725/1, and partially
by the EPSRC grant PAMELA EP/K008730/1.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-
bridge University Press, 2006.

[2] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[3] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[4] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[5] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation., 2000, pp. 995–1001.

[6] I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning
by interior-exterior cell exploration,” in Algorithmic Foundation of
Robotics VIII, Selected Contributions of the Eight International
Workshop on the Algorithmic Foundations of Robotics, WAFR 2008,
Guanajuato, México, December 7-9, 2008.

[7] D. D. Dunlap, C. V. Caldwell, E. G. C. Jr., and O. Chuy, Motion
Planning for Mobile Robots Via Sampling-Based Model Predictive
Optimization. InTech, December 2011.

[8] J. Luo and K. Hauser, “An empirical study of optimal motion
planning,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept 2014, pp. 1761–1768.

[9] R. Burger, M. Bharatheesha, M. van Eert, and R. Babuka, “Automated
tuning and configuration of path planning algorithms,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), May
2017, pp. 4371–4376.

[10] M. Moll, I. A. Sucan, and L. E. Kavraki, “Benchmarking motion
planning algorithms: An extensible infrastructure for analysis and
visualization,” IEEE Robotics Automation Magazine, vol. 22, no. 3,
pp. 96–102, Sept 2015.

[11] J. Cano, D. R. White, A. Bordallo, C. McCreesh, A. L. Michala,
J. Singer, and V. Nagarajan, “Solving the task variant allocation
problem in distributed robotics,” Autonomous Robots, Apr 2018.

[12] J. Cano, D. R. White, A. Bordallo, C. McCreesh, P. Prosser, J. Singer,
and V. Nagarajan, “Task variant allocation in distributed robotics,” in
Proceedings of Robotics: Science and Systems (RSS), June 2016.

[13] J. Cano, A. Bordallo, V. Nagarajan, S. Ramamoorthy, and S. Vi-
jayakumar, “Automatic configuration of ROS applications for near-
optimal performance,” in 2016 IEEE/RSJ International Conference on
IntIntelligent Robots and Systems (IROS), October 2016.

[14] J. Tabor, D. Yates, and D. S. Moore, The Practice of Statistics. W.
H. Freeman; 5 edition, 2014.

[15] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, pp. 148–175, Jan 2016.

[16] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Learning and
Intelligent Optimization, C. A. C. Coello, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 507–523.

[17] B. Bodin, L. Nardi, M. Z. Zia, H. Wagstaff, G. S. Shenoy, M. Emani,
J. Mawer, C. Kotselidis, A. Nisbet, M. Lujan, B. Franke, P. H. J. Kelly,
and M. O’Boyle, “Integrating algorithmic parameters into benchmark-
ing and design space exploration in 3d scene understanding,” in 2016
International Conference on Parallel Architecture and Compilation
Techniques (PACT), Sept 2016, pp. 57–69.

[18] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible
framework for program autotuning,” in Int. Conference on Parallel
Architectures and Compilation Techniques (PACT), August 2014.

[19] V. Ivan, Y. Yang, W. Merkt, M. Camilleri, and S. Vijayakumar,
“Exotica: An extensible optimization toolset for prototyping and
benchmarking motion planning and control,” in Robot Operating
System (ROS): The Complete Reference, 2019, vol. 3, pp. 211–240.

[20] “Bayesian optimization,” https://github.com/fmfn/BayesianOptimization,
accessed: 2017-09-12.

