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ABSTRACT

Making computer-generated (CG) images more difficult to de-
tect is an interesting problem in computer graphics and security.
While most approaches focus on the image rendering phase, this
paper presents a method based on increasing the naturalness of
CG facial images from the perspective of spoofing detectors. The
proposed method is implemented using a convolutional neural
network (CNN) comprising two autoencoders and a transformer
and is trained using a black-box discriminator without gradient
information. Over 50% of the transformed CG images were not
detected by three state-of-the-art spoofing detectors. This capa-
bility raises an alarm regarding the reliability of facial authenti-
cation systems, which are becoming widely used in daily life.

Index Terms— deep convolutional neural network, autoen-
coder, presentation attack, computer-generated image, spoofing
detection

1. INTRODUCTION

A presentation attack is commonly used to bypass authentica-
tion systems using biometrics information (face, fingerprint, iris,
and/or voice). Integration of a spoofing detector into the sys-
tem before the authentication phase is one approach to prevent-
ing such attacks. A good candidate for this is liveness detection,
which generally uses a challenge-response protocol in which the
user is asked to perform an action such as blinking, smiling, or
moving the lips. However, recent work has shown that it is pos-
sible to avoid liveness detection by, for example, using real-time
face capture and reenactment [1]. It has thus become necessary
to develop and implement natural–CG image/video discrimina-
tors.

Forensic research on discriminating between CG and natural
images has focused on both images in general and facial images.
As an example of the former, Wu et al. extracted statistical fea-
tures from histograms of differential images [2]. Although this
approach was proposed several years ago, our evaluation demon-
strated that it has fast feature extraction and good performance.
Therefore, we used it as the basis of the discriminator used to
train our CNN. In 2017, Peng et al. [3] reported a method based
on multi-fractal and regression analysis. As an example of focus-
ing on facial images, the recent work of Nguyen et al. [4] focused
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Fig. 1: Scenario of proposed presentation attack method.

on facial smoothness as represented by edges and local entropy
of the skin areas.

In the research reported here, we developed a method for
avoiding detection by spoofing detectors like those natural–CG
image discriminators mentioned above. It works by transform-
ing CG images input to facial authentication systems to make
them appear more natural. Our work is motivated by the idea
of “adversarial machine learning” of Huang et al. for attacking
machine learning based systems [5]. Although we did not tar-
get a specific system, we used a spoofing detection algorithm as
the basis of the discriminator. The attack scenario is illustrated
in Fig. 1. Given two sets of data (a set of natural images and a
set of CG ones which are not necessarily corresponding person-
to-person or pose-to-pose), a system using the proposed method
implemented as a CNN transforms the CG input images in an
attempt to make them indistinguishable from the natural coun-
terparts.

Unlike the original generative adversarial network
(GAN) [6], the discriminator used to train our CNN was
pre-trained, kept fixed during training, and could not perform
back propagation. Moreover, the generated images retained
important information from the input images, such as the persons
identity, the facial expression, or the lips’ shapes, which are
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Fig. 2: H-Net architecture.

hard to control when using the original GAN. When designing
our CNN we focused on minimizing the number of parameters
so that it can work without consuming a large amount of GPU
memory. We also considered the “training with small dataset
problem,” which is often faced by attackers when collecting
data.

Our approach is different from those of other computer
graphic engines, which mainly focus on the rendering phase. It
also differs from the style transfer problem, which mainly fo-
cuses on applying the “look” or textures of one image (the style)
to another one (the content). In our case, the style is not just a
picture or an artistic style, so it is hard to define.

Our contributions here are threefold:

• Presentation of a CNN comprising two autoencoders and
a transformer net that increases the difficulty of detecting
computer-generated facial images.

• Suggestion of a method for dealing with back propagation
when training using an external black-box discriminator
that does not have gradient information.

• Raising of an alarm about the robustness of facial authen-
tication systems, which are being implemented in many
mobile devices and have become a tempting target for at-
tacker.

2. MODEL ARCHITECTURE

2.1. Overview

It is very hard to explicitly point out what makes natural im-
ages look “natural” and CG ones look “unnatural.” We humans
have been “trained” by our encounters with many natural things
and scenes since we were born, so we can intuitively distinguish
which images were produced by computer. Some forensic re-
searchers have tried describing these intuitive feelings in terms
of specific properties [3, 4]. Others, such as Wu et al. [2], have
tried using statistical methods to distinguish natural images from
CG images. However, these approaches are problematic, require
lengthy experiments and do not sufficiently describe the essence
of the two kinds of images.
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Fig. 3: Design of encoder net (left) and decoder net (right).

To tackle this feature-finding problem, we use two au-
toencoders [7] with the same design but different weights
({EθEN

, DθDN
} and {EθECG

, DθDCG
}) to automatically ex-

tract latent features from natural image IN and CG image ICG.
They are trained to learn representations of the inputs and to re-
generate them with the same properties. To transform the latent
feature space of CG images into those of natural ones, we use
a transformer net TθT with five bottleneck residual blocks [8].
This block design reduces the number of parameters for the net-
work. Old information given by the skip connection combines
with new one created by the layers in a residual block are suitable
for transformation. Since our network is shaped like an “H,” as
illustrated in Fig. 2, we call it “H-Net.” In the evaluation phase,
the CG encoder EθECG

, the transformer TθT , and the natural de-
coder DθEN

transform CG input ICG into a natural-looking im-
age OT that is similar to natural image IN from the perspective
of a natural–CG image discriminator.

The encoder has four convolutional layers with 3× 3 kernels
and a stride of 1. Batch normalization [9] is used to deal with
high learning rates and the less careful initialization problem. Af-
ter batch normalization layers are exponential linear unit (ELU)
layers, which give better performance than traditional rectified
linear units (ReLUs), leaky ReLUs (LReLUs), and parametrized
ReLUs (PReLUs) [10]. To reduce the spatial size of the represen-
tation, we use 2× 2 average pooling layers, which have recently
come to be used instead of max pooling ones. In the decoder, the
convolutional layers are replaced with their counterparts: trans-
posed convolutional ones and two sub-pixel convolutional ones,
which have been reported to give better upscaling results than
previous approaches[11]. The detailed designs of the encoder



and decoder are shown in Fig 3.

2.2. Loss functions

Loss functions are used to optimize the model in the training
phase. Pixel-wise loss functions such as mean squared error
(MSE) ones are widely used but have limited capabilities for
images when measuring perceptual quality [12]. To overcome
this limitation, Dosovitskiy and Brox [13] used Euclidean-based
loss in feature space in combination with adversarial loss. An-
other approach is to use a perceptual loss function based on the
Euclidean distance between feature maps extracted from a VGG
network proposed by the Visual Geometry Group at the Univer-
sity of Oxford [14]. Ledig et al. combined both VGG loss and
adversarial loss in their super-resolution generative adversarial
network [15].

We use four loss functions:

1. MSE lossLMSE is only used to calculate the loss between
two feature maps, including high-level presentations en-
coded by the encoders and others extracted from the VGG-
19 network.

2. VGG loss LV GG, or perceptual loss, is the MSE loss of
features maps (of I1 and I2) extracted using the VGG-19
network: LV GG = LMSE(V GG(I1), V GG(I2)). VGG
loss represents the perceptual quality of generated images.

3. Adversarial loss LAdv is the binary cross entropy loss be-
tween two labels: one is from the discriminator and the
other is the destination label. Details of the discriminator
are discussed in section 2.3.

4. Total loss LTol is the combination of LV GG and LAdv ,
formulated as equation 1. It represents the quality of im-
ages generated by natural decoder DθEN

. In our experi-
ments, we set the hyper-parameter α to 5×10−3. Gradient
back propagation is discussed in section 2.3.

LTol = (1− α)LV GG + αLAdv (1)

2.3. Discriminator

Unlike the original GAN proposed by Goodfellow et al. [6], we
use a pre-trained discriminator for training our H-Net. It can be
any black-box spoofing detector. Since it is unlikely for attackers
in the wild to have full access to the spoofing detectors in authen-
tication systems, it is more realistic to assume that the spoofing
detector used as the discriminator used for training is a “black-
box” rather than a differentiable white-box discriminator. In our
experiments, the use of a “traditional” discriminator in the GAN,
such as the one used by Ledig et al. [15], results in very poor
performance. This is because performing only convolution is not
enough for extracting the features needed for distinguishing nat-
ural images from CG images. Hence, we borrow the method of
Wu et al., which focuses on statistical features from histograms
of differential images [2]. We use a neural net instead of Fisher’s
linear discriminant analysis (FLDA) as Wu et al. did because

we can easily run the discriminator in parallel with H-Net in the
training phase without using an additional framework.

We need to compute the gradient of total loss LTol in equa-
tion 1 with respect to the parameters in the generator. However,
since the discriminator is a black-box, the adversarial loss LAdv
is not differentiable. One possible approach is to approximate it
on the basis of the gradient of the VGG loss LV GG only. How-
ever, the adversarial loss makes no contribution to the gradient.
Therefore, we approximate the total gradient as follows:

gradLTol
=

(1− α)LV GG + αLAdv
LV GG

gradLV GG
(2)

2.4. Training and evaluation

H-Net is trained using two sets of images: natural images and
CG ones. The two sets do not have to be pairwise correlated,
which means that they may contains images of different people
with different poses or facial expressions. This loose condition
comes from reality; i.e., it is very hard for an attacker to find a
large number of natural–CG image pairs with similar perceptual
content.

In training, four optimization processes are performed se-
quentially:

Step 1: Training the natural autoencoder {EθEN
, DθDN

}
with natural image IN by minimizing equation 3.

argmin
θEN

,θDN

LTol[DθDN
(EθEN

(IN )), IN ] (3)

The output image ON = DθDN
(EθEN

(IN )) must satisfy two
conditions: (1) have the same perceptual content as input IN and
(2) be classified as a natural image by the discriminator.

Step 2: Training the CG autoencoder {EθECG
, DθDCG

}
with CG image ICG by minimizing equation 4.

argmin
θECG

,θDCG

LV GG[DθDCG
(EθECG

(ICG)), ICG] (4)

In this step, the discriminator loss is not necessary. The only
requirement is that output image OCG be perceptually similar to
ICG.

Step 3: Training the transformer net TθT to convert latent
features encoded by CG encoder EθECG

into ones that have the
same distribution of features as those extracted by the natural
encoder EθEN

. As mentioned above, due to the lack of pair-
wise correlated IN and ICG pairs, it is very hard to minimize the
loss between EθEN

(IN ) and TθT (EθECG
(ICG)). An acceptable

solution is feeding IN into both networks and minimizing the
features they encode, formulated in equation 5.

argmin
θT

LMSE [EθEN
(IN ), TθT (EθECG

(IN ))] (5)

Step 4: Training the CG transformation path, which in-
cludes CG encoderEθECG

, transformer TθT , and natural decoder
DθDN

. As in the first step, total loss must be used to ensure
that transformed outputOT = DθDN

(TθT (EθECG
(ICG))) is not

classified as a CG image. The lack of pairwise correlated IN and



ICG pairs in Step 3 appears here as well, so we need to replace
IN with ICG in equation 6.

argmin
θECG

,θT ,θDN

LTol[DθDN
(TθT (EθECG

(ICG))), ICG] (6)

Doing this could also bring back some “balance” from the effect
of IN on CG encoder EθECG

in step 3.
When we compute the transformed output from the CG input

in the evaluation phase, we use a step similar to step 4 in the
training phase:

OT = DθDN
(TθT (EθECG

(ICG))) (7)

We do not use the tanh function to scale the output images be-
cause of the resulting low contrast. To avoid extreme values with
resulting abnormal color spots, the pixel intensities are restricted
to the range [−1.8, 1.8] before being denormalized to [0, 255].

3. EVALUATION

In facial image forensic research, there was no standardized
dataset used for mutual comparison. Each research group tended
to have its own datasets. Therefore, we had to combine pieces
from five different sources to create three datasets used for eval-
uation (see Table 1). All images were resized to 256 × 256 pixel
resolution. We tested H-Net on two scenarios: (1) the attacker
knows the dataset used for training the spoofing detector, and
(2) the attacker has no knowledge of the training dataset. Three
spoofing detectors were used: Wu et al.’s [2], Peng et al.’s [3],
and Nguyen et al.’s [4]. Note that only Wu et al.’s spoofing de-
tector was used as a discriminator for training H-Net; the other
spoofing detectors were unseen by the attacker. Moreover, in Wu
et al.’s one, we used FLDA for classification as in the authors’ re-
port. We compared both the accuracies and detection rates of the
three spoofing detectors. Let nTP and nTN be respectively the
number of images correctly classified as CG or natural, nFN be
the number of CG or transformed images misclassified as natural
ones, and N be the total number of images. Accuracy is defined
as sum of nTP and nTN over N : nTP+nTN

N . The detection rate
represents the ability of the spoofing detector to detect positive
items: nTP

nTP+nFN
.

3.1. Scenario 1: Attacker knows training dataset of spoofing
detector

We trained both spoofing detectors and H-Net on dataset 1. We
then evaluated them on all datasets to see if the images trans-
formed by H-Net could avoid detection by these pre-trained
spoofing detectors. Comparisons of sample images before and
after transformation are shown in Figs. 4 and 5. As shown in
Table 2, the detection rates significantly decreased when the CG
images were transformed, especially for Wu et al.s and Peng et
al.’s methods.

Although the method of Nguyen et al. had the lowest per-
formance on dataset 1, its detection rate after transformation was
the highest (nearly 50%). On datasets 2 and 3, its performance
before transformation was very poor; it was better after trans-
formation. Our analysis shows that this method was over-fitted

Fig. 4: Original images (top) and transformed ones (bottom)
from dataset 1. Color and brightness of images in second
row were normalized by H-Net as learned from training data.
First two images demonstrate good transformation in perception.
Contrast of third image was improved. In last image, skin color
was whitened a bit undesirably.

Fig. 5: Original images (top) and transformed ones (bottom)
from dataset 2 (left) and dataset 3 (right). Brightness of first
two image was unexpectedly reduced due to bright background.
Although grayscale images were given skin-like color, they can
easily be converted back into grayscale.
c©Copyright University of Basel. c©Copyright 2003-2005 Mas-

sachusetts Institute of Technology. All Right Reserved.

for dataset 1 which had high-quality CG images. It had a ten-
dency to classify fine-texture images as CG ones. On datasets 2
and 3, which did not have fine-texture CG images, it classified
almost of the images as natural ones. Because of the spoofing
detector’s preset threshold, some transformed images had good
enough texture to be classified as CG ones, which increased the
detection rate. Therefore, if an attacker tries to avoid detection
by this spoofing detector, he or she may be successful the first
time without the help of H-Net.

3.2. Scenario 2: Attacker does not know training dataset of
spoofing detector

Unlike in the first scenario, we trained the H-Net and the spoofing
detectors on difference datasets (switched between dataset 1 and



Table 1: Three datasets used in evaluation.

No. Components Size Description

1 Dang-Nguyen et al. [16]
CG: 240

Nat: 240

40 very realistic CG images collected from Web plus
200 good quality CG images extracted from PES 2012 soccer game
240 natural images retrieved from Internet

2 Basel (CG) [17]
Caltech99 (Nat) [18]

CG: 270
Nat: 270

3D face scans and rendered images from Basel Face Model
Natural images from Caltech Faces 1999 dataset

3 MIT (CG - Grayscale) [19]
MS-Celeb-1M (Nat) [20]

CG: 3236
Nat: 3236

CG images extracted from MIT CBCL dataset
Natural images selected from MS-Celeb-1M cropped version

Table 2: Scenario 1 - Accuracies (%) and detection rates (%) of three spoofing detectors on three datasets before and after performing
transformation on CG parts.

Spoofing detectors
Dataset 1 Dataset 2 Dataset 3

Accuracy Detection rate Accuracy Detection rate Accuracy Detection rate
Before After↓ Before After↓ Before After↓ Before After↓ Before After↓ Before After↓

Wu et al. [2] 92.71 48.33 93.33 0.00 83.89 55.37 93.33 36.30 64.65 56.83 35.51 19.90
Peng et al. [3] 90.63 52.71 92.08 16.25 59.26 19.26 97.41 17.41 50.20 13.58 100.00 26.79
Nguyen et al. [4] 83.54 64.79 87.08 48.33 17.78 32.78 0.00 30.00 32.31 63.23 0.49 62.11

2), and evaluated them on dataset 3.

3.2.1. Scenario 2.1: H-Net was trained on dataset 1, spoofing
detectors were trained on dataset 2

The evaluation results on dataset 3 are shown in Table 3. The
transformed images again significantly reduced the detection
rates of all spoofing detectors, especially those of Wu et al. and
Peng et al., which were nearly 0%. Nguyen et al.’s method had
a detection rate of around 50%, down from nearly 100%, mean-
ing that the attacker had a 50–50 chance of avoiding detection by
this spoofing detector. In this case, this spoofing detector learned
that low-texture images had a high probability of being CG ones,
which was opposite to its knowledge in scenario 1. Therefore,
after transformation on dataset 3, the textures of the CG images
were improved so that the images would likely be classified as
natural ones. This also clarifies the contrasting changes in the
detection rate in the first scenario on dataset 1 vs. datasets 2 and
3.

Table 3: Scenario 2.1 - Evaluation results on dataset 3.

Spoofing detectors Accuracy Detection rate
Before After Before After

Wu et al. [2] 56.38 6.46 100.00 0.19
Peng et al. [3] 92.32 42.57 100.00 0.49
Nguyen et al. [4] 96.72 71.54 99.20 48.89

3.2.2. Scenario 2.2: H-Net was trained on dataset 2, spoofing
detectors were trained on dataset 1

The evaluation results on dataset 3 are shown in Table 4. Before
transformation, Peng et al.’s method seemed to classify all input
as CG. After transformation, its decision was changed that all
transformed CG images were classified as natural ones, therefore

both the accuracy and the detection rate were around 0. Nguyen
et al.’s method had the same behavior as in the first scenario as
expected. The performance of Wu et al.’s method was increased
after transformation, which was different from the two above sce-
narios. A possible explanation for this phenomenon is that the
training dataset used for H-Net is small and monotonous. As the
result, H-Net did not have enough knowledge about other kinds
of CG images.

Table 4: Scenario 2.2 - Evaluation results on dataset 3.

Spoofing detectors Accuracy Detection rate
Before After Before After

Wu et al. [2] 64.65 82.73 35.51 71.66
Peng et al. [3] 50.20 0.20 100.00 0.00
Nguyen et al. [4] 32.31 41.27 0.49 18.17

4. CONCLUSION AND FUTURE WORK

The performances of both H-Net and detectors are depended on
the quality of training datasets. However, in most cases, over
50% of the CG images transformed using our H-Net avoided de-
tection by three state-of-the-art spoofing detectors. Since the fa-
cial features were preserved, facial recognition was unaffected.
This means that the network can be trained using a black-box
discriminator that cannot perform back propagation. However,
H-Net has some limitations, especially when up to 50% trans-
formed images are still separable from natural ones. Future work
will mainly focus on this limitation as well as finding better
datasets. We will also evaluate the local substitute method to
perform black-box attacks [21]. Other issues to be addressed
are solving the black skin-color problem, dealing with larger im-
ages, and reducing network size to enable it to work smoothly
with video frames in real time.
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