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Abstract. Probabilistic model checking for systems with large or un-
bounded state space is a challenging computational problem in formal
modelling and its applications. Numerical algorithms require an explicit
representation of the state space, while statistical approaches require a
large number of samples to estimate the desired properties with high
confidence. Here, we show how model checking of time-bounded path
properties can be recast exactly as a Bayesian inference problem. In
this novel formulation the problem can be efficiently approximated using
techniques from machine learning. Our approach is inspired by a recent
result in statistical physics which derived closed-form differential equa-
tions for the first-passage time distribution of stochastic processes. We
show on a number of non-trivial case studies that our method achieves
both high accuracy and significant computational gains compared to sta-
tistical model checking.

Keywords: Bayesian inference · model checking · moment closure.

1 Introduction

Probabilistic model checking of temporal logic formulae is a central problem in
formal modelling, both from a theoretical and an applicative perspective [22, 1,
2, 4–6]. Classical algorithms based on matrix exponentiation and uniformisation
are well-understood, and form the core routines of mature software tools such as
PRISM [28], MRMC [26] and UPPAAL [7]. Nevertheless, the need to explicitly
represent the state space makes their application to large systems problematic,
or, indeed, theoretically impossible in the case of systems with unbounded state
spaces, which appear frequently in biological applications.

Statistical model checking (SMC) approaches [37, 38] have emerged in re-
cent years as a powerful alternative to exact techniques. Such methods provide
a Monte Carlo estimate of the desired probability by repeatedly sampling tra-
jectories from the model. SMC can also provide probabilistic guarantees on the
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estimated probabilities, and, by choosing the number of simulations to be suit-
ably large, one can reduce the uncertainty over the estimates arbitrarily.

While SMC offers a practical and flexible solution in many scenarios, its re-
liance on repeated simulation of the system makes it naturally computationally
intensive. Although SMC can be trivially parallelized, the approach can still be
computationally onerous for systems which are intrinsically expensive to simu-
late, such as systems with large agent counts or exhibiting stiff dynamics.

In this paper, we propose an alternative approach to solving the probabilis-
tic model checking problem which draws on a recently proposed technique from
statistical physics [33]. We show that the model checking problem is equivalent
to a sequential Bayesian computation of the marginal likelihood of an auxiliary
observation process. This marginal likelihood yields the desired time-bounded
reachability probability, which is closely related to the eventually and globally
temporal operators. We also expand the methodology to the case of the time-
bounded until operator, thus covering a wide range of properties for temporal
logics such as CSL [1, 2, 4–6]. The formulation of the model checking problem
as a Bayesian inference method allows us to utilise efficient and accurate ap-
proximation methodologies from the machine learning community. In particular,
we combine Assumed Density Filtering (ADF) [29, 31] with a moment-closure
approximation scheme, which enables us to approximate the entire cumulative
distribution function (CDF) of the first time that a time-bounded until property
is satisfied by solving a small set of closed ordinary differential equations (ODEs)
and low-dimensional integrals.

The rest of the paper is organised as follows. We discuss the related work
in Section 2 and we provide some background material in Section 3. We then
describe our new approach, highlighting both the links and differences to the
recently proposed statistical physics method of [33] in Section 4. We consider
four non-linear example systems of varying size and stiffness in Section 5.

2 Related Work

In recent years, the computational challenges of probabilistic model checking
have motivated the development of approaches that rely on stochastic approx-
imations as an alternative to both classical methods and SMC. In one of the
earliest attempts, passage-time distributions were approximated by means of
fluid analysis [24]. This framework was later extended to more general proper-
ties expressed as stochastic probes [15]. Fluid approximation has also been used
to verify CSL properties for individual agents for large population models [9,
10]. In [11], a Linear Noise Approximation (LNA) was employed to verify not
only local properties of individuals, but also global ones, which are given as the
fraction of agents that satisfy a certain local specification. The verification of
such local and global properties has been recently generalised for a wider class
of stochastic approximations, including moment closure [13].

Regarding our work, one key difference with respect to these earlier ap-
proaches is that we consider global time-bounded until properties that char-
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acterise the behaviour of the system at the population level. In that sense, our
approach is mostly related to [12, 8], which rely on the LNA to approximate the
probability of global reachability properties. In particular, the LNA is used to
obtain a Gaussian approximation for the distribution of the hitting time to the
absorbing set [12]. The methodology is different in [8], where it is shown that
the LNA can be abstracted as a time-inhomogeneous discrete-time Markov chain
which can be used to estimate time-bounded reachability properties. However,
this method approximates the unconstrained process, and needs to subsequently
resort to space and time discretisation to approximate the desired probability.

3 Background

A Continuous-Time Markov Chain (CTMC) is a Markovian (i.e. memoryless)
stochastic process that takes values on a countable state space S and evolves in
continuous time [18]. More formally:

Definition 1. A stochastic process {X(t) : t ≥ 0} is a Continuous-Time Markov
Chain if it satisfies the Markov property, i.e. for any h ≥ 0:

p(Xt+h = j | Xt = i, {Xτ : 0 ≤ τ ≤ t}) = p(Xt+h = j | Xt = i) (1)

A CTMC is fully characterised by its generator matrix Q, whose entries Qij
denote the transition rate from state i to state j, for any i, j ∈ S [32]. The
dynamics of a CTMC are defined by the master equation, which is a system of
coupled ODEs that describe how the probability mass changes over time for all
states. For a CTMC with generator matrix Q, the master equation will be:

dP (t)

dt
= P (t)Q (2)

where P (t) is the transition probability matrix at time t; the quantity Pij(t) =
p(Xt = j | Xt0 = i) denotes the probability to transition from state i at time t0 to
state j at time t ≥ t0. The master equation is solved subject to initial conditions
P (0). Throughout this work, we shall consider CTMCs that admit a population
structure, so that we can represent the state of a CTMC as a vector of non-
negative integer-valued variables x = {X1, . . . , XN}, that represent population
counts for N different interacting entities.

3.1 Moment Closure Approximation

For most systems, no analytic solutions to the master equation in (2) are known.
If the state space S is finite, (2) constitutes a finite system of ordinary differential
equations and can be solved by matrix exponentiation. For many systems of
practical interest however, S is either infinite, or so large that the computational
costs of matrix exponentiation become prohibitive.

Moment closure methods constitute an efficient class of approximation meth-
ods for certain types of master equations, namely if the elements Qij of the
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generator matrix are polynomials in the state x. This is for example the case
for population CTMC of mass action type which are frequently used to model
chemical reaction networks [20]. In this case, one can derive ordinary differential
equations for the moments of the distribution of the process. Unless the Qij
are all polynomials in x of order one or smaller, the equation for a moment of
a certain order will depend on higher order moments, which means one has to
deal with an infinite system of coupled equations. Moment closure methods close
this infinite hierarchy of equations by truncating to a certain order. A popular
class of moment closure methods does so by assuming P (t) to have a certain
parametric form [36]. This then allows to express all moments above a certain
order in terms of lower order moments and thus to close the equations for these
lower order moments.

In this paper, we utilise the so-called normal moment closure which approxi-
mates the solution of the master equation by a multi-variate normal distribution
by setting all cumulants of order greater than two to zero [21, 34, 35]. This class
of approximations was recently used within a formal modelling context in [19].

3.2 Probabilistic Model Checking

The problem of probabilistic model checking of CTMCs is defined in the litera-
ture as the verification of a CTMC against Continuous Stochastic Logic (CSL) [1,
2, 4–6]. A CSL expression is evaluated over the states of a CTMC. In the original
specification [1], the syntax of a CSL formula is described by the grammar:

φ ::= tt | α | ¬φ | φ1 ∧ φ2 | P./p(Φ)

where φ is a state-formula, and Φ is a path-formula, i.e. it is evaluated over a
random trajectory of the Markov chain. An atomic proposition α identifies a
subset of the state space; in this paper, we consider atomic propositions to be
linear inequalities on population variables. The probabilistic operator P./p(Φ)
allows reasoning about the probabilities of a path-formula Φ:

Φ ::= Xφ | φ1 Uφ2 | φ1 U[t1,t2]φ2

P./p(Φ) asserts whether the probability that Φ is satisfied meets a certain bound
expressed as ./ p, where ./∈ {≤,≥} and p ∈ [0, 1]. In order to evaluate the
probabilistic operator, we need to calculate the satisfaction probability for a
path-formula Φ, which involves one of three temporal operators: next X, un-
bounded until U , and time-bounded until U[t1,t2].

For a finite CTMC, it is well-known that evaluating the probability of Xφ is
reduced to matrix/vector multiplication, while evaluating the unbounded until
φ1 Uφ2 requires solving a system of linear equations [4]. The time-bounded until
operator can also be evaluated numerically via an iterative method that relies
on uniformisation [4]. This process may have a prohibitive computational cost if
the size of the state space is too large. For systems with unbounded state space,
the only option to estimate the time-bounded until probabilities is by the means
of stochastic simulation [37, 38], which also has a high computational cost.
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Other temporal operators can be expressed as special cases of the until oper-
ator. For the time-bounded eventually operator we have: F[t1,t2]φ = ttU[t1,t2]φ,
while for the globally operator we have: G[t1,t2]φ = ¬F[t1,t2]¬φ. The latter two
operators formally describe the problem of time-bounded reachability.

4 Methodology

Given a property of the form Φ = φ1 U[0,t]φ2, our goal is to approximate the
cumulative probability of reaching φ2 at τ ≤ t, while satisfying φ1 until then.

4.1 Time-bounded Reachability as Bayesian Inference

We first consider the problem of reachability, which is closely related to the
eventually temporal operator F[0,t]φ. If Sφ denotes the set of states that satisfy
the formula φ, then we are interested in the probability that Sφ is reached for
the first time; this quantity is also known in the literature as first-passage time.

Building upon [16, 17] Schnoerr et al [33] have recently formulated time-
bounded reachability as a Bayesian inference problem. Using this formulation,
they proposed a method where the entire distribution of first-passage times can
be approximated by taking advantage of some well-established methodologies in
the Bayesian inference and statistical physics literature. In the current section,
we revise the approach of Schnoerr et al [33] for reachability, while in Section
4.2 we expand the method to the more general case of time-bounded until.

In the Markov chain literature [32], the states in the set Sφ are often called
the absorbing states. Let C = S \Sφ denote the set of non-absorbing states. The
cumulative probability for the system to reach an absorbing state at or before
time t is equal to 1 minus the probability of the system having remained in C
until t. Schnoerr et al’s insight was to formulate this probability in terms of a
Bayesian computation problem. Consider an auxiliary binary observation c(t)
process which evaluates to 1 whenever the system is in the non-absorbing set C
and 0 otherwise. The pair {c(t),xt} constitutes a hidden Markov model (HMM)
in continuous time; the required cumulative probability would then correspond
to the marginal likelihood of observing a string of all 1s as output of the HMM.
Computing this marginal likelihood is a central and well studied problem in
machine learning and statistics.

Even in this novel formulation, the problem is generally still intractable.
To make progress, we first discretise the time interval [0, t] into time points
T = {t0 = 0, . . . , tN = t} with spacing t/N . For the process xti at time ti
being in C we thus have the observation model p(Cti |xti) = 1 if xti ∈ C and
zero otherwise. Note that p(Cti |xti) is the distribution of the observation process
c(t), i.e. c(ti) ∼ p(Cti |xti). The marginal likelihood Z[0,t] of having remained in
C for all ti ∈ T factorises as

Z[0,t] = p(Ct0)

N∏
i=1

p(Cti |C<ti) (3)
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where we introduced the notation C<ti ≡ Cti−1,...,t0 . The factors of the rhs in
(3) can be computed iteratively as follows. Let x0 be the initial condition of the
process. Suppose that the system did not transition into the absorbing set until
time ti−1 (that is, the process remained in C), and that the state distribution
conditioned on this observations is p(xti−1

|C<ti ,x0). We can solve the system
forward in time up to time ti to obtain the predictive distribution p(xti |C<ti ,x0),
which will serve as a prior, and combine it with the likelihood term p(Cti |xti)
that the process has remained in C at time ti.

We can then define a posterior over the state space by applying the Bayes
rule as follows:

p(xti |C≤ti ,x0) =
p(Cti |xti) p(xti |C<ti ,x0)

p(Cti |C<ti ,x0)
(4)

The likelihood p(Cti |xti) represents the probability that the process does not
leave C at time ti. The prior denotes the state space probability considering
that the process had remained in C for time < ti. The posterior then will be the
state space distribution after observing that the Markov process has remained
in C at the current step.

The evidence p(Cti |C<ti ,x0) in (4) is a factor in the rhs of (3). It can be
obtained by marginalising the joint probability p(Cti ,xti |C<ti ,x0) over xti :

p(Cti |C<ti ,x0) =

∫
S
p(Cti |xti)p(xti |C<ti ,x0)dxti (5)

The process described above is a Bayesian formulation for the introduction
of absorbing states. By multiplying by the likelihood, we essentially remove the
probability mass of transitioning to a state in Sφ; the remaining probability
mass (the evidence) is simply the probability of remaining in C. Therefore, the
probability of transitioning to Sφ for the first time at time ti is the complement
of the evidence:

p(Sφti |C<ti ,x0) = 1− p(Cti |C<ti ,x0) (6)

Thus, Equation (6) calculates the first-passage time probability for any ti ∈ T .
Note that this approach neglects the possibility of the process leaving from and
returning to region C within on time step. The time spacing thus needs to be
chosen small enough for this to be a good approximation.

Schnoerr et al [33] further approximated the binary observation likelihood
p(Cti |xti) by a soft, continuous loss function. This allowed them to take the
continuum limit of vanishing time steps which in turn allows to approximate
the evidence p(Cti |C<ti ,x0) by solving a set of ODEs. In this work, we keep the
binary, discontinuous observation process and keep time discrete, which allows
us to extend the framework from [33] to the time-bounded until operator.

4.2 The Time-bounded Until Operator

Consider the time-bounded property φ1 U[0,t]φ2 which will be satisfied if a state
in Sφ2 is reached up to time t and the stochastic process has remained in Sφ1
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until then. Assuming that φ1 is satisfied up to some ti ≤ t, there are three
distinct possibilities regarding the satisfaction of the until property:

– it evaluated as false if we have xti /∈ Sφ1 and xti /∈ Sφ2 simultaneously,
– the property is evaluated as true if xti ∈ Sφ2

,
– otherwise the satisfaction of the property is undetermined up to time ti.

These possibilities correspond to three non-overlapping sets of states: S¬φ1∧¬φ2
,

Sφ2
and Sφ1

\ Sφ2
accordingly, as seen in Figure 1.

Sφ1

Sφ2

S¬φ1∧¬φ2

Fig. 1. The until formula φ1 U
[0,t]φ2 is trivially satisfied for states in Sφ2 , while it is

not satisfied for any state in S¬φ1∧¬φ2 . For the rest of the states C = Sφ1 \Sφ2 (i.e. the
grey area above) the property satisfaction is not determined. Assuming that the CTMC
state has remained in C, we define a reachability problem to the union Sφ2 ∪S¬φ1∧¬φ2 .
In contrast with the standard reachability problem, the probability of Sφ2 is of interest
only, which is a subset of the absorbing states.

In order to calculate the satisfaction probabilities for any time ti ≤ t, we
assume that the property has not been determined before ti. That means that
the Markov process has remained in the set C = Sφ1

\ Sφ2
, which is marked

as the grey area in Figure 1. The Bayesian formulation of reachability dis-
cussed in Section 4.1 can be naturally applied to the problem of reaching the
union Sφ2

∪ S¬φ1∧¬φ2
. The prior term p(xti |C<ti ,x0) denotes the state distri-

bution given that the property remained undetermined before ti. The likelihood
term p(Cti |xti) indicates whether the Markov process has remained in the non-
absorbing set C = Sφ1

\ Sφ2
at ti. Finally, the posterior given by (4) will be the

state space distribution after observing that the property has remained undeter-
mined at the last step.

In contrast with the reachability problem however, once the absorbing set
is reached, we only know that the formula has been determined, but we do
not know whether it has been evaluated as true or false. More specifically, the
evidence p(Cti |C<ti ,x0) as given by Equation (5) represents the probability that
the satisfaction has remained undetermined at time ti. Although the negation of
the evidence was sufficient to resolve the reachability probability as in Equation
(6), we are now interested only in a subset of the absorbing states. At a particular
time ti we have to calculate the probability of reaching Sφ2

explicitly. This is
given by the overlap mass of the prior process p(xti |C<ti ,x0) and probability of

transitioning into Sφ2
. Given that p(Sφ2

ti |xti) = 1, if xti ∈ Sφ2
at time ti and

zero otherwise, we have:

p(Sφ2

ti |C<ti ,x0) =

∫
S
p(Sφ2

ti |xti)p(xti |C<ti ,x0)dxti (7)
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which is the probability of transitioning to Sφ2
at time ti, while remaining in C

until then. The effect of p(Sφ2

ti |xti) is essentially a truncation of the state space;
the first-passage probability at ti is simplified as follows:

p(Sφ2

ti |C<ti ,x0) =

∫
xti∈Sφ2

p(xti |C<ti ,x0)dxti (8)

Considering a Gaussian approximation for p(xti |C<ti ,x0), as we discuss in the
next section, and given that the state formula φ2 is a conjunction of linear
inequalities, Equation (8) can be easily calculated by numerical routines.

The Bayesian formulation that we introduce has essentially the same effect
as the traditional probabilistic model checking methods [5]. The probability of
the until operator is usually evaluated by first introducing the set of absorbing
states Sφ2

∪ S¬φ1∧¬φ2
, and then calculating the probability of reaching the set

Sφ2
, which is a subset of the absorbing states. The advantage of the formulation

presented here is that it allows us to leverage well-established machine learning
methodologies, as we see in the section that follows.

4.3 Gaussian Approximation via Assumed Density Filtering

The Bayesian formulation as described so far does not involve any approxima-
tions apart from time discretisation. In fact for a discrete-state system, both the
prior and the likelihood terms (i.e. p(xti |C<ti ,x0) and p(Cti |xti) equivalently)
will be discrete distributions in (4). Therefore, quantities such as the evidence
in (5) and the probability of reaching Sφ2

in Equation (8) can be calculated
exactly, as the integrals reduce to summations. However, if the size of the state
space is too large or unbounded, this process can be computationally prohibitive.
The formulation presented above allows us to derive an efficient approximation
method that relies on approximating the discrete process by a continuous one.

We adopt a moment closure approximation scheme where all cumulants of
order three or larger are set to zero, which corresponds to approximating the
single-time distribution of the process by a Gaussian distribution. As described
in Section 3.1, the moment closure method results in a system of ODEs that
describe the evolution of the expected values and the covariances of the pop-
ulation variables in a given CTMC. At any time ti, the state distribution is
approximated by a Gaussian with mean µti and covariance Σti :

p(xti |C<ti ,x0) = N (xti ;µti , Σti)

The evidence is the probability mass of non-absorbing states; i.e. it is observed
that the process has remained within C. Since C is identified by linear inequal-
ities on the population variables, both the evidence in Equation (5) and the
probability mass in the target set in (8) can be estimated by numerically solving
the integrals. There are many software routines readily available to calculate the
CDF of multivariate Gaussian distributions by numerical means.

Nevertheless, the posterior in Equation (4) is not Gaussian and we introduce
a Gaussian approximation. It is proven that ADF minimises the KL divergence
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between the true posterior and the approximating distribution, subject to the
constraint that the approximating distribution is Gaussian [29, 31]. Considering
the prior N (xti ;µti , Σti), the ADF updates [17] will be:

µ̃ti = µti +Σti∂µti logZti (9)

Σ̃ti = Σti +Σti∂
2
µ2
ti

logZtiΣti (10)

where the evidence Zti = p(Cti |C<ti ,x0) is equal to the mass of the truncated
Gaussian that corresponds to the non-absorbing states C at time ti. The dimen-
sionality of the Gaussians is equal to the number of distinct populations in the
system; this is generally small, meaning that computations of truncated Gaus-
sian integrals can be carried out efficiently. A detailed exposition can be found
in the archive version of the paper [30].

4.4 Algorithm

Algorithm 1 is an instantiation of model checking via sequential Bayesian infer-
ence (MC-SBI). The algorithm evaluates the probability that a property Φ =
φ1 U[0,t]φ2 is satisfied for a sequence of time points T = {t0 = 0, t1, . . . , tN = t},
thus approximating the CDF of the first time that Φ is satisfied.

Algorithm 1 Model Checking via Sequential Bayesian Inference

Require: CTMC with initial state x0, property Φ = φ1 U[0,t]φ2, time sequence T = {0, t1, . . . , t}
Ensure: Probabilities {π0, . . . , πN} that approximate the CDF of the time that Φ is satisfied

1: Define C = Sφ1 \ Sφ2 , where the satisfaction of Φ is not determined

2: Set the initial prior: p(xt0 |C<t0 ,x0)← N (xt0 ;µt0 , Σt0 )

3: Initialise the probability that Φ is not determined: p(C<t0 ,x0)← 1

4: for i← 0 to N do
5: Calculate the probability that Φ is satisfied for first time at ti:

πi ← p(C<ti ,x0)×
∫
xti
∈Sφ2

p(xti |C<ti ,x0)dxti

6: Calculate the evidence p(Cti |C<ti ,x0) according to Equation (5)

7: Calculate the probability that Φ is not determined in the next step:

p(C<ti+1
,x0)← p(C<ti+1

,x0)× p(Cti |C<ti ,x0)

8: Calculate the posterior mean µ̃ti and covariance Σ̃ti according to (9) and (10) respectively

9: Considering µ̃ti and Σ̃ti as initial conditions,
use moment closure ODEs to obtain: µti+1

and Σti+1

10: Set the prior of the next step:

p(xti+1
|C<ti+1

,x0)← N (xti+1
;µti+1

, Σti+1
)

11: end for

In the beginning of each iteration at line 5, we calculate the probability πi
that Φ is satisfied at ti. In lines 6–8, we calculate the posterior state distribu-
tion, assuming that Φ has not been determined at the current step. Finally, the
state distribution is propagated by the moment closure ODEs; the new state
probabilities p(xti+1

|C<ti+1
,x0) will serve as the prior in the next iteration.
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It is useful at this stage to pause and consider the differences from the first-
passage time algorithm proposed in [33]: both papers share the same insight
that reachability properties can be computed via Bayesian inference. However,
the resulting algorithms are quite different. The crucial technical difficulty when
considering formulae involving an until operator is the need to evaluate the
probability of transitioning into the region identified by the second formula Sφ2

.
It is unclear how to incorporate such a computation within the continuous-time
differential equations approach of [33], which dictates the choice of pursuing a
time discretisation approach here. The time discretisation however brings the
additional benefit that we can evaluate exactly the moments of the Bayesian
update in step 8 of Algorithm 1, thus removing one of the sources of error in
[33] (at a modest computational cost, as the solution of ODEs is generally faster
than the iterative approach proposed here).

5 Examples

In this section, we demonstrate the potential of our approach on a number of
examples. More specifically, we report for each example the calculated CDF for
the time that a formula Φ = φ1 U[0,t]φ2 is first satisfied. Additionally for each
until property, we also report the CDF of the first-passage time to the absorbing
set; this corresponds to the eventually formula F[0,t](φ2 ∨ ¬φ1 ∧ ¬φ2), following
the discussion of Section 4.2.

As a baseline reference, we use the PRISM Model Checker [28], which is
a well-established tool in the literature. For a time-bounded until property Φ,
PRISM is capable of estimating its satisfaction probability by considering the
following variation of the probabilistic operator P=?(Φ). The result of P=?(Φ)
denotes the probability that Φ has been satisfied at any τ ≤ t, thus it can
be directly compared to our approach. In particular, PRISM offers numerical
verification of time-bounded until properties that relies on the uniformisation
method [4]. We make use of numerical verification when possible, but for more
complex models we resort to SMC.

5.1 An epidemiology model

We consider a SIR model, whose state is described by three variables that repre-
sent the number of susceptible (XS), infected (XI), and recovered (XR) individ-
uals in a population of fixed size. The dynamics are described by the reactions:

S + I
ki−→ I + I, with rate function kiXSXI ;

I
kr−→ R, with rate function krXI ;

Considering initial state [XS = 40, XI = 10, XR = 0], the reachable state space
as reported by PRISM involves 1271 states and 2451 transitions, which is a
number small enough to allow the use of numerical verification.

We consider two properties: the first property states whether the infected
population remains under a certain threshold until the extinction of the epidemic:

ϕ1 = XI < 30 U[0,t1]XI = 0 (11)
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Fig. 2. First-passage time results for the SIR model: (a) the CDF of first-passage times
into the absorbing states for ϕ1, (b) CDFs of first-passage times for the until formula
ϕ1, (c) the CDF of first-passage times into the absorbing states for ϕ2, (d) CDFs of
first-passage times for the until formula ϕ2.

where t1 = 10. Also, we consider a property that involves more than one species:

ϕ2 = XS > 1 U[0,t2]XI < XR (12)

where t2 = 4. The random variables [XS , XI , XR, XI −XR] follow a joint Gaus-
sian distribution, which is compatible with the assumptions of our approach.

We have used Algorithm 1 to approximate the CDF of the time that ϕ1

and ϕ2 are first satisfied on a sequence T of 200 time-points. We have also
used the hybrid engine of PRISM in order to produce accurate estimates of the
satisfaction probabilities of ϕ1 and ϕ2, for t1 ∈ [0, 10] an t2 ∈ [0, 4] respectively.

The calculated CDFs for ϕ1 are summarised in Figure 2b, while in Figure 2a
we report the CDFs of the first-passage time into its absorbing set. Similarly, the
CDFs for ϕ2 are reported in 2d, and the CDFs of the corresponding absorbing
set can be found in Figure 2c. In both cases the CDFs calculated by our approach
(MC-SBI) are close to the numerical solutions of PRISM.

5.2 LacZ - A model of prokaryotic gene expression

We consider the model of LacZ protein synthesis in E. coli that first appeared in
[27] and has been used as a model checking benchmark [14]. The model consists
of 12 species and 11 reactions; its full specification can be found in [30]. We
are interested in three variables: XRibosome for the population of ribosomes,
XTrRbsLacZ which represents the population of translated sequences, and XLacZ

representing the molecules of protein produced. The following property:

ϕ3 = (XRibosome > 0 ∧XTrRbsLacZ < 200) U[0,500]XLacZ > 150 (13)

monitors whether both XRibosome and XTrRbsLacZ satisfy certain conditions until
the LacZ protein produced reaches a specified threshold (i.e. XLacZ > 150). A
randomly sampled trajectory can be seen in Figure 3a.

We have attempted to explore the reachable state space of the model using
the hybrid engine of PRISM; that involved more than 26 trillions of states and
217 trillions of transitions. It is fair to state that numerical methodologies can
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Fig. 3. First-passage time results for the LacZ model: (a) sample trajectory, (b) the
CDF of first-passage times into the absorbing states for the property ϕ3, (c) CDFs of
first-passage times for the until formula ϕ3.

be ruled out for this example. Thus we compare our approach with SMC as
implemented in PRISM, where 1000 samples were used; the confidence interval
for the results that follow is ± 0.039, based on 99.0% confidence level.

Figure 3 summarises the calculated first-passage time CDFs evaluated on
a sequence of 200 time-points. In Figure 3b we see that the moment closure
method resulted in a particularly accurate approximation of the first-passage
time distribution for the absorbing states. Regarding the distribution of ϕ3, the
results of MC-SBI and PRISM’s SMC seem to be in agreement (Figure 3c);
however that our method overestimates the final probability of satisfying ϕ3.

5.3 A stiff viral model

Stiffness is a computational issue in many chemical reaction systems which arises
when some reactions occur much more frequently than others. This group of
fast reactions dominates the computational time, and thus renders simulation
particularly expensive. As an example of a stiff system, we consider the model
of viral infection in [23]. The model state is described by four variables: the
population of the viral template XT , the viral genome XG, the viral structural
protein XS , and XV that captures the number of viruses produced. For the
initial state we set XT = 10, and the rest of the variables to zero. The reactions
that determine the dynamics can be found in [30]. The model state space is
unbounded, therefore we resort to the SMC capabilities of PRISM to evaluate
our approach. The SMC used 1000 samples, resulting in confidence interval ±
0.038, based on 99.0% confidence level.

Figure 4a depicts a random trajectory that shows the evolution of the viral
genome XG and the virus population XV over time. We see that XG slowly
increases until it apparently reaches a steady-state and fluctuates around the
value 200, while XV continues to increase at a non-constant rate. In this example,
we shall monitor whether the viral genome remains under the value of 200 until
the virus population reaches a certain threshold:

ϕ4 = XG < 200 U[0,200]XV > 500 (14)
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Fig. 4. First-passage time results for the Viral model: (a) sample trajectory, (b) the
CDF of first-passage times into the absorbing states for the property ϕ4, (c) CDFs of
first-passage times for the until formula ϕ4.

The results of Figure 4 show that our method did not capture the CDFs as
well as in the previous two examples. However, considering that our method is
four orders of magnitude faster than SMC (cf. Table 1), it still gives a reasonably
good approximation, particularly in the case of the eventually value. Again, we
have considered a sequence of length 200.

5.4 A genetic oscillator

Finally, we consider the model of a genetic oscillator in [3] consisting of 9 species
and 16 reactions. The original model is defined in terms of concentrations; in
order to convert the specification in terms of molecular populations, we consider
a volume V = 1/6.022× 10−22. The full model description can be found in [30].
We consider an initial state where X1 = 10, X3 = 10 and the rest of the variables
are equal to 1. As we can see in the random trajectory in Figure 5a, we have a
system too large to apply traditional model checking methods.
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Fig. 5. First-passage time results for the genetic oscillator model: (a) sample trajectory,
(b) the CDF of first-passage times into the absorbing states for the property ϕ5, (c)
CDFs of first-passage times for the until formula ϕ5.

We focus on variables X7 and X9; the following property monitors whether
X7 remains under 19000 until X9 exceeds the value of 24000:

ϕ5 = X7 < 19000 U[0,50]X9 > 24000 (15)
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In this example, we evaluated the CDF on a sequence T of length 2000. We com-
pare against the SMC algorithm in PRISM using 1000 samples, which resulted
in confidence interval ± 0.030, based on 99.0% confidence level. Figure 5 shows
a good approximation of the rather unusual first-passage time CDFs for both
the absorbing states (Figure 5b) and the ϕ5 property (Figure 5c).

5.5 A note on the execution times

Table 1 summarises the execution times for our method (MC-SBI) and statisti-
cal model checking (SMC). We have used numerical verification as implemented
in PRISM for the SIR model only. For the other examples, the state space is
too large to use an explicit representation, and we report the simulation run-
ning times only. The numerical approach is much faster when this is applicable.
However, the computational savings for MC-SBI are obvious for the more com-
plicated examples, in particular the viral model and the genetic oscillator.

We have used StochDynTools [25] to derive the moment closure approxima-
tions automatically. The CDFs have been evaluated on a sequence of 200 points
for all models except for the genetic oscillator, where 2000 points were used.

Table 1. Execution times in seconds for model checking via sequential Bayesian infer-
ence (MC-SBI) and model checking in PRISM (104 samples were used for SMC).

Model MC-SBI PRISM (Numerical) PRISM (SMC)

SIR 8 sec ∼ 1 sec ∼ 1 sec
LacZ 38 sec N/A 46 sec
Viral 8 sec N/A 24875 sec
Genetic Oscillator 87 sec N/A 20707 sec

6 Conclusions

We have presented a novel approach to the classical model checking problem
based on a reformulation as a sequential Bayesian inference problem. This refor-
mulation is exact up to time-discretisation errors; it was originally suggested in
[33] for reachability problems, and was extended in the present work to general
CSL formulae including time-bounded Until operators. Apart from its concep-
tual appeal, this reformulation is important because it enables us to obtain
an approximate solution using efficient and highly accurate tools from machine
learning. Our method leverages a class of analytical approximations to CTMCs
known as moment closures, which enable an efficient computation of the process
marginal statistics.

We have shown on a number of diverse case studies that our method achieves
excellent accuracy with significantly reduced computational costs compared to
SMC. Nevertheless, our algorithm requires some approximations to the under-
lying stochastic process. The first approximation is the adoption of a time dis-
cretisation; this is a controllable approximation and can be rendered arbitrarily
precise by reducing the time step (at a computational cost that grows linearly
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with the number of steps). The second approximation consists in propagating
forward the first two moments of the process via moment closure and ADF.
Approximation quality in this case is system dependent. Several studies have
examined the problem of convergence of moment closure approximations [34,
35], however, to the best of our knowledge, error bounds for such approxima-
tions are an open problem in the mathematics of stochastic processes. Despite
such issues, we believe that the reformulation of model checking problems in
terms of Bayesian inference has the potential to open the door to a new class of
approximate algorithms to attack this classic problem in computer science.
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