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Crystallisation is also an important separation method for 
pharmaceutical manufacturing due to the dominance 
of solid drug products sold by the industry; continuous 
crystallisation methods can offer greater process fl exibility 
and product quality over batch crystallisations (11), which 
have issues with batch-to-batch variability. Membrane-
assisted crystallisation methods (12) and simulated moving 
bed (SMB) chromatography (13) have also been integrated 
into CPM campaigns to attain target API purities in fi nal 
product streams.
Screening of promising candidate process confi gurations 
is important in the development of CPM routes (14, 15) 
Ultimately, any candidate process must be technologically 
feasible and economically viable. Process modelling, 
simulation and technoeconomic optimisation of CPM 
processes can be utilised to establish cost-effective process 
confi gurations (16, 19). Nonlinear optimisation of upstream 
CPM plants with integrated conceptual continuous LLE and/
or crystallisation stages can elucidate optimal operating 
parameters corresponding to minimum total costs.
Process modelling and optimisation case studies of 
candidate APIs is useful in highlighting CPM benefi ts for 
experimentally demonstrated CPM routes. This paper 
describes the total cost minimisation via nonlinear 
optimisation of upstream CPM plants for four APIs: 
(S)-warfarin, an anticoagulant, cyclosporine, an 
immunosuppressant, paracetamol, the popular analgesic, 
and aliskiren, an antihypertensive. First, experimental 
demonstrations of the continuous processes for these APIs 
from the literature and the modelling and optimisation 
methodologies implemented are described. We then 
present a comparative analysis of minimum total costs for 
different separation process confi gurations, elucidating 
optimal confi gurations for each API. A critical discussion 
of the methodologies and results and the utility of process 
modelling and optimisation for screening candidate CPM 
processes is then provided as an outlook on this vibrant 
research fi eld.

PROCESS MODELLING AND OPTIMISATION

(S)-warfarin: continuous fl ow synthesis and Liquid-Liquid 
Extraction (LLE) 
The process model for the CPM of (S)-warfarin considers 
both continuous fl ow synthesis and conceptual continuous 
separation stages. The continuous fl ow synthesis of (S)-
warfarin features a single-step synthesis followed by a LLE 

INTRODUCTION

Continuous Pharmaceutical Manufacturing (CPM) has been 
widely recognised for its potential for signifi cant operating 
and economic benefi ts to manufacturing fi rms over 
traditionally implemented batch methods (1, 3). Numerous 
demonstrations of active pharmaceutical ingredient (API) 
continuous fl ow syntheses and a focus on process modelling (4) 
indicate a keen interest of judicious industrial transition from 
batch to CPM methods. While several end-to-end CPM 
campaigns (5, 7) are documented, numerous challenges 
remain in integrated continuous separations, (8) presenting 
a bottleneck to realising the benefi ts of fully continuous 
manufacturing in the pharmaceutical industry. Signifi cant 
research efforts in continuous separation technologies are 
addressing this issue.
Continuous purifi cations and separations following continuous 
API synthesis are essential in obtaining drug substances (DS) in 
their desired fi nal form in integrated CPM campaigns.  Liquid-
liquid extraction (LLE) is often employed to purify reactor effl uent 
streams prior to subsequent operations, and can be implemented 
in continuous mode for pharmaceutical manufacturing (9, 10).

Technoeconomic evaluation of separation solvents 
and technologies for Continuous Pharmaceutical 
Manufacturing (CPM) of four key Drug Substances (DS)

Continuous Pharmaceutical Manufacturing (CPM) has the potential 
to revolutionise the pharmaceutical industry via operating and 
economic benefits over traditional batch techniques. Establishing 
efficient continuous separation processes following continuous flow 
syntheses of active pharmaceutical ingredients (APIs) is essential to 
obtain the desired physical form of drug substance (DS) and 
successful CPM implementation. Process modelling and optimisation 
are essential tools for rapid screening of design alternatives to 
establish cost optimal process configurations for separation unit 
operations in integrated upstream CPM plants. This paper presents 
the technoeconomic optimisation for total cost minimisation for the 
continuous liquid-liquid extraction (LLE) of (S)-warfarin and the 
continuous mixed suspension mixed product removal (MSMPR) 
crystallisation of cyclosporine, paracetamol and aliskiren. 
Optimisation of continuous LLE of (S)-warfarin compares candidate 
separation solvents and operating temperatures with solvent feed 
rate and LLE tank residence time as decision variables; optimisation of 
continuous crystallisation processes compares the number of 
implemented crystallisers with MSMPR operating temperatures and 
residence times as decision variables. Capital (CapEx), operating 
(OpEx) and total expenditures are compared for different designs, 
elucidating cost-optimal configurations for each API with their 
attained recoveries and respective operating conditions. This work 
demonstrates the value of total cost minimisation via nonlinear 
optimisation prior to expensive experimental investigations and the 
potential of the economic benefits attainable via CPM for these APIs.

ABSTRACT

KEYWORDS: Continuous Pharmaceutical Manufacturing (CPM), Technoeconomic Optimisation,
Active Pharmaceutical Ingredients (APIs), Separations, Process Design.
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                               (3)

and constraints for continuous MSMPR crystallisation of 
cyclosporine, paracetamol and aliskiren are

            (4)

            (5)

            (6)

CapEx is the sum of battery limits installed costs, working 
capital and construction; OpEx is the sum of materials, utilities 
and waste handling costs (3). Annual operation of 8,000 hours 
per year is considered. All equipment capacities and material 
requirements are scaled to account for process (reaction and 
separation) ineffi ciencies to meet a plant capacity of 100 
kg per annum. All assumptions associated with the nonlinear 
objective function formulation are summarised in Table 1.

COMPARATIVE TECHNOECONOMIC ANALYSIS

(S)-warfarin 
Figure 2a shows attained API recoveries and the 
corresponding optimal operating parameters for each LLE 
solvent for CPM of (S)-warfarin. Generally, the higher the API 
solubility in the (pure) LLE solvent, the higher the attainable 
recovery, as expected. There are some exceptions to this 
trend due to the interconnected dependence of recovery on 
tank residence time and API solubility in the product (organic) 
phase, which is a function of temperature (TLLE), and product 
phase composition. Optimum LLE tank residence times (τLLE) 
also vary across different LLE solvent choices due to its affect 
on LLE stage effi ciency (21). In all cases, the LLE solvent feed 
rate (r) is pushed to the lower bound (r = 1) as defi ned in 
the nonlinear objective function constraints (eqs. 2 and 3). 
The amount of fresh LLE solvent used directly affects OpEx 
components (materials, utilities and waste handling) and thus 

stage (Figure 1). Nucleophilic addition of 4-hydroxycoumarin 
to benzalacetone with trifl uoroacetic acid (TFA) and a chiral 
amine catalyst at 75 °C in 1,4-dioxane occurs in a plug 
fl ow reactor (PFR), with a reported conversion of 61% (20). 
Aqueous HCl (10% w/w) is added to the reactor effl uent prior 
to LLE (20). Here, we comparatively evaluate candidate 
separation solvents for a conceptual single-stage continuous 
LLE process. Candidate solvents must allow rapid phase 
splitting upon LLE solvent addition to the PFR effl uent and 
be considered acceptable with respect to EHS criteria. We 
consider ethyl acetate (EtOAc), isopropyl acetate (iPrOAc), 
isobutyl acetate (iBuOAc), 1-heptanol (HepOH), 1-octanol 
(OcOH) and n-heptane (nHep) as candidate LLE solvents.

The model for continuous LLE is the same as described in our 
recent technoeconomic optimisation study (16). Continuous 
LLE processes are modelled as single-stage mixer-settlers. 
In the continuous LLE unit, API transfers into the dispersed 
(organic) product phase from the process mixture. Detailed 
mass transfer correlations are used for accurate description 
of API recovery into the product phase (21). Attainable API 
recoveries from LLE depend upon the operating temperature 
(TLLE), the LLE tank residence time (τLLE) and the LLE solvent-
to-feed ratio by mass (r). We consider LLE operating 
temperatures of 20, 40 and 60 °C for varying tank residence 
times and solvent feed rates. Theoretical phase compositions 
and mixture API solubilities are predicted via extensive UNIFAC 
modelling. Stage effi ciencies as a function of τLLE allow 
calculation of API concentrations in the product phase.

Cyclosporine, paracetamol and aliskiren: continuous cooling 
crystallisation
The process models for CPM of cyclosporine, paracetamol 
and aliskiren consider continuous crystallisation using mixed 
suspension mixed product removal (MSMPR) crystalliser 
cascades. MSMPR crystallisers are continuous stirred tank 
designs easily adapted from existing batch vessels and 
do not suffer from rapid fouling problems associated with 
tubular designs. MSMPR cascades have been experimentally 
demonstrated for cyclosporine, (22) paracetamol (23) and 
aliskiren (Figure 1)(24). A clear mother liquor feed stream 
containing dissolved API enters the fi rst crystalliser, with the 
product mother liquor entering the subsequent crystalliser; 
product magma is withdrawn from the fi nal crystalliser in series. 

The MSMPR process model describes crystal population 
balances, crystallisation kinetics and mass balance equations 
(22-24). The solution of the process model for a desired plant 
capacity is described in our previous work (25). Process 
performance is a function of the number of crystallisers 
in the cascade (N), residence times (τi) and operating 
temperatures (Ti) of each crystalliser. We explicitly consider 
cascades of N = 1, 2 and 3 crystallisers for varying crystalliser 
residence times and temperatures. 

Nonlinear optimisation problem formulation 
The objective of the nonlinear optimisation problem is total 
cost minimisation. Total costs are calculated as the sum of 
capital (CapEx) and operating (OpEx) expenditures over the 
plant lifetime (t), discounted by the interest rate (y). 

            (1)

Constraints on the total cost objective function for the 
continuous LLE of (S)-warfarin are

            (2)

Figure 1. (a) Continuous fl ow synthesis and liquid-liquid extraction (LLE) of (S)-
warfarin, (20) (b) Continuous MSMPR cooling crystallisation of cyclosporine, 
(22) paracetamol (23) and aliskiren (24).

Table 1. Economic analysis parameters for total cost objective 
function formulation.
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This paper presents the implementation of conceptual process 
modelling and optimisation of continuous LLE for (S)-warfarin 
and MSMPR crystallisation for cyclosporine, paracetamol and 
aliskiren, considering suitable constraints on tank residence 
times and LLE solvent feed rates for (S)-warfarin, and on 
crystalliser residence times and operating temperatures for 
cyclosporine, paracetamol and aliskiren. Nonlinear optimisation 
results show that isobutyl acetate (iBuOAc) operating at 
60 °C is the best LLE solvent for CPM of (S)-warfarin fed at a 
solvent-to-feed rate (r, mass basis) of 1. For the crystallisation 
of cyclosporine, paracetamol and aliskiren, implementation 
of one crystalliser and low operating temperatures attains the 
lowest total costs for the plant capacity considered (100 kg 
per annum). Plant designs and technoeconomic evaluation 
results presented here merit further corroboration via tailored 
experimental campaigns under the prescribed parameters (or 
even wider intervals thereof). This study illustrates the value of 
modelling and optimisation studies for process confi guration 
screening, before costly experimental investigations are 
undertaken for the development of continuous plants and their 
implementation in industrial practice.
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for (a) (S)-warfarin and (b) cyclosporine, paracetamol and aliskiren.
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