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Abstract
A number of candidate genes for reading and language impairment have been replicated, primarily in samples of children 
with developmental disability or delay, although these genes are also supported in adolescent population samples. The 
present study used a systematic approach to test 14 of these candidate genes for association with reading assessed in late 
adulthood (two cohorts with mean ages of 70 and 79 years). Gene-sets (14 candidates, axon-guidance and neuron migration 
pathways) and individual SNPs within each gene of interest were tested for association using imputed data referenced to 
the 1000 genomes European panel. Using the results from the genome-wide association (GWA) meta-analysis of the two 
cohorts (N = 1217), a competitive gene-set analysis showed that the candidate gene-set was associated with the reading index 
(p = .016) at a family wise error rate corrected significance level. Neither axon guidance nor neuron migration pathways were 
significant. Whereas individual SNP associations within CYP19A1, DYX1C1, CNTNAP2 and DIP2A genes (p < .05) did not 
reach corrected significance their allelic effects were in the same direction as past available reports. These results suggest 
that reading skill in normal adults shares the same genetic substrate as reading in adolescents, and clinically disordered 
reading, and highlights the utility of adult samples to increase sample sizes in the genetic study of developmental disorders.

Keywords Dyslexia · Neuronal migration · Axon guidance · Reading ability · Lothian birth cohort

Introduction

Reading performance is highly heritable (Bates et al. 2004; 
Hayiou-Thomas et al. 2010), making the genetic study of 
this skill important for understanding the causes of disorders 
in these abilities (Fisher and DeFries 2002). A number of 
candidate genes influencing reading and language impair-
ment have been discovered (e.g., Francks et al. 2004; Meng 
et al. 2005a, b) and have replicated in population samples 

of adolescents and young adults (Bates et al. 2010; Luciano 
et al. 2007; Scerri et al. 2011). However, it is known that 
larger samples are required to successfully search the 
genome for complex trait variants (Price et al. 2015) if 
desired outcomes such as substantive polygenic risk scores 
(Luciano et al. 2017) and new gene discoveries important 
for understanding biological pathways (Wang et al. 2010) 
are to be made. Child samples are, however, typically not on 
the scale required. One possible route forward in the genet-
ics of reading disorder would be to utilise samples of older 
adults to facilitate large GWA studies which could inform 
developmental disorders. A barrier to large-scale investment 
in this approach is that it is currently unknown whether read-
ing disorder in adults follows the same genetic pattern as in 
children, or even if genes associated with reading replicate 
in older adults, with many years of practice at the skill. To 
validate this approach, here, we tested association between 
14 candidate genes—implicated in reading impairment—
and reading ability in two elderly cohorts.

There are no longitudinal studies specifically on reading 
skill spanning childhood past young adulthood, but varia-
tion in normal cognitive ability has been shown to be stable 
over the life course (Deary et al. 2000). Further, measures of 
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reading comprehension taken in high-school have been shown 
to explain ~ 80% of variance in adult reading, measured 21 or 
26 years later (Smith 1993). This suggests that correlated 
measures of reading skill would be similarly predictive over 
time. Children with reading impairment can improve with 
intervention (Foorman et al. 2003), and whereas strategies 
to compensate for specific weaknesses can develop, read-
ing impairment does not completely disappear in adulthood 
(Lefly and Pennington 1991). Nonlinear latent growth models 
showed that a broad reading and writing index had the largest 
rate of change (faster growth) between ages 2 and 19 years 
and the second lowest change (slower decline) across the ages 
20–75 years compared to other cognitive abilities (McAr-
dle et al. 2002). Variability in acquisition of reading during 
childhood is influenced by genetic and environmental fac-
tors although maximal reading and writing performance is 
not achieved until the mid-20s (McArdle et al. 2002). Thus, 
genetic effects which for reading skill increase during develop-
ment and are mostly stable across time (Hart et al. 2013) might 
be greatest once this maximal attainment is reached. It may be, 
then, that the genetic study of reading ability in adults is a more 
(rather than less) sensitive approach for identifying genes.

Genetic association studies of reading traits have primar-
ily been performed in samples of children, adolescents and 
young adults, particularly those with dyslexia. A number of 
candidate genes for reading impairment have been discovered, 
with successful replications in independent samples (Scerri 
and Schulte-Koene 2010), including reading measures col-
lected in childhood and adolescent general-population samples 
(Luciano et al. 2007; Paracchini et al. 2011). We predicted that 
such candidate genes would show association with reading in 
older adults. As a starting point we included 11 genes that were 
recently exon sequenced and systematically tested for associa-
tion with developmental dyslexia by Matsson and colleagues 
(2015). Of these, seven—CYP19A1, DCDC2, DYX1C1, 
GCFC2 (or C2orf3), KIAA0319, MRPL19, and ROBO1—were 
found by initial linkage evidence which then led to associations 
with specific genetic variants that were replicated in multiple 
independent studies (see reviews by Raskind et al. 2012; Scerri 
and Schulte-Koene 2010). Table 1 indicates the level of exist-
ing support for these candidate genes based on positive and 
null associations between SNPs in these genes and dyslexia/
reading-related measures. The four additional genes—DIP2A, 
PRMT2, PCNT, and S100B—located in a region on 21q22.3 
were identified through segregation analysis in a Dutch family 
with developmental dyslexia (Poelmans et al. 2009). Of these, 
S100B has since received independent support in German 
families as a developmental dyslexia candidate gene (Matsson 
et al. 2015). Two further genes—CNTNAP2 and CMIP—were 
part of a dyslexia candidate gene set tested for replication by 
Carrion-Castillo et al. (2017) because they had been associated 
with reading measures in at least two independent samples. 
Finally, KIAA0319L has been the focus of dyslexia association 

studies (Couto et al. 2008) and lies in an independently rep-
licated linkage region (Scerri and Schulte-Koene 2010). We 
thus examined a total of 14 candidate genes.

To test association, we focussed on individual SNPs 
within these genes previously tested for association with 
reading dis(ability) and gene-set analysis which included (1) 
the 14 candidate genes, (2) genes within the axon guidance 
pathway, and (3) genes within the neuron migration pathway. 
The axon guidance (GO:0007411: “chemotaxis process that 
directs the migration of an axon growth cone to a specific 
target site”) and neuron migration (GO:0001764: “move-
ment of an immature neuron from germinal zones to specific 
positions where they will reside as they mature”) pathways 
are theorised to be prominent biological pathways involved 
in reading impairment (Poelmans et al. 2011) based on the 
function of the dyslexia candidate genes.

Materials and methods

Participants

The Lothian Birth Cohort of 1936 (LBC1936)

This cohort, born in 1936, mostly resided in the Edinburgh 
region of Scotland and consisted of 1091 community dwell-
ing participants (49.8% women) (Deary et al. 2012, 2004). 
They were aged approximately 70 years at collection of the 
cognitive phenotypes used in this study and were relatively 
healthy at the time of testing; none had dementia. The sam-
ple score higher on childhood intelligence and have higher 
socio-economic status (SES) than the general population 
(Deary et al. 2012). Blood was obtained by trained nurses 
to extract DNA for genotyping at the time of their clinical 
visit. Ethics permission was obtained from the Multi-Centre 
Research Ethics Committee for Scotland (MREC/01/0/56), 
the Lothian Research Ethics Committee (LREC/2003/2/29). 
Written informed consent was given by all participants.

The Lothian Birth Cohort of 1921 (LBC1921)

This cohort, born in 1921, mostly resided in the Edinburgh 
region of Scotland and consist of 550 relatively healthy 
community dwelling participants (57.4% women) (Deary 
et al. 2004, 2012). They were aged approximately 79 years 
at collection of the cognitive phenotypes used in this study; 
exclusions were made for dementia. Like LBC1936, this 
sample differed from the general population in childhood 
intelligence and SES. Blood was obtained by trained nurses 
to extract DNA for genotyping at the time of their clini-
cal visit. Ethics permission was obtained from the Lothian 
Research Ethics Committee (LREC/1998/4/183). Written 
informed consent was given by all participants.
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Genotyping

DNA, extracted from blood samples, was genotyped on the 
Illumina 610-Quadv1 whole-genome SNP array (Illumina, 
San Diego, CA, USA) by the Genetics Core Laboratory at the 
Wellcome Trust Clinical Research Facility, Western General 
Hospital, Scotland. Standard genotype quality control proce-
dures were performed, including checks for gender discrep-
ancies, individual relatedness, and non-Caucasian ascent (for 
more details see, Houlihan et al. 2010). Necessary exclusions 
resulted in a final sample of 1005 individuals. Population strat-
ification was controlled using the first four factors extracted 
from a Multidimensional scaling analysis (Li and Yu 2007) 
of the identity-by-state distance matrix, as previously detailed 
for these cohorts (Davies et al. 2011). These were used as 
covariates in the genetic association analyses. Imputation to 
the 1000G European reference panel (phase 1 v3) was done 
using Minimac (van Leeuwen et al. 2015). Only SNPs with a 
minor allele frequency greater than 5% and with an imputation 
quality score  (r2) greater than .30 were retained for analysis.

Measures

LBC1936

Two word recognition tests—National Adult Reading Test, 
NART (Nelson and Willison 1991); Wechsler Test of Adult 
Reading, WTAR (Corporation 2001)—were administered. 
Both of these tests require the correct pronunciation of low-
frequency irregular words and therefore scores on both tests 
are primarily used as estimates of pre-morbid IQ, that is, 
they are not indexing the functioning of the lexical stor-
age system per se (Coltheart et al. 2001), but also index 
vocabulary, which is typically larger in people with higher 
IQs (Dykiert and Deary 2013). To produce a measure of 
reading skill independent of IQ, we ran a principal com-
ponents analysis on a battery of tests: a general cognitive 
ability test (a modified version of the Moray House Test 
(MHT) no. 12 (Education 1949)) which examined a vari-
ety of mental abilities (e.g., reasoning, arithmetic, spatial, 
verbal); two nonverbal IQ tests (Wechsler Matrix Reason-
ing, Wechsler Block Design; (Wechsler 1998)); a phone-
mic verbal fluency test (the summed score of trials requir-
ing production of words starting with the letters C, F and 
L; Lezak 2004); a self-reported measure of book reading 
frequency (on a five-point scale from “every day or about 
every day” to “less than once a year/never,”), and NART 
and WTAR. We selected book reading in preference to other 
types of reading (e.g., newspaper) because in the National 
Adult Literacy survey of almost 25,000 adults, it was more 
predictive of proficient prose and document literacy than 
other forms of reading content (Smith 1996). Based on the 
scree plot, two components had eigenvalues greater than 1; 

an orthogonal (varimax) rotation was used to obtain maxi-
mal separation of the reading from the general cognitive 
ability component. The first component, explaining 38% of 
variance, was the general cognitive ability factor (loadings 
above 0.73 on MHT, Matrix Reasoning, and Block Design 
and loadings of 0.54 for the NART and WTAR). The second 
component explained 30% of variance, and assessed read-
ing independent of IQ. Frequency of book reading loaded 
highly (0.77) on this component, as did the NART (0.72 
loading) and WTAR (0.73), and, to a lesser extent, verbal 
fluency (0.51) and MHT (0.44).This indicated that reading 
ability could be assessed independent of general cognitive 
ability. Component scores for the reading component were 
calculated using a regression approach for those participants 
with complete data and with genotyping, giving a sample of 
879 (436 male) with a mean age of 69.5 years (SD = 0.84).

A previous magnetic resonance imaging study in this 
cohort showed that a verbal executive processing factor partly 
underlies verbal fluency scores and was associated with a 
major language-related white matter tract (Hoffman et al. 
2017). We therefore calculated such an index by obtaining 
residual scores from the regression of verbal fluency scores 
on a standardised composite measure of the NART and 
WTAR (that is, removing word storage variation from the 
verbal fluency scores to tap executive processing variation 
related to their access). Missing data resulted in a sample 
of 1000 (507 male) with genotyping data with a mean age 
of 69.6 years (SD = 0.84) for this measure. Given that ver-
bal executive processing has not been the focus of previous 
genetic studies, we treat these analyses as exploratory and 
their results are shown in the online supporting material.

LBC1921

Members of this sample had also completed the NART (but 
not the WTAR), the verbal fluency test, and MHT. In addi-
tion, they had completed the Raven’s Standard Progressive 
Matrices (Raven et al. 1977), a measure of general nonverbal 
reasoning ability. Roughly four years later, a self-reported 
measure of lifetime reading (books, newspaper, and maga-
zines) and writing was gathered from a retrospective ques-
tionnaire. The lifetime reading component extracted from 
this questionnaire was primarily defined by book reading.

To obtain a measure of reading ability independent of gen-
eral cognitive ability, a principal components analysis of each 
of these measures was performed using varimax rotation, with 
two components retained based on their eigenvalues being 
greater than 1. The first component, explaining 48% of vari-
ance, tapped general cognitive ability, loading 0.90 and 0.87 
on MHT and Raven’s, respectively. As expected, NART and 
verbal fluency also loaded substantially on this general compo-
nent with respective loadings of 0.75 and 0.54, with the rotated 
component score approach allowing us to control for this 
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g-loaded component of the tests. The second orthogonal com-
ponent, explaining 24% of shared variance, was defined most 
strongly by lifetime reading (0.92), NART and verbal fluency 
(loadings of 0.40), and thus tapped reading skill in this sample. 
Reading component scores were produced for 365 individuals 
due to a reduced sample for the lifetime reading component; 
338 (138 male) with a mean age of 79.1 years (SD = 0.56) had 
genetic data. A verbal executive processing index was created 
from residual scores obtained from the regression of verbal flu-
ency on standardised NART. For this supplementary analysis, 
scores were available for 503 (208 male) genotyped individuals 
with a mean age of 79.1 years (SD = 0.6).

Statistical analyses

Genome-wide SNP association analysis was performed using 
mach2qtl (Li et al. 2009) under an additive model, and con-
trolling for age, gender, and the first four population stratifica-
tion components. Analyses were conducted separately in the 
LBC1936 and LBC1921 cohorts and the results meta-analysed 
using a weighted inverse variance method in METAL (Willer 
et al. 2010). Genome-wide SNP association results were used to 
evaluate the over-representation of significant associations in an 
omnibus test of the 14 candidate genes as a gene set; follow-up 
analyses were performed for each individual gene. Further, two 
biological pathways—neuron migration (containing 103 genes) 
and axon guidance (containing 203 genes)—were tested for 
overrepresentation of significant associations. Relevant genes 
in these pathways (defined by respective GO:0001764 and 
GO:0007411 terms) were downloaded from the gene ontology 
database, http://amigo .geneo ntolo gy.org/amigo . Gene set tests 
(i.e., candidate gene set, neuron migration, axon guidance) were 
performed in MAGMA (de Leeuw et al. 2015) using a competi-
tive gene-set approach, which, in essence, tests whether there is 
greater association of SNPs in the specified gene set compared 
to other genes. By default, MAGMA conditions the gene set on 
gene size, gene density (relative level of linkage disequilibrium 
between SNPs) and the inverse of the mean minimum allele 
count in the gene (to guard against reduced power for those 
SNPs with low frequency). SNPs within a gene are defined by 
the transcription start and stop sites of that gene. Because our 
gene sets overlapped, Bonferroni correction for multiple testing 
was deemed too conservative. Instead, in MAGMA, we estab-
lished a family-wise error rate corrected alpha level (p < .017) 
empirically using 20,000 permutations—this large number of 
permutations was needed because the corrected p value was 
close to the significance level.

The 14 candidate genes contained 9225 SNPs, 62 of which 
have been previously associated with reading ability/disabil-
ity (Becker et al. 2014; Carrion-Castillo et al. 2017; Couto 
et al. 2008; Paracchini et al. 2011; Poelmans et al. 2011), 
and included variants identified through Fluorescent In Situ 
Hybridization and SNP microarray analyses of a deletion on 

21q22.3 but not specifically tested for association (Table II 
in, Poelmans et al. 2009). Based on 47.81 independent tests, 
as determined by the matrix spectral decomposition soft-
ware which considers marker linkage disequilibrium (Nyholt 
2004), replication level support for these single SNPs was 
judged against a Bonferroni-adjusted p value of .001.

Results

In LBC1936, (standardised) component scores for the read-
ing component were normally distributed with no extreme 
scores (range: − 3.5 to 2.2; skew: − .51). Individuals with 
scores less than 2.5 SD from the mean had Mini-Mental 
State Examination (Folstein et al. 1975) scores above 25 
indicating that they were not affected by undiagnosed 
dementia. In LBC1921, (standardised) component scores 
for the reading component were normally distributed with 
no outliers (range: − 2.5 to 2.1; skew: − .22).

The QQ plot for the reading component (Fig. 1) is shown 
for all SNPs lying within the dyslexia candidate genes of 
interest; see online Fig. 1 for verbal executive processing. 
There is some positive deviation in observed p values from 
the null distribution, attributable to genetic signal. The 
genome-wide SNP association results (downloadable from 
http://www.ccace .ed.ac.uk/) were used in the gene-based 
tests. Analysed as a broad ‘candidate’ gene-set, significant 
SNPs within the 14 candidate genes were overrepresented 
among our results for the reading component (Standardised 
Beta = .014, Beta = 0.51, SE = 0.24, p = .016) but not for ver-
bal executive processing (p > .05). Results for the individual 
genes within the significant gene set are shown in Table 1. 

Fig. 1  QQ Plot for dyslexia candidate SNP associations (N = 9225 
SNPs) with the reading component

http://amigo.geneontology.org/amigo
http://www.ccace.ed.ac.uk/
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Based on their p-values, it may be that CYP19A1, DYX1C1, 
DIP2A, and KIAA0319L contribute more to the overall asso-
ciation between the candidate gene set and reading ability. 
Gene-set analysis of neuron migration and axon guidance 
pathways were not significant for the reading component or 
verbal executive processing (p > .05).

With regard to individual SNP association we focus on 62 
SNPs within the candidate genes previously linked to read-
ing ability/disability. Results for these SNPs are presented 
in online Table 1 (see online Table 2 for verbal executive 
processing). None reached the corrected significance level.

Discussion

The question of whether genetic influences on developmen-
tal disorders can be detected in adulthood is an important 
one because it broadens the sampling frame available to 
study such traits. Not only did our study replicate genetic 
effects found for specific reading disorder, but it did so in 
a sample of older individuals (≥ 70 years) who were not 
reading impaired. The reading skill index was associated 
with the 14 candidate gene-set as a whole, with the strong-
est individual gene support coming from DYX1C1, DIP2A, 
CYP19A1 and KIA00319L. Axon guidance and neuron 
migration pathways were not significant.

Given that the results of our replication study might be 
of interest to future meta-analyses in the area, it is impor-
tant to more closely examine the individual SNP effects 
despite them attaining only nominal significance. Within 
DYX1C1, now known as Dynein Axonemal Assembly Fac-
tor 4 (DNAAF4), the direction of allelic effect for rs3743204 
(the most significant variant) was consistent with Bates et al. 
(2010), and Becker et al. (2014) who found the minor allele 
associated with better reading scores in respective popula-
tion and reading-impaired samples. Our effect for rs7174102 
was in the same direction as Paracchini et al. (2011) who, 
for a population-based sample, reported a negative effect 
of the minor allele on spelling scores. And in this same 
sample, reading scores were positively associated with the 
minor allele of rs8040756, consistent with our findings. For 
CNTNAP2, rs759178, rs17236239 and rs2710102 have been 
previously associated with language traits in the general 
population (Luciano et al. 2013; Whitehouse et al. 2011) 
and in impairment (also rs4431523, Vernes et al. 2008); 
our direction of allelic effect for these SNPs was consistent 
with these studies. Note that Carrion-Castillo et al. (2017) 
reported the opposite direction of effect for rs17236239. 
None of the nominally significant SNPs in DIP2A have been 
previously reported in association studies of reading impair-
ment/ability and here we show that they might have effects 
on verbal executive processing as well as reading ability. The 
only other gene with suggestive effects on verbal executive B
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processing was ROBO1, previously implicated in verbal 
phonological processing (Bates et al. 2011). Whereas our 
SNP replication results were only nominally significant, the 
consistent direction of effect with the majority of previous 
studies boosts evidence in favour of these effects being true 
findings. Based on findings for other related complex traits 
(e.g., general cognitive ability) (Hill et al. 2018), individual 
SNP effects are likely to be very small (< .5% variance), so 
our findings align with this framework. It is widely assumed 
that common learning disabilities represent the low tail of 
normal abilities in the population, so it is unlikely that our 
failure to replicate previous dyslexia candidate genes is 
based on a different genetic aetiology of impaired and nor-
mal reading (see, Haworth and Plomin 2010).

DYX1CA/DNAAF4 has a purported role in neuronal 
migration during cerebral cortex development, whereas 
DIP2A has been implicated in axon pathfinding and pat-
terning in the central nervous system (http://www.genec ards.
org) (Tammimies et al. 2013; Tanaka et al. 2010; Wang et al. 
2006; Zhang et al. 2015). Nevertheless, neuron migration 
and axon guidance pathways (as a whole) were not signifi-
cantly associated with reading skill in our study. Given the 
incompleteness of GO terms and annotation bias towards 
genes that are well-studied (Haynes et al. 2018) we must 
be cautious to accept these null findings, and these path-
ways should be interrogated in the future as GO annotation 
improves, especially the quality of predicted gene function. 
Because these are only hypothesised biological pathways, 
the discovery of further genetic variants for reading (dis)
ability might show that they are not the primary pathways 
involved in reading ability/specific learning disorder. Fur-
ther, other genes might compensate for negative mutations 
in these pathways and effects of related brain plasticity may 
potentially differ by age and sex (Galaburda 2005; Gal-
aburda et al. 2006; Poelmans et al. 2011).

CYP19A1 encodes a member of the cytochrome P450 
superfamily of enzymes, it is in the same genetic locus as 
DYX1C1, and appeared to contribute to the signal of the 
candidate gene-set based on its individual gene associa-
tion. It has a role in testosterone to 17β-estradiol conver-
sion, sex differentiation in the brain, and differentiation of 
specific brain regions in early mammalian development 
(Anthoni et al. 2012). Elevated levels of testosterone dur-
ing perinatal development have been argued to contribute 
to learning disorder via lateralisation effects; oestrogen 
receptor beta signalling might be key in this process (Var-
shney and Nalvarte 2017). CYP19A1 expression in human 
brain is related to expression of DYX1C1: 60% of vari-
ance in expression levels in nine regions of adult brain was 
shared (Anthoni et al. 2012). It is possible that most of the 
signal from our positive 14 candidate gene-set association 
stems from the combined associations for CYP19A1 and 

DYX1C1, indicating the importance of the DYX1 locus, 
one of the most replicated quantitative trait loci for reading 
disability (Brkanac et al. 2007).

The present study highlights the potential importance 
that studying adults has for genetic discoveries in the area 
of developmental disorders, specifically reading impair-
ment. If prenatal and early life developmental processes 
that affect the brain (and resulting reading ability) are in 
part genetically influenced then these genetic influences 
will be detected in adults provided that difficulties in read-
ing acquisition are contiguous with later life ability. Both 
the phenotypic and genetic literature shows this to be true, 
with genetic influences on reading processes in the acqui-
sition phases strongly correlated with reading performance 
later on (Byrne et al. 2009; Hart et al. 2013; Petrill et al. 
2007), for example, in the teenage years no new genetic 
factors come into play (Wadsworth et al. 2001). Here, we 
are able to show that a candidate gene set of 14 genes 
that have individually been linked to reading disability, 
primarily in children and adolescents, are associated with 
reading ability in older Scottish people. By using adults in 
large-scale genotyping studies (arguably a more feasible 
design than in children) we are likely to speed up progress 
in gene discovery for dyslexia and potentially other learn-
ing disorders. It will be imperative, however, to establish 
what the most sensitive later life measures of early read-
ing difficulties are given that over time individuals will 
develop strategies to mask their poor reading. The prospect 
of using nonvocal phonologically based group assessment 
(Wolff and Lundberg 2003) would be a way to quickly 
accrue large adult samples.
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