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Optimal airfoil’s shapes by high fidelity CFD

ABSTRACT

Purpose - There is an increasing interest in airfoils that modify their shape to adapt at the flow conditions.
As an example of application, we search the optimal 4-digit NACA airfoil that maximises the lift-over-drag
ratio for a constant lift coefficient of 0.6, from Re = 104 to 3× 106.
Design/methodology/approach - We consider a γ −Reθt transition model and a κ− ω SST turbulence
model with a covariance matrix adaptation evolutionary optimisation algorithm. The shape is adapted by
radial basis functions mesh morphing using four parameters (angle of attack, thickness, camber, maximum
camber position). The objective of the optimisation is to find the airfoil that enables a maximum lift-over-
drag ratio for a target lift coefficient of 0.6.
Findings - The computation of the optimal airfoils confirmed the expected increase with Re of the lift-over-
drag ratio. However, while the observation of efficient biological fliers suggests that the thickness increases
monotonically with Re, we find that it is constant but for a 1.5% step increase at Re = 3× 105.
Practical implications - We propose and validate an efficient high fidelity method for the shape optimisation
of airfoils that can be adopted to define robust and reliable industrial design procedures.
Originality/value - We show that the difference in the numerical error between 2D and 3D simulations
is negligible, and that the numerical uncertainty of the 2D simulations is sufficiently small to confidently
predict the aerodynamic forces across the investigated range of Re.
Copyright c© 0000 Emerald www.emeraldinsight.com

KEY WORDS: Transitional models, Reynolds-avaraged Navier-Stokes simulations, large eddy
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INTRODUCTION

In recent years there has been an increasing interest in morphing airfoils that can operate efficiently
across a wide range of Reynolds numbers (Re). For example, a tidal turbine blade operates in a
periodic tidal stream and, every three hours, Re varies from 104 to 106. The blade efficiency would
be significantly enhanced if it’s sectional airfoil could adapt its shape to the flow conditions (Tully
and Viola 2016). The benefit of adopting a variable airfoil geometry has been proven in several
applications, including aircraft wings and helicopter rotors (Stanewsky 2001; Barbarino et al. 2011;
Kuder et al. 2013), wind and tidal turbine blades (M. Hansen et al. 2006; Barlas and Kuik 2010;
Lachenal, Daynes, and Weaver 2013; Tully and Viola 2016). While the research field of airfoil
design (O. Smith 1975; Lissaman 1983; Selig 2003) and multi-objective optimisation (Hicks and
Henne 1978; Drela 1998; Srinath and Mittal 2010; Minervino, Vitagliano, and Quagliarella 2016)
is well established, the optimisation across a wide range of Re is an open area of research. In
fact, most of the methods typically used for airfoil optimisation have been originally developed to
model specific flow conditions and have been validated only in a limited range of Re. The aim of
this paper is to identify and assess a Computational Fluid Dynamics (CFD) method that can be
efficiently coupled with an optimisation strategy and that is capable to correctly predict the airfoil
performance from Re = 104 to 3× 106.
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Reynolds number effects

Increasing Re can lead to laminar-to-turbulent transition of the boundary layer and this could
postpone or prevent separation. As an example, for a small increase in Re from 2× 105 to 4× 105,
the lift coefficient CL of a half cylinder section switches from−0.5 to 0.5 due to the transition in the
boundary layer (Bot et al. 2016). At low Re, rough airfoils allow higher maximum lift-to-drag ratio
than smooth airfoils due to roughness promoting transition (McMasters and Henderson 1980). As
an interesting example, it has been argued that the peaks and valleys of some insect wings, such as
the dragonfly Anisoptera, could be functional in promoting transition and thus delaying separation
(Hu and Tamai 2008).

Transition may occur through three types of mechanisms. For a low levels of free stream
turbulence, Tollmien-Schlichting waves or cross-flow instability may grow into turbulence. If
laminar separation occurs, the Kelvin-Helmholtz instability in the separated shear layer might lead
to turbulence. Finally, high level of free stream turbulence can penetrate into the boundary layer and
enable by-pass transition.

If transition occurs in the shear layer at sufficiently high Re (typically higher than 5× 104

(Carmichael and NASA 1982)), transition might enable reattachment and the formation of a long-
type laminar separation bubble (LSB). The long-type LSB has an elongated shape; it covers a
significant proportion of the chord length and it is associated with a lower lift and higher drag
than the inviscid solution (Crabtree 1959). When the Reynolds number based on the displacement-
thickness and the outer velocity at the separation point increase above a critical value (Klanfer and
Owen n.d.), or when the pressure recovery across the turbulent mixing region decreases below a
critical value (Crabtree 1959), then the long-type LSB burst in a short-type LSB. The latter is thiner
and shorter then the long-type LSB, it has minimum effect on the pressure distribution (Crabtree
1959; Ward 1963), and the form factor decreases as much as when transition occurs in the attached
boundary layers (McMasters and Henderson 1980). The flow separation and the occurrence of the
two different types of LSB make the aerodynamic forces trends highly non linear and difficult to
predict.

Available numerical methods

Modelling the laminar-to-turbulent transition is one of the key challenges of CFD and, as shown in
the previous section, it is of paramount importance to correctly predict the aerodynamic forces at
transitional Re. Between the different methods that have been used for modelling transition, from
the less computationally expensive to those that resolve more physics, there are: linear stability
theory; low-Reynolds-number turbulent models; the Local-Correlation-based Transition Models
(LCTM); Large Eddy Simulations (LES); Detached Eddy Simulations (DES) and Direct Numerical
Simulations (DNS). A critical comparison between these methods is available, for instance, in Di
Pasquale et al. (Pasquale, Rona, and Garrett 2009). The methods based on linear stability theory,
such as the eN method (Smith 1956; Mack 1977; Ingen 2008), are incompatible with large free
stream turbulence levels and cannot predict bypass transition. Low-Reynolds-number turbulent
models are based on the wall-induced damping of turbulent viscosity and are unable to predict
the growth of natural instabilities along streamlines. On the other hand, LES (Sagaut and Deck
2009), DES (Squires 2004; Spalart 2009), and even more DNS (Moin and Mahesh 1998; Wu and
Moin 2009), can resolve transition mechanisms but their computational costs (Celik 2003; Sagaut
and Deck 2009) are currently incompatible with optimisation algorithms that require the evaluation
of a large number of candidates.

The LCTMs could, in principle, predict correctly all the transition mechanisms (F.R. Menter,
Langtry, and Völker 2006). In particular, in this paper we test the γ −Reθt transition model
(Langtry and F. Menter 2005), which is an LCTM that can be used with the κ− ω SST turbulence
model for Reynolds-Averaged Navier-Stokes (RANS) simulations. This transition model is based
on two transport equations: one for the intermittency, which allows the growth of the natural
instabilities along streamlines; and one for the transition momentum thickness, which allows the
effect of free stream turbulence to penetrate into the boundary layer.
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Objectives and structure of the paper

In this work, we assess the potentialities offered by the γ −Reθt transition model for airfoil
optimisation across a range of Re that spans from 104 to 3× 106. The airfoil geometry and the
angle of attack are optimised using an evolutionary optimisation strategy coupled with radial basis
functions mesh morphing for the mesh adaption onto the new shape. The geometry is constrained
to a 4-digit NACA airfoil, which is defined by the thickness t, the camber f , and the chordwise
coordinate of the maximum camber position xf . The objective of the optimisation is to find the
airfoil that enables a maximum lift-over-drag ratio for a target lift coefficient of 0.6, which is
arbitrarily chosen as a typical value for cruising flight.

We consider bi-dimensional unsteady RANS (2D URANS) simulations and we perform
verification and validation (V&V) of the force coefficients. The verification enables the
quantification of the uncertainty due to the numerical error, i.e. the error between the numerical
solution and the exact solution of the system of equations solved. The validation allows the
determination of the modelling error, which represents the degree to which these equations,
boundary and initial conditions are an accurate representation of the real physics. The numerical
uncertainty is assessed for both a reference test case of an SD7003 airfoil, for which experimental
data is available, and for the optimal 4-digit NACA airfoils. We further investigate the numerical
error comparing 2D URANS simulations with 3D URANS, LES and Xfoil.

The rest of the paper is structured as follow. In section (Method), we present the 2D URANS
solver setup (sec. ), how it is coupled with the optimisation algorithm (sec. ), how we assess the
numerical uncertainty (sec. ) and the modelling error (sec. ). In section (Results), firstly we present
the numerical uncertainty for the reference test case and for the 4-digit NACA airfoils (sec. ), and
the analysis of the the modelling error for the reference test case (sec. ). Successively we discuss
the optimal shapes of the 4-digit NACA airfoils (sec. ), the trends with Re of the lift-to-drag ratio
(sec. ) and the optimal thickness (sec. ). The main outcomes of this work are summarised in the
Conclusions (sec. ).

METHOD

In this section we present the method of the study. Firstly we provide an overview of the 2D URANS
simulations and of the optimisation problem, and successively we discuss how we estimate the
numerical and the modelling errors.

2D URANS solver setup

We solve the 2D URANS equations for Newtonian fluids and incompressible flow for an airfoil in
open air using a segregated finite-volume solver (Ansys Fluent version 17.2). We use the γ −Reθt
transition model and the κ− ω SST turbulence model. The numerical schemes are second-order
accurate both in space and time, and implicit in time. The domain is 20 c× 20 c, where c is the
length of the airfoil’s chord. A parametric C-type structured mesh is built near the airfoil, surrounded
by an unstructured triangular mesh (figure 3a). The mesh is adapted onto the new shape using a
radial basis function mesh morphing software (RBF Morph Ansys Fluent Add On) for every tested
geometry according to the approach presented in (Biancolini, Viola, and Riotte 2014; Biancolini,
Costa, et al. 2016; Biancolini 2018) . For each Re, the grid is uniformly scaled in order to achieve
a non-dimensional wall-coordinate y+ ≤ 0.5. We use a no-slip condition on the airfoil surface. We
prescribe uniform velocity on the upstream and bottom boundaries, where the turbulence intensity
is I = 1% and the turbulent length scale is Lt = 0.005 c, and a constant pressure on the downstream
and upper boundaries.

Copyright c© 0000 Emerald www.emeraldinsight.com Airc. Eng. Aer. Tech. (0000)
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Figure 1. Example of convergence history for Re = 106 of (a) the design variables and (b) the force
coefficients.

Optimisation algorithm

We solve the following optimisation problem:

min J(X) = CD +
(
1− CL

0.6

)2
s.t. X � XLB

X ≺ XUB (1)

where X = (f/c, xf/c, t/c, α), XLB = (0, 0.2, 0.04, 0), XUB = (0.12, 0.8, 0.18, 12) and α are
degrees. The coefficientsCD andCL are the time-averaged drag and lift forces, respectively, divided
by the dynamic pressure and the chord. The forces are computed over a period spanning from
80 c/U∞ to 160 c/U∞, where U∞ is the free stream flow speed. The symbol � (≺, respectively)
indicates that each element of the left hand side vector is greater (smaller, respectively) than each
element of the right hand side vector. The aim of the second term on the right hand side of equation 1
is to penalise the deviations of CL from its target value of 0.6. In other words, a set of optimal design
values X′ is looked for, such that a compromise is found between minimising CD and deviating
from CL = 0.6. Different penalty terms would lead to different optima, however the magnitude of
these differences are such that they can be assumed negligible in the present context.

The initial guessed values is X0 = (0.04, 0.4, 0.12, 2). The use of bounds on X limits the search
to a range of realistic values. The optimal solution lies in the interior of the bounded domain and
not on the bounds. The objective function is evaluated with the flow solver, which is coupled
with a stochastic gradient-free optimisation algorithm (Chapin, De Carlan, and Heppel 2011).
A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is used for its robustness and
effectiveness in handling noisy, non-linear, multimodal objective functions (N. Hansen et al. 2011).
Gradient-free algorithms are well suited when dealing with noisy functions, or when the evaluation
of the cost function and of the constraints (when applicable) is computationally expensive.

Figure 1 shows an example of convergence history of the design variables and force coefficients
at Re = 106. Computations run in parallel on 8 cores on a Linux workstation based on Intel Xeon
E5 of 2.4 GHz with 32 GB of RAM. For every Re, the optimisation converges to an optimum airfoil
with less than 1000 evaluations and with a wall clock time of the order of one hour per evaluation.

Uncertainty quantification

We perform the V&V of the CL and CD computed with 2D URANS simulations. We consider the
test case of an SD7003 airfoil at α = 4◦ and Re = 6× 104, for which experimental data is available
in the literature. These conditions are particularly challenging for CFD simulations because of
the presence of a long LSB, whose size and position are affected by the background turbulence.

Copyright c© 0000 Emerald www.emeraldinsight.com Airc. Eng. Aer. Tech. (0000)
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Figure 2. Schematic diagram of the method to compute the grid and time step uncertainties.

The measured forces were corrected for the blockage effect of the finite cross sectional area of
the wind tunnel facility and, hence, we use the same large computational domain size as the 2D
URANS simulations used for the optimisation of the airfoil. The same boundary conditions as for
the optimisation are used, but for the onset turbulent intensity and turbulent length scale that are set
as for the experiments of Selig et al. (Selig 1995) to I = 0.10% and Lt = 0.0025 c.

The numerical uncertainty is quantified using the method proposed by Viola et al. (Viola, Bot,
and Riotte 2013), which is based on the trends of CL and CD for different values of the time step,
grid size, precision of the machine, and number of iterations. This method was initially developed
for yacht sail aerodynamics, but it can be applied to any other application. The method is as follows.

The 95% confidence interval of any computed value φcfd (in this paper φcfd is either CL or
CD) is given by φcfd ± Unumφcfd, where the numerical uncertainty Unum is the combination of the
uncertainties due to the grid (Ug), the time step (Ut), the round off error (Ur), and the convergence
(Uc):

Unum =
√
U2
g + U2

t + U2
r + Uc, (2)

Uncertainty due to the grid. The method to compute Ug and Ut is conceptually identical. To
compute Ug, a number of simulations ng > 3 with different grid resolutions are performed. The
reference grid, for which the uncertainty is computed, can be either uniformly refined or uniformly
coarsened. We define the relative step size hi as the ratio between the cell sizes of the i−th grid
and the reference grid; and φi as the ratio between the force coefficients computed with the i−th
grid and the reference grid (figure 2). When h→ 0, the fit of φi should converge to an horizontal
asymptote φ = φ0 with the order p of the adopted numerical scheme. Given that different schemes
are used to solve the coupled system of equations, p is generally unknown. Therefore, a curve

φ(h) = chp + φ0 (3)

is fitted through the set of φi. More than three grids should be computed and therefore the parameters
c, p and φ0 can be estimated by least square method. We also compute the standard error of the fit,

σfit =

√∑ng

1 (φi − φ(hi))

N
, (4)

where φ(hi) is the value of the function φ evaluated in hi, and N = ng − 3 is the number of degrees
of freedom of the fit.

The extrapolated value φ0 is the expected value of φ for an infinitely fine grid. This allows
estimating the error of the reference grid (cf. figure 2) as

δ = |1− φ0|. (5)

Copyright c© 0000 Emerald www.emeraldinsight.com Airc. Eng. Aer. Tech. (0000)
Prepared using Overleaf DOI: 10.1002/fld



6

Table I. Tested grids of the SD7003 airfoil at Re = 6× 104, α = 4◦, I = 0.10%.

Grid 1 Grid 2 Grid 3 Grid 4 (ref) Grid 5 Grid 6
Number of cells 3.3× 103 6.4× 103 4.3× 104 5.4× 104 1.3× 105 4.7× 105

Maximum y+ 2 1 0.5 0.1 0.1 0.05

The grid uncertainty is then given by

Ug = 1.25 δ + σfit, (6)

where 1.25 is a safety factor taken from the work of Roache (Roache 1998).
The main limitations of the proposed method is that we apply the least square method when the

standard deviation of the error is not constant, but it increases with h. This could be overcome, for
instance, doing the logarithmic of equation 3 and then using a linear fit instead of a non linear fit.
However, given than φ0 is unknown, it’s value should be optimised minimising the residuals of the
fit, making the V&V unnecessarily over-complicated.

Table I shows the number of cells and the maximum y+ of the first cell centre for each grid, while
figure 3a shows the reference grid (Grid 4) in the near-wall region. This grid has the same chordwise
and wall-normal resolution as the 2D URANS simulations of the optimal airfoils.

Other sources of uncertainty. A virtually identical procedure is used to compute Ut, where six
different time steps substitute the different grids used for the computation of Ug. The reference time
step is ∆t = 0.05c/U∞, where U∞ is the free stream velocity, and a range of ∆t from 0.0025 c/U∞
to 2.48 c/U∞ is explored.

The uncertainty due to the convergence Uc is the 95% confidence interval in the estimate of the
mean force coefficient in the time interval from 80 c/U∞ to 160 c/U∞:

Uc = 1.646
σ√
Nit

. (7)

where σ is the standard deviation of the Nit = 1600 observations within this time interval.
The round off error is estimated by running the simulations in both single and double precision.

Denoted with φr the ratio between the force coefficients computed in single and double precision,
we estimate the error as

δr = |1− φr|, (8)

and we compute the uncertainty as
Ur = 3 δr, (9)

where 3 is a safety factor.
As discussed in the Results (section ), the grid uncertainty of the SD7003 airfoil is one order of

magnitude larger than the other uncertainties. Therefore, for the optimum 4-digit NACA airfoils at
Re = 104, 105 and 106, we consider only the grid uncertainty. For each Re, the grid is uniformly
refined twice by halving every cell.

Modelling error

Validation. The validation against experimental data allows an estimate of the modelling error of
φcfd. This is given by the difference between the total error E and and the validation uncertainty
Uval, which are defined as

E = φcfd − φexp, (10)

and
Uval =

√
U2

num + U2
exp, (11)

where φexp is the experimental estimate and Uexp is the experimental uncertainty. If |E| > Uval then
the numerical error has the sign of E. Conversely, if |E| ≤ Uval then φcfd is validated at the level of
Uval and the modelling error is relatively too small to be assessed.
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Comparison with other models. In order to gain more insight into the modelling error, we compare
the aerodynamic forces, the surface pressures and the velocity field computed with different models:
Xfoil, 2D URANS, 3D URANS and LES. Unfortunately, the experimental results of Selig et
al. (Selig 1995) do not include information on the flow field, therefore we compare with the
measurements of Ol et al.. (Ol et al. 2005), which instead do not include force measurements.
We also consider a slightly higher turbulence intensity, I = 0.28%, in order to compare our results
with those of Zhang et al. (Zhang, Hain, and Kähler 2008).

Xfoil is an inviscid linear-vorticity panel code coupled with a two-equation lagged dissipation
integral method (Drela 1989). Transition is computed with the eN method. Following the
experimental correlations proposed by Mack (Mack 1977; Ingen 2008), we set the Ncrit value to
5.7 corresponding to the free stream turbulence intensity of the wind tunnel (Zhang, Hain, and
Kähler 2008). The grid resolution and solver setting are kept as consistent as possible between the
different Navier-Stokes models, so that the differences between 2D URANS and 3D URANS can
largely be attributed to the additional dimension, and the differences between 3D URANS and LES
can be attributed to the turbulence model.

The domain size and the turbulent intensity used for this comparison are different from those
used for the V&V because of the different experimental conditions. The experiments of Selig et
al. (Selig 1995) included an accurate measure of the aerodynamic forces and, therefore, are used
for the V&V, while Zhang et al. (Zhang, Hain, and Kähler 2008) performed flow measurements
with particle image velocimetry (PIV) and thus we use these tests for the analysis of the modelling
error. PIV measurements cannot be corrected for the blockage effect, and hence the computational
domain matches the test section of this latter experiment, that is 6.25 c long, 1.65 c wide and 1.25 c
high. Since this study of the modelling error focuses on the flow field near the foil and not on the
aerodynamic forces, which were not measured during the experiment, we used a relatively short
domain in the spanwise direction. This could lead to overestimating the drag. Hence, future work
might include a sensitivity study of the effect of the streamwise computational domain size.

We set a no-slip condition on the airfoil surface, a Dirichlet-type velocity condition on the
upstream boundary, a symmetry condition on the top and bottom boundaries, and a Neumann-
type pressure condition on the outlet boundary. For the 3D URANS and LES simulations, we set
a symmetry condition on the side boundaries. If we used a no-slip condition for the side walls of
the computational domain, we would have to resolve the boundary layer on the walls of the facility.
Conversely, the use of the symmetry condition allows focusing the grid resolution in the region near
the airfoil.

In order to achieve a grid that is consistent between the three models - 2D URANS, 3D URANS
and LES - we build a new multi-block structured grid (figure 3b), where the resolution near the
airfoil is the same as the reference grid (figure 3a). This new grid used for the 2D URANS model
is extruded spanwise by 1/3rd of the airfoil chord to make a 3D grid that is equally suitable for
the 3D URANS and LES models. In general, grid requirements for URANS and LES are very
different. In particular, the grid spacing in both the streamwise and spanwise directions must be
lower for LES than URANS. In the present case, however, a high streamwise grid resolution is used
across the whole foil for the 2D URANS simulations in order to accurately resolve separation and
reattachment, which occurs at different positions along the chord at every Re. Further, the grid used
for the 3D URANS simulations is made with high spanwise resolution making it also suitable for the
LES simulation. The 2D grid has 6.4× 103 cells while the 3D grid has 6× 106 cells. The thickness
of the near-wall cells in the wall-normal direction is ∆y = 4× 10−4 c, which allows y+ < 1. The
streamwise cell aspect ratio is ∆x/∆y = 2 and the spanwise cell aspect ratio is ∆z/∆y = 7. A grid
study was not performed for the 3D RANS and LES, and it should be considered for future work.

For the LES, we use a dynamic Smagorinsky-Lilly model for the sub-grid stresses, a bounded
central differencing scheme for the spatial derivatives, a second order implicit scheme for the
unsteady term in the momentum equation, and a SIMPLE algorithm for time marching with
∆t = 0.0025 c/U∞. A spectral synthesiser method (Smirnov, Shi, and Celik 2001) is used to achieve
onset turbulence with I = 0.285% and Lt = 0.0075 c. The turbulence intensity decays from the inlet
to the airfoil location, where I = 0.280% as reported in the experiments.
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Figure 3. Reference grids around the SD7003 airfoil used for the estimation of (a) the numerical uncertainty
of the 2D URANS simulations and (b) the modelling error by comparison of the 2D URANS, 3D URANS

and LES models.

Table II. V&V on the SD7003 airfoil at Re = 6× 104, α = 4◦, I = 0.10%.

CL CD
Experiments (Selig 1995) 0.570 0.017
2D URANS 0.584 0.0208
Ug 0.8% 0.1%
Ut < 10−5 < 10−5

Ur < 10−5 < 10−5

Uc < 10−5 < 10−5

Unum 0.8% 0.1%
|E| 2.5% 22%
Uexp 1.5% NA
Uval 1.7% NA
Validated at a level of Uval? No NA

RESULTS

The results are organised as follows. Firstly we discuss the our estimate of the numerical and
modelling errors. Successively we present the results of the optimisation for different Re. Finally,
we discuss the trends of the maximum efficiency and optimum thickness across with Re.

Uncertainty quantification

Table II summarises the results of the V&V of the 2D URANS computations. The numerical
uncertainty of CL is Unum = 0.8%, while the experimental uncertainty is Uexp = 1.5% (Selig 1995),
which results in a validation uncertainty of Uval = 1.7%. The absolute value of the error on the CL,
|E| = 2.5%, is higher than Uval and thus CL is not validated at the level of 1.7%. The simulation
over estimate CL but the error is not much higher than the validation uncertainty, leading to a low
confidence in the sign of the modelling error. This error is further investigated in the next section
(section ).

The numerical uncertainty of CD is 0.1%. Unfortunately Selig et al. (Selig 1995) did not provide
a value for the experimental uncertainty and thus CD could not be validated. The absolute error of
CD is similar to the one of CL, which is about 0.5% of the dynamic pressure. However, given the
smaller absolute value of CD compared to CL, the relative error of CD is significant. For the present
application, an error of 22% is sufficiently small compared to the differences in CD of ca. 300% for
every tenfold increase in Re (cf. table III).

For both CL and CD, the grid uncertainty is one order of magnitude higher than the other
uncertainties and thus Unum ≈ Ug. We assume that the other sources of numerical uncertainties
are negligible also for the 4-digit NACA airfoils. Therefore, we compute only Ug for the optimal
airfoils. We consider Re = 104, 105 and 106. Table III shows the number of cells, the maximum y+

and grid uncertainties for the reference grid at each Re. As for the SD7003 airfoil at Re = 6× 104,
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Table III. Reference grids and Ug for the optimum 4-digit NACA airfoils.

Re 104 105 106

Number of cells 23 000 34 000 64 000
Max (y+) 0.4 0.07 0.01

CL 0.57 0.64 0.60
CD 0.0397 0.0141 0.00425

Ug of CL 8.4% 3.1% 0.003%
Ug of CD 19.3% 6.2% 2.1%

Table IV. Comparison with other authors for the SD7003 airfoil at Re = 6× 104, α = 4◦, I = 0.10%.

Model Reference I CL CD xs/c xt/c xr/c
Exp Selig et al. (Selig 1995) 0.10 0.570 0.017 NA NA NA
Exp Ol et al.. (Ol et al. 2005) 0.10 NA NA 0.30 0.53 0.62

Xfoil Present results 0.10 0.618 0.019 0.22 0.54 0.57
2D URANS Radespiel et al. (Radespiel, Windte, and Scholz 2007) 0.08 0.60 0.020 NA 0.57 0.62
2D URANS Present results 0.10 0.584 0.0208 0.20 0.50 0.70

LES Catalano and Tognaccini (Catalano 2010) 0.10 0.63 0.0225 0.21 0.53 0.65

the grid uncertainties are higher for CD than for CL. Ug decreases with Re both for CL and CD.
The uncertainties computed for the SD7003 airfoil at Re = 6× 104 are similar to those computed
for the optimum 4-digit NACA foil at Re = 105. The maximum uncertainty is Ug of CD (19.3%)
for the lowest tested Re (104). Recalling that CD decreases by about 300% for a tenfold increase
in Re, the maximum value of Ug of CD is sufficiently small to compute the trend of CD across the
proposed range of Re.

Modelling error

In order to investigate the source of the modelling error, we compare the flow fields computed with
our simulations and the experimental and numerical results of other authors. Table IV shows CL,
CD, and the chordwise coordinates of the separation point (xs), of the transition point (xt) and of
the reattachment point (xr). The transition point is defined as the locum where 〈u′v′〉/U2

∞ = 10−3,
where u′ and v′ are the velocity fluctuations in the drag and lift directions, respectively.

Between this set of results, all numerical simulations over-predictCL andCD by a similar amount.
The minimum CL is computed by our 2D URANS simulations, while only Xfoil predicts a slightly
lower CD than 2D URANS. All numerical simulations predicts an earlier separation point than
the experiments, and a similar transition and reattachment point. This analysis suggests that the
modelling error is not due to the 3D effect or to the turbulence model.

We further investigate the modelling error considering a different set of experiments (Zhang,
Hain, and Kähler 2008), where the turbulence intensity is I = 0.28% instead of I = 0.10%. We
model these experiments with Xfoil, 2D URANS, 3D URANS and LES. Table V shows a summary
of the results. All models over-predict CL by more than the 2D URANS simulations, and only Xfoil
predicts a closer CD to the experimental value. With the higher turbulence intensity, xs/c is well
predicted by all models. Both URANS simulations made a similar prediction.

For both values of turbulence intensity, the transition point xt/c is better predicted by LES. The
region of turbulent flow near the airfoil is shown by the contour of 〈u′v′〉/U2

∞ in figure 4, which
also includes the experimental results (Zhang, Hain, and Kähler 2008). LES also predicts a higher
growth rate of turbulent fluctuations than the other models, resulting in an earlier reattachment and
a thinner turbulent boundary layer (cf. also figure 5).

Figure 5 shows the shape of the LSB and the growth of the reattached boundary layer through
streamlines and contours of non-dimensional flow speed |u|/U∞, where |u| is the magnitude of the
velocity vector. The shorter LSB and the thinner reattached boundary layer of the LES solution result
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Table V. Summary of results for the SD7003 airfoil at Re = 6× 104, α = 4◦, I = 0.28%.

Model Reference I CL CD xs/c xt/c xr/c
Exp Zhang et al. (Zhang, Hain, and Kähler 2008) 0.28 NA NA 0.21 0.40 0.51

Xfoil Present results 0.28 0.605 0.018 0.24 0.48 0.52
2D URANS Present results 0.28 0.586 0.0222 0.18 0.46 0.64
3D URANS Present results 0.28 0.669 0.0237 0.21 0.45 0.63

LES Present results 0.28 0.670 0.0219 0.22 0.42 0.57

Figure 4. Contours of Reynolds stresses around the SD7003 airfoil tested at Re = 6× 104, α = 4◦, I =
0.28%.

in a higher L and lowerD. Figure 6a shows the pressure coefficient Cp along the chord of the airfoil.
LES and 2D URANS predicted the lowest and the highest pressure plateau, which is correlated with
the LSB, and the maximum and minimum L, respectively. The reattachment is correlated with the
point of maximum pressure gradient downstream of the plateau. Figure 6b shows large differences
between the streamwise Cf values computed by the different models. The reattached thinner and
more energetic boundary layer predicted by LES is correlated with a significantly increased Cf .
However this does not result in a higher D because the friction drag is more than one order of
magnitude smaller than the pressure drag.

In conclusion, a comparison of the experimental flow measurements and the LES, 3D URANS
and 2D URANS solutions shows that while LES provides the most accurate solution, the bi-
dimensionality of the 2D URANS simulations do not lead to a significant increase in the modelling
error when compared with 3D URANS. Importantly, the 2D URANS simulations are capable of
correctly predicting the general features of the LSB.

Optimum airfoil shapes

Since the above results have grown our confidence in the numerical results achieved with 2D
URANS simulations, we now consider the optimum airfoil geometry computed for different Re.
For each Re from 104 to 3× 106, figure 7 shows the optimum geometry and the correlated velocity
field |u|/U∞. At the lowest value of Re investigated, Re = 104, the boundary layer is laminar and
the optimum airfoil presents a very small curvature for most of the chord in order to delay separation,
which occurs on the upper side at xs/c = 0.81. Downstream of the separation point, the curvature
increases in order to generate lift. At Re = 3× 104, laminar separation does not occur, therefore
a higher curvature may be exploited in the first half of the chord for lift generation. The flatter
trailing edge then prevents separation over the second half of the chord. At Re = 105, we find a
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Figure 5. Contours of velocity and streamlines around the SD7003 airfoil at Re = 6× 104, α = 4◦, I =
0.28%.

Figure 6. (a) Pressure coefficient and (b) streamwise friction coefficient for the SD7003 airfoil tested at
Re = 6× 104, α = 4◦, I = 0.28%.

long LSB. Near the leading edge, a high curvature provides lift but in this case promotes separation
(xs/c = 0.25), while downstream of the separation point the airfoil has almost no curvature to
promote turbulent reattachment (xr/c = 0.65) and the formation of a long LSB. At Re = 3× 105,
a more uniform curvature allows the separation point to be further downstream (xs/c = 0.61);
transition occurs closer to the separation point leading to a shorter LSB (xr/c = 0.75) and an
advantageous thinner wake. At Re = 106, transition occurs in the attached boundary layer; the
turbulent boundary layer remains attached along the entire airfoil. An almost constant curvature
on the upper side leads to a very thin wake and low drag. Finally, at the highest Re evaluated,
Re = 3× 106, the increased resilience of the turbulent boundary layer to separation allows the area
of highest curvature, and thus highest adverse pressure gradient, to be moved furthest toward the
trailing edge. This again has the additional advantage of minimising wake thickness and thus drag.

Maximum efficiency

The wake’s thickness, which is correlated with the drag, decreases monotonically with Re despite
the complex relationship between the flow field, the airfoil geometry and the Reynolds number.
Noting that CL = 0.6 at every Re, the decrease in wake thickness results in an increase of L/D
with Re. In figure 8, we compare the our results (black filled dots) achieved optimising the airfoil
shape for every Re, with those of other authors that tested individual airfoils across a range of
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Figure 7. Contours of flow speed around the optimum airfoils for different Re.

Figure 8. Airfoil efficiency for a range of Reynolds numbers from the literature and present results.

Re. For example, McMaster et al. (McMasters and Henderson 1980) identified an interval of Re
between 104 and 106 (region between solid lines marked with dots), where the L/D of most smooth
airfoils increases from less than 10 to more than 100. Conversely, rough foils have a more gentle
increase of L/D versusRe (region between short dash lines marked with waves), due to their ability
to promote transition near the leading edge. Similarly, Schmitz (Schmitz 1967) found that flat plates
have a smoother L/D trend (long dash line) because leading edge separation promotes transition.

At the lowest Re tested, Re = 104, the 4-digit NACA airfoils perform better than flat plates.
However, the visual extrapolation of our results toward lower Re suggests that, at Re = 103, a
4-digit NACA airfoil would have similar performance than a flat plate. Our optimal airfoils have
higher L/D than those presented by McMaster et al. (McMasters and Henderson 1980) atRe = 104

and 3× 104, and similar L/D at Re = 105 and 106. This is not surprising given that the foils that
McMaster et al. tested were optimised for critical and supercriticalRe. Only specialised airfoils that
adopt a ‘laminar rooftop’, such as those developed by Liebeck (Liebeck 1978), allow much higher
efficiency at high Re.
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Figure 9. Trends of the design variables with Re.

Optimum thickness

It has been observed that thinner airfoils allow higher efficiency than thicker airfoils at low Re.
Lilienthal (Lilienthal 1911), who studied bird wings at low Re, noted for the first time that curved
thin plates performed better than thick airfoils. When the influence ofRewas then better understood,
it was found that airfoil efficiency increases with Re, and eventually exceeds that of thin plates
(Schmitz 1967). Sunada et al. (S. Sunada, Sakaguchi, and Kawachi 1997; S Sunada et al. 2002)
tested a range of airfoils and flat and curved plates at Re = 4× 103 and found that, at such low
Re, the curved plates are the most efficient. Lissaman (Lissaman 1983) compared wing sections
of efficient fliers at increasing Re: from insects, through birds, to aircraft, and noted that the
thickness-to-chord ratio of these sections increased with Re. Figure 8 shows the efficiency of the
dragonfly Anisoptera, the pigeon Columbidae, the SD7003 and the NACA4412, which all fit the
trend suggested by McMasters et al. (McMasters and Henderson 1980) for smooth airfoils.

The proposed monotonic increase of t/c with Re is not confirmed by present results. In fact, as
shown in figure 9a, t/c is roughly a step function of Re, with the step occurring between Re = 105

and 3× 105; the point from which with increasingRe the boundary layer remains attached along the
entire airfoil. The trend of xf/c with Re is also non monotonic: xf/c decreases when trailing edge
separation occurs, and then increases for higherRe (figure 9b). Conversely, f/c ≈ 3% for everyRe.
Therefore, we conclude that in order to generate a constant CL = 0.6, the optimal camber remains
constant while the angle of attack is varied to achieve the desired lift.

CONCLUSIONS

In this paper we propose a numerical model for the optimisation of airfoils across a range of
Reynolds numbers (Re) from 104 to 3× 106. We consider 2D unsteady incompressible flow, a
γ −Reθt transition model with a κ− ω SST turbulence model, and we couple the fluid solver with
a covariance matrix adaptation evolutionary optimisation algorithm. We use this approach to find
the optimal 4-digit NACA airfoil that maximises the lift-over-drag ratio allowing an arbitrary chosen
lift coefficient of 0.6.

We investigate the numerical and modelling errors performing 3D simulations with the same
numerical setup, Large Eddy Simulations and Xfoil simulations, in addition to comparisons with
experimental data available in the literature. We show that the 2D simulations allow the prediction
of the separation, transition and reattachment within approximately 10% of the chord compared
with experimental data. In the range of validity of Xfoil, i.e. when natural laminar-to-turbulent
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transition occurs and separation is limited within a laminar separation bubble, it shows comparable
performances. The 3D simulations do not offer a significant improvement compared to the 2D
simulations, while the Large Eddy Simulations allows a better prediction of the transition and
reattachment locations.

At transitional Reynolds numbers, the largest numerical uncertainty is the one due to the grid
resolution and it decreases withRe. For the lift coefficient, it ranges from 8% to 0.003%, and for the
drag coefficient it ranges from 19% to 2%. We find approximately the same grid uncertainties also
for a similar test case of an SD7003 airfoil at Re = 6× 104, where experimental data is available.
For this case, the uncertainties due to the time resolution, the round off error and the convergence
are all more than one order of magnitude smaller. These level of uncertainty are sufficiently small to
evaluate the performances of an airfoil across the range of Re considered. In fact, the lift-over-drag
ratio of the optimal 4-digit NACA airfoils increases by 300% for every tenfold increase in Re.

It has been observed that the thickness-to-chord ratio of wing sections of efficient fliers, both man
made and natural, increases monotonically with Re. Our results, however, show that the optimal
thickness does not increase monotonically. On the contrary, it is almost constant at low and highRe,
and shows a step increase whenRe is sufficiently high to prevent separation or to allow reattachment
and the formation of a laminar separation bubble. In order to generate a constant lift coefficient,
which is largely dictated by angle of attack and camber, the angle of attack decreases monotonically
with Re, while the camber remains ca. 3% at every Re. These results suggest that the airfoil shapes
of insect and bird wings, that are the consequence of natural evolution, may not be aerodynamic
optima when considering solely the maximisation of lift-to-drag ratio.
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