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Abstract 11 

Colonies of neotropical army ants of the genus Eciton Latreille offer some of the most captivating examples of 12 

intricate interactions between species, with hundreds of associated species already described in colonies of Eciton 13 

burchellii Westwood. Among this plethora of species found with Eciton colonies, two genera of staphylinid 14 

beetles, Ecitomorpha Wasmann, and Ecitophya Wasmann, have evolved to mimic the appearance and parallel the 15 

colouration of the most abundant ant worker cast. Here, we study for the first time the association of these ant-16 

mimicking beetles with their ant host in an evolutionary and population genetics framework. The central emphasis 17 

is on colonies of E. burchellii, the only Eciton species that harbours both genera of ant-mimicking beetles. 18 

Phylogenetic and population structure analyses using the same mtDNA COI region (802bp) for ants and beetles 19 

indicated that speciation patterns of the myrmecophiles were congruent with specialization to a particular Eciton 20 

(sub)species. Therefore, current taxonomic treatments of Eciton and its Ecitomorpha and Ecitophya associates 21 

need revision. Molecular clock analyses suggested that diversification of the Eciton hosts pre-date that of their 22 

guests, with a possible earlier association of Ecitophya (found with a large number of Eciton species) than with 23 

Ecitomorpha (found only with E. burchellii colonies). Population-level analyses revealed that patterns of 24 

diversification for the myrmecophiles are also consistent with specialisation to a particular host across broad 25 

geographical areas but not at small geographical scales, with gene flow within each species found between host 26 

colonies even across landscape features that are strong barriers for Eciton female-mediated gene flow.  27 

Keywords 28 

Gene flow; mimicry; mitochondrial DNA; myrmecophily; myrmecophory; population structure; speciation; 29 

taxonomy 30 
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Introduction 31 

The study of associations between species is vital if we are to understand the evolution of biological diversity 32 

(Thompson, 2013). This was recognised by Darwin in the closing paragraph of On the Origin of Species by Means 33 

of Natural Selection (1859) when he used the term ‘entangled bank’ to refer to the interaction between species that 34 

form biological communities, as highlighted by Thompson (1994). Nature is full of examples of intricate and 35 

intimate associations between different species but it is in the world of ants where some of the most numerous and 36 

astonishing associations can be found (Hölldobler and Wilson, 1990). Among the ants, army ants harbour the most 37 

extensive array of species associations, with multiple vertebrate and invertebrate associate species exploiting the 38 

ants and the different environments and homeostatic conditions that their colony life creates (Gotwald Jr., 1995; 39 

Hughes et al., 2008). Of all army ants, those of the genus Eciton, inhabiting the tropics of the New World, are the 40 

ones exhibiting the most captivating display of associates (Gotwald Jr., 1995), with 557 species already recorded 41 

with Eciton burchellii and many more still to be described (Ivens et al., 2016; Rettenmeyer et al., 2011). Associates 42 

found with Eciton army ants include, among others, mites that feed on secretions and hemolymph of the ants; flies 43 

that feed on the middens’ refuse; beetles that steal prey from the ants or predate on the ants or their brood; the 44 

iconic army-ant-following birds that feed on arthropod prey flushed out by the ants during their raids; and 45 

butterflies that feed on droppings from ant-following birds (Gotwald Jr., 1995; Kistner, 1979; Rettenmeyer et al., 46 

2011; Schneirla, 1971) 47 

 48 

As part of this plethora of associates, some have evolved to conceal their presence among the army ants through 49 

chemical, tactile and morphological mimicry (Gotwald Jr., 1995; Kistner, 1979). These ‘imposters’ have evolved 50 

different strategies to associate with army ants, with staphylinid beetles having mastered the art of blending in 51 

with the ants by evolving to resemble the appearance of their hosts (Hölldobler and Wilson, 1990; Kistner and 52 

Jacobson, 1990; Maruyama and Parker, 2017). Two genera of myrmecomorph (ant-like) staphylinid beetles, 53 

Ecitomorpha and Ecitophya, both in the subfamily Aleocharinae (tribe Athetini; Elven, Bachmann, & Gusarov, 54 

2012), are found with neotropical army ants of the genus Eciton. These two genera of beetles are highly specialized 55 

to the epigaeic patterns and nomadic life of Eciton army ants and both mimic the most abundant worker cast in 56 

Eciton colonies (Seevers, 1965); the media workers  (Franks, 1985). Both genera present similar morphological 57 

modifications that confer resemblance to their host: similarity in surface sculpturing, subpetiolate and ellipsoidal 58 

abdomens, slender heads and pronota, and long appendages (Seevers, 1965). Their appearance is considered 59 

moderately ant-like as they are not a perfect mimic of the ants, but their colour parallels that of the species or 60 
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subspecies of Eciton with which they are associated (Akre and Rettenmeyer, 1966; Kistner and Jacobson, 1990; 61 

Seevers, 1965). The two genera are mainly distinguished by Ecitophya presenting a much slender body and longer 62 

appendages than Ecitomorpha, with a head more than twice as long as wide, a bilobed mentum, slender gula with 63 

sutures not converging in the front, longer antennae (more than six times as long as the head width) but with the 64 

terminal segments of the antennae not much wider than the preceding segments (terminal segments in Ecitomorpha 65 

are more club-shaped) (Seevers, 1965).   66 

 67 

The mimicry of Ecitomorpha and Ecitophya to Eciton media workers is likely to be both an adaptive response to 68 

avoid predators such as ant-following birds (Batesian mimicry), as well as an adaptation for integration into the 69 

ant colony and avoidance of host aggression - Wasmannian mimicry (Parker, 2016). The presence of Ecitomorpha 70 

and Ecitophya in Eciton colonies is rare (and sometimes absent), with many colonies presenting less than one of 71 

these beetles per 1,000 worker ants. These two myrmecophile genera are considered hunting guests of Eciton army 72 

ants, as they are found running among ants in raiding columns where they feed on dropped prey or at booty caches 73 

(Kistner and Jacobson, 1990). These beetles are also found in emigration columns (Akre and Rettenmeyer, 1966; 74 

Kistner and Jacobson, 1990) when the conspicuously nomadic Eciton colonies move to another location to set up 75 

their new bivouac (temporary nest). During Eciton colonies emigration, Ecitomorpha and Ecitophya individuals 76 

run in the centre of the columns or ride on prey captured by the ants or on ant pupae (Kistner and Jacobson, 1990). 77 

Therefore, they are adapted to the movement and life cycle of their host (Akre and Rettenmeyer, 1966), as has 78 

been shown for other Eciton myrmecophiles (Berghoff et al., 2009; Von Beeren et al., 2016a, 2016b). 79 

 80 

Taxonomically, the genus Ecitophya was initially divided into five species acknowledging the colour parallel 81 

between this myrmecophile and its Eciton hosts (Reichensperger, 1933). Ecitophya rapaxae Mann found 82 

associated with the ant Eciton rapax Smith, Ecitophya consecta Mann associated with Eciton vagans Olivier, 83 

Ecitophya gracillima Mann that is associated with Eciton hamatum Fabricius, and Ecitophya simulans Wasmann 84 

and Ecitophya bicolor Reichensperger associated with E. burchellii. The latter two species were later grouped into 85 

a single species, E. simulans, as it was considered that specimens of Ecitophya collected with E. burchellii colonies 86 

did not differ sufficiently to be considered as separate species (Kistner and Jacobson, 1990; Seevers, 1965). 87 

Another species found associated with Eciton lucanoides Emery was later described as Ecitophya rettenmeyeri 88 

(Kistner and Jacobson, 1990). 89 
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Ecitomorpha beetles have only been found with the army ant Eciton burchellii, with the first specimens of 90 

Ecitomorpha described by Wasmann in 1889 as Ecitomorpha arachnoides (Akre and Rettenmeyer, 1966). 91 

Reichensperger divided this genus into four species taking into account the colour polymorphism within Eciton 92 

burchellii: Ecitomorpha arachnoides Wasmann, Ecitomorpha nevermanni Reichensperger, Ecitomorpha 93 

breviceps Reichensperger and Ecitomorpha melanotica Mann (Reichensperger, 1935, 1933). However, due to the 94 

difficulty in finding consistent morphological characters (besides colouration) supporting the separation of these 95 

species, they were subsequently lumped back into a single species, Em. arachnoides (Kistner and Jacobson, 1990; 96 

Seevers, 1965). 97 

 98 

In this study, we investigated for the first time in an evolutionary and population genetics framework the interaction 99 

of Ecitomorpha and Ecitophya ant-mimicking beetles with their Eciton hosts; in particular, E. burchellii, as it is 100 

the only Eciton species known to host both genera of beetles. Genetic analyses of ants and beetles collected in 101 

Panama, a geographical area where many different Eciton species have overlapping ranges (Watkins, 1976), were 102 

conducted to test the following hypotheses: (i) considering the strong level of association of Ecitophya and 103 

Ecitomorpha with Eciton,  phylogenetic patterns of the myrmecophiles will mirror that of their host,  (ii) due to 104 

the dependence of these two genera on Eciton’s hunted prey and the pedestrian dispersal capability of the queen 105 

and workers, the level of specificity between host and myrmecophile will be observable at broad geographical 106 

scales, (iii) if myrmecophiles are truly host-specific and have evolved and diverged via increased specification on 107 

a particular Eciton host, molecular patterns should support earlier taxonomic classifications of Ecitophya and 108 

Ecitomorpha by Reichensperger (i.e. each Eciton species will host a particular Ecitophya and Ecitomorpha 109 

species).  110 

 111 

Methods 112 

Study area and sampling 113 

Sampling for this study was targeted on colonies of E. burchellii ssp. foreli Mayr and E. b. ssp. parvispinum Forel, 114 

the two most-studied E. burchellii subspecies. These two subspecies are highly epigaeic and their distribution 115 

ranges overlap in Panama, Costa Rica, and Honduras (Watkins, 1976). Descriptions of these species highlight their 116 

morphological similarity (Borgmeier, 1955; Santschi, 1925), with main differences reported being the colouration 117 

of media workers, E. b. foreli having black head and mesosoma but reddish metasoma, and E. b. parvispinum’s 118 

media workers having complete black bodies. However, studies assessing the genetic differences between these 119 
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two subspecies in view of their current taxonomic treatment have yet to be conducted. This study focused on 120 

sampling of colonies in Panama, an area where the geographical range of both subspecies partly overlaps. Three 121 

main areas of Panama were sampled (Fig. 1); in West Panama the Bosque Protector Palo Seco (BPPS) and the 122 

adjacent Reserva Forestal Fortuna (RFF), and in Central Panama the Área Protegida San Lorenzo and its buffer 123 

zone (APSL). As the Chagres River was found to be a barrier for E. b. foreli when gene flow was estimated with 124 

mtDNA markers (Pérez-Espona et al., 2012), this area was divided into two (APSLA and APSLB) to group 125 

colonies from each side of the Chagres River.  In total, 13 colonies of E. b. foreli (4 in BPPS, 6 in APSLA and 3 126 

in APSLB) and 12 colonies of E. b. parvispinum (all in RFF) for which we found associated Ecitophya and/or 127 

Ecitomorpha beetles were sampled (Fig. 1; Table 1). In addition, four colonies of E. hamatum and the associated 128 

Ep. gracillima: 1 colony in RFF, 2 colonies in BPPS, and 1 in Soberanía National Park (SOB), and one colony of 129 

E. lucanoides and its associated Ep. rettenmeyeri collected in RFF were opportunistically sampled. The number 130 

of Ecitophya and Ecitomorpha beetles sampled and sequenced from E. b. foreli and E. b. parvispinum colonies 131 

are summarized in Table 1. Although the number of beetles collected is not directly comparable between colonies, 132 

as effort spent searching and collecting the beetles was constrained by the time of the day a colony was 133 

encountered, the maximum number of beetles collected in a colony was 78 Em. arachnoides (colony E114 134 

collected in RFF with E. b. parvispinum) and 40 Ep. simulans (colony E89 collected in BPPS with E. b. foreli).  135 

 136 

 The sampling protocol for our study consisted of walking all available trails and adjacent less accessible areas 137 

(off trails), through daily extensive walks (9 a.m. until dusk), to collect individuals from as many colonies of E. b. 138 

foreli and E. b. parvispinum as possible. Once an E. burchellii colony was encountered, workers from all castes 139 

were sampled from raid or emigration columns by removing them with the help of long forceps. Ant columns were 140 

then carefully observed at several points of the raid or emigration columns to sample Ecitophya and Ecitomorpha 141 

beetles with straight tube aspirators. Ant column observations per colony lasted several hours or until dusk, 142 

depending on the time of the day when a colony was encountered. Collections were simultaneously conducted by 143 

two people in order to maximise sampling of the beetles. All samples were preserved in 99% ethanol for further 144 

examination and subsequent genetic studies. 145 

 146 

Laboratory procedures 147 

DNA extraction 148 
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Abdomens of ants and beetles were carefully dissected before DNA extractions to avoid any contamination from 149 

consumed prey. To facilitate DNA extraction, the tissue samples were deposited in a 1.5mL Eppendorf tube and 150 

briefly immersed in liquid nitrogen prior to extraction procedures. Genomic DNA was extracted using the DNeasy 151 

tissue kit (QIAGEN) following the manufacturer’s instructions. 152 

 153 

 Sequencing of the mitochondrial marker Cytochrome Oxidase subunit I 154 

Ants and ant-mimicking beetles from both genera, Ecitomorpha and Ecitophya, were sequenced for the same 155 

region of the mitochondrial cytochrome oxidase subunit I gene (COI, cox1). Mitochondrial DNA markers are the 156 

most widely used genetic markers in species-level phylogenies and DNA barcoding studies. Due to their haploid 157 

nature, maternal inheritance, and smaller population size, sequences derived from mtDNA coalesce over a shorter 158 

time scale than those derived from nuclear DNA (Simon et al., 2006), with reciprocal monophyly at the species 159 

level reached faster after speciation in mtDNA phylogenies than in nuclear DNA phylogenies (Sunnucks, 2000). 160 

The faster mutation rate of mtDNA markers has been shown to offer more powerful resolutions of relationships 161 

between closely related taxa in phylogeographic and population-level studies (Avise, 2000; Zhang and Hewitt, 162 

2003).  In insects, mutation rates of mtDNA markers have been estimated to be 2 to 9 times faster than nuclear 163 

protein-coding genes (Moriyama and Powell, 1997) making them more suitable for the study of closely related 164 

species that have diverged recently (Lin and Danforth, 2004). COI fragments were amplified from the Eciton 165 

samples using a modified version of the primer pairs CI13/CI14 (Hasegawa et al., 2002) and Ben/Jerry (Simon et 166 

al., 1994). Details of the modified primers and Polymerase Chain Reactions (PCR) conditions can be found in 167 

Pérez-Espona et al. (2012). Fragments of COI were amplified from Ecitomorpha and Ecitophya using the primer 168 

pairs C1-J-1634/C1-N-2317 and C1-J-2216/C2-N-3431 (Maus et al., 2001). These beetle PCR amplifications were 169 

conducted in a total volume of 25µL, using 10-15ng of template DNA, 1X NH4 buffer, 2.5mM MgCl2, 0.6µM of 170 

each primer, 1 unit of BIOTAQ polymerase (Bioline, London) and double processed tissue culture distilled water 171 

(Sigma-Aldrich, Buchs, Switzerland) to bring the volume up to 25µL. The PCR cycling protocol included an initial 172 

denaturation step of 94°C for 3 min, a three-step cycling consisting of a denaturing step of 94°C for 30 s, annealing 173 

at 51°C for 30 s and ramping at 0.3°C/s to an extension step of 72°C for 1 min. The cycle was repeated 29 times 174 

and was followed by a final extension of 72°C for 10 min. PCR products were run on a 1.5% agarose gel and 175 

visualised using ethidium bromide staining. Successful amplifications were purified using EXOSAP (GE 176 

Healthcare), and forward and reverse strands for each of the fragments sequenced in two reactions using 6µL of 177 

purified PCR product, 4µL of the reaction mix DYEnamic ET Terminator Cycle Sequence Kit (Amersham, GE 178 
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Healthcare) and 0.5µL of primer. Cycle sequencing consisted of 25 cycles including a denaturation step of 95°C 179 

for 20 s, an annealing step of 50°C for 15 s and an extension step of 60°C for 1 min. Sequences were run on a 180 

MegaBACETM 1000 capillary sequencer (Amersham GE Healthcare) at The University of Bristol.  181 

Electropherograms from the forward and reverse sequencing reads were edited and assembled into contigs using 182 

the software Geneious version 10 (Biomatters: http://www.geneious.com). The resulting consensus reads from 183 

each individual were sorted into unique haplotypes and subsequently manually aligned in Geneious, together with 184 

some additional sequences obtained from four individuals of Eciton dulcium Forel (collected in RFF and APSL) 185 

and sequences obtained from GenBank (Accession numbers: AY233691-4, AY233696, GQ980948). These 186 

additional sequences were selected as ingroup placeholders and outgroups based on the army ant phylogeny of 187 

Brady (2003) and the army ant-mimicking beetle phylogeny in Maruyama and Parker (2017). The resulting 188 

alignments were all trimmed to include the same region COI fragment (802bp). All unique sequences were 189 

submitted to DDBJ under the accession numbers LC258007-LC258019 for the Eciton sequences, and LC258020-190 

LC258064 for the Ecitophya and Ecitomorpha sequences. 191 

 192 

Phylogenetic and molecular clock analyses 193 

Unique haplotype alignments for Eciton and Ecitomorpha with Ecitophya were initially evaluated for nucleotide 194 

compositional heterogeneity using the Chi-square test in PAUP version 4.0b10 (Swofford, 2002), and using 195 

tetrahedral plots and matched-pairs tests for symmetry implemented in SeqVis version 1.5 (Ho et al., 2006). The 196 

more conservative Chi-square test provided no significant evidence for compositional heterogeneity in either of 197 

the alignments. The more sensitive tetrahedral plots and matched-pairs tests for symmetry also provided no strong 198 

evidence for compositional heterogeneity in the Ecitophya-Ecitomorpha alignment; however, there was evidence 199 

for some heterogeneity in the Eciton alignment: tetrahedral plots contained co-dispersed clusters of data points 200 

and the number of the matched-pairs tests for symmetry was >5% at P = 0.05 and >1% at P = 0.01. To explore 201 

whether data re-coding could reduce the level of compositional heterogeneity in the Eciton alignment, C and T 202 

nucleotides were re-coded as Ys. SeqVis analysis of this re-coded DNA alignment revealed no significant evidence 203 

for heterogeneity. Therefore, in addition to analyzing the full Eciton DNA alignment, we also analyzed a data 204 

reduced AGY form of the Eciton alignment to account for artefacts that may arise from compositional 205 

heterogeneity. 206 

 207 

http://www.geneious.com/
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Phylogenies were generated from the Eciton and Ecitophya-Ecitomorpha DNA alignments using Maximum 208 

Parsimony and Bayesian methods. For the Maximum Parsimony analysis, heuristic searches were conducted using 209 

PAUP, with the full Eciton and Ecitophya-Ecitomorpha alignments and the AGY re-coded Eciton alignment. Each 210 

heuristic search started from a random tree with 50 random addition replicates, one tree was held per step, saved 211 

trees set to a maximum of 10,000 and other settings left at default values. Confidence values were generated using 212 

non-parametric bootstrapping (10,000 replicates). For the Bayesian inference, the DNA alignments were analysed 213 

as a single partition using a mixed nucleotide substitution model and gamma corrected rate heterogeneity across 214 

sites with the software MrBayes version 3.2.6 (Ronquist et al., 2012). Parameter distributions were approximated 215 

using reversible jump Metropolis-coupled Markov chain Monte Carlo methods, with three chains of 10,000,000 216 

generations, chain heating at 0.05, sampling frequency at 1,000 and other settings at default values. Posterior 217 

samples of parameter estimates were assessed using generation plots, distribution plots, the potential scale 218 

reduction convergence diagnostic and estimated sample sizes as recommended in the MrBayes manual. These 219 

revealed that the total number of generations and default burnin of 25% appeared to be sufficient to acquire final 220 

parameter estimates from a stationary distribution. 221 

 222 

To analyse the Eciton alignment under AGY coding using Bayesian inference, we used the three-state 'AGY' 223 

model implemented in the software mcmcphase within the PHASE version 3.0 software package 224 

(https://github.com/james-monkeyshines/rna-phase-3). Heterogeneity across sites was modelled using a gamma 225 

correction, and a chain length of 10,000,000 iterations, sampling period at 1,000 and burnin of 25% were used, as 226 

in the MrBayes analyses. Perturbation proposal priorities were 10 for the tree and 1 for the substitution model. 227 

Within these tree and model components, the proposal priorities were 1 for topology changes, 10 for branch lengths 228 

(with an exponential (10) prior), 1 for frequencies, 1 for rate ratios, and 1 for the gamma parameter. Generation 229 

versus log probability plots, parameter distribution plots, and repeated analyses starting from different random 230 

seeds indicated that these settings generated final posterior estimates from a stationary distribution. Tree files 231 

generated using mcmcphase were analysed using the associated program mcmcsummarize and also Geneious. 232 

 233 

Chronological estimates for key diversification events were obtained with additional Bayesian analyses conducted 234 

using MrBayes. For these analyses, we reduced the level of haplotype sampling in order to include only the most 235 

abundant haplotypes and key biogeographic placeholders. This was to ameliorate the impact of intra-specific 236 

differences in haplotype sampling between the Eciton and Ecitomorpha-Ecitophya datasets that could have a 237 
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negative impact on the date estimation procedure.  The molecular clock analyses used the same underlying model 238 

and chain settings as described for MrBayes above with an outgroup-ingroup division enforced as a strong prior 239 

topological constraint. Two different methods of clock calibration were explored: a standard 1% per million years’ 240 

rate applied to both the Eciton and Ecitomorpha-Ecitophya datasets, and fixed date calibrations of 26 million years 241 

on the most recent common ancestor (MRCA) of Eciton following the results obtained by Brady (2003), and a 242 

date of 25 million years on the Ecitomorpha-Ecitophya divergence following the results in Maruyama and Parker 243 

(2017). Based on the data in Brady (2003) and Maruyama and Parker (2017), a uniform tree age prior of 10-100 244 

million years was used. Clock model options were explored using stepping-stone sampling estimates of the 245 

marginal likelihood. The Thorne-Kishino 2002 ‘TK02’ relaxed clock had the smallest log likelihood but this was 246 

less than 5 units better than the independent gamma rates ‘IGR’ relaxed clock and strict clock in both the Eciton 247 

and Ecitophya-Ecitomorpha datasets. This preliminary analysis thus provided no strong evidence in favor of either 248 

of these alternative clock models and, consequently, all three were used to generate date estimates. Posterior 249 

samples of parameter estimates were assessed for stationarity as described above. 250 

 251 

Population-level analyses of E. burchellii and associates 252 

Genetic diversity analyses for E. b. foreli and E. b. parvispinum colonies and their associated Ecitophya and 253 

Ecitomorpha beetles were conducted using the softwares Arlequin version 3.1 (Excoffier et al., 2005) and DnaSP 254 

version 5 (Librado & Rozas, 2009). Genetic diversity was estimated in terms of number of haplotypes, segregating 255 

sites (S) and average number of nucleotide differences (k). In order to compare divergence within and between 256 

species, S and k were also calculated for the different Eciton, Ecitophya and Ecitomorpha species included in our 257 

study. Population structure for the host and each of the associates was estimated using a hierarchical analysis of 258 

molecular variance (AMOVA) with the software popART (http://popart.otago.ac.nz). The partitioning of genetic 259 

variation was assessed within and among two main geographical areas, West Panama (BPPS) and Central Panama 260 

(APSLA, APSLB), and significance values obtained after 1,000 permutations. The software popART was also 261 

used to build Median Joining haplotype networks (epsilon = 0) to assess haplotype relationships and identify 262 

patterns of haplotype structure for E. burchellii and the myrmecophile beetles at different geographical scales.  263 

 264 

Results 265 

Diversification and species relationships 266 

http://popart.otago.ac.nz)/
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Phylogenetic and molecular clock analyses provided further insights into the evolution and diversification of the 267 

Eciton species and their Ecitophya and Ecitomorpha beetle associates (Figs. 2 & 3, Table 2 & 3). Analyses using 268 

the full and reduced datasets using different methods (i.e. standard and AGY coded, Parsimony and Bayesian 269 

analyses) resolved the same suites of well-supported haplotype relationships; this indicated that these were robust 270 

to the nucleotide compositional heterogeneity found in the Eciton DNA alignment. With the Eciton dataset, 271 

haplotypes of E. dulcium and E. hamatum, and the subspecies E. b. foreli, were grouped according to these 272 

taxonomic categories with strong statistical support (≥ 99% Parsimony bootstrap support, Bayesian posterior 273 

probabilities of 1.0). The subspecies E. b. foreli and E. b. parvispinum were also resolved as a single group but 274 

with lower support (≥ 60% bootstrap, ≥ 0.91 posterior probability). Other basal relationships between Eciton taxa 275 

included in this study were poorly supported in all phylogenetic analyses. In the Ecitophya-Ecitomorpha analyses, 276 

haplotypes assigned to Ecitomorpha and Ecitophya were clearly separated into these genera level categories (≥ 277 

99% bootstrap, posterior probability of 1.0). The Em. arachnoides haplotypes formed two well-supported groups 278 

that corresponded to their E. burchellii host (≥ 98% bootstrap, posterior probability of 1.0); E. b. foreli and E. b. 279 

parvispinum. The Ep. simulans haplotypes also consisted of two well-supported groups following their E. 280 

burchellii host (100% bootstrap, posterior probabilities of 1.0). However, these two Ep. simulans groups formed 281 

a complex with two groups of Ep. gracillima (associated with E. hamatum). Within this complex, Ep. simulans 282 

(associated with E. b. foreli) was clearly grouped with Ep. gracillima (87% bootstrap, posterior probability of 283 

0.95). Ep. rettenmeyeri (associated with E. lucanoides) was separated from the other Ecitophya species with 92% 284 

parsimony bootstrap and 0.78 posterior probability support. Lineage relationships within Ecitophya, therefore, did 285 

not mirror that of their Eciton host. The number of segregating sites (S) and the average pairwise nucleotide 286 

differences (k) between species revealed further insights into the taxonomy and species relationships of the 287 

myrmecophiles and their hosts (Table 3). Levels of divergence estimated as S and k between E. b. foreli and E. b. 288 

parvispinum were similar (or slightly higher) to those between taxa currently recognised as separate Eciton species. 289 

Although speciation patterns of Ecitophya did not mirror those of the hosts, a strong divergence was observed 290 

between Ecitomorpha or Ecitophya associated with each subspecies of E. burchellii. Divergence of Ecitomorpha 291 

was only assessed for two E. burchellii subspecies so further subspecies would need to be studied to elucidate 292 

further speciation patterns.  293 

 294 

The molecular clock analyses recovered identical sets of Eciton and Ecitophya-Ecitomorpha haplotype 295 

relationships but with different associated date estimates depending on the clock model and calibration method 296 
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used (Table 2). Analyses calibrated using fixed dates taken from the literature were consistently older than date 297 

estimates calibrated using a 1% rate, while differences arising from the use of different clock models were subtler. 298 

Regardless of the clock model or calibration method, the relative age differences between Eciton and Ecitophya-299 

Ecitomorpha lineage divergences were similar in all molecular clock analyses (Table 2, Figure 3). Although the 300 

confidence intervals for the divergence estimates were wide and therefore we should be cautious with 301 

interpretations, median estimates of divergences indicated that the diversification of the genus Eciton is likely to 302 

be older than that of the associated myrmecophile genera Ecitophya and Ecitomorpha. This was the case when 303 

considering date estimates for the MRCA of Eciton species taken from literature (used as a fixed 26 MYA 304 

calibration date) and when considering independently obtained date estimates derived from the 1% calibration rate 305 

(Table 2, Fig 3). Median estimates for diversification of the main Eciton species (or subspecies) also appears to 306 

pre-date the diversification of the main myrmecophile lineages (Table 2, Fig 3). Poor branch support for most of 307 

the basal Eciton relationships (Fig 2, Fig 3) may, in part, be due to the rapid diversification of these primary Eciton 308 

lineages following the MRCA, as other studies using nuclear markers and phylogenomics have also failed to 309 

unambiguously resolve these species relationships (see Discussion). Key among the main Eciton diversification 310 

events was the MRCA of E. b. parvispinum and E. b. foreli, which pre-dated the diversification of the associated 311 

myrmecophiles Em. arachnoides and the Ep. simulans – Ep. gracillima complex (Table 2, Fig 2, Fig 3). Among 312 

the two genera of myrmecophiles, median estimates for the diversification of Ecitophya, which is found with more 313 

species of Eciton, appear to be older than those for Ecitomorpha, although confidence intervals did overlap for 314 

these estimates (Table 2, Fig 3). The genus Ecitophya has been reported in colonies of E. rapax, E. vagans, E. 315 

burchellii, E. hamatum and E. lucanoides while Ecitomorpha has only been reported for E. burchellii.  316 

 317 

Population-level analyses of E. burchellii and its Ecitophya and Ecitomorpha associates 318 

The diversification of the ant-mimicking beetles Ecitophya and Ecitomorpha with E. burchellii was further 319 

confirmed by the haplotype networks (Fig. 4). The networks clearly indicated a strong divergence between E. b. 320 

foreli and E. b. parvispinum haplotypes, with 90 segregating sites among haplotypes of both subspecies (Fig. 4). 321 

This divergence was mirrored in the associated beetles; however, the divergence between haplotypes in the beetles 322 

was smaller than that found for the host (55 segregating sites in Ep. simulans and 50 segregating sites in Em. 323 

arachnoides).  324 

 325 
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The haplotype networks confirmed that the diversification of Ecitophya and Ecitomorpha with E. b. foreli was 326 

also prevalent over broad geographical areas. Haplotypes of ants and beetles collected in West Panama (BPPS) 327 

markedly differed from those collected in Central Panama (APSLA and APSLB). Divergence time estimates for 328 

the separation of haplotype lineages between West and Central Panama were older for E. b. foreli than for the 329 

associate Ep. simulans (Fig. 3, Table 2). Although the haplotypes of Em. arachnoides found in the two main 330 

geographical study areas were clearly distinct (Fig. 4), with haplotypes derived from two distinct lineages found 331 

in West Panama (BPPS), the phylogenetic analyses did not support a strong grouping of haplotypes according to 332 

these geographical areas (Fig. 2). In the Central Panama study area (APSL) the Chagres River was a strong gene 333 

flow barrier for E. b. foreli females, with median estimates of divergence of E. b. foreli haplotypes either side of 334 

the river estimated at 0.4-1.6 MYA (Fig. 3, Table 2). The Chagres River, however, was not a gene flow barrier for 335 

either Ecitomorpha or Ecitophya, as haplotypes characteristic of a particular species of these myrmecophiles were 336 

shared between their Eciton host colonies either side of the river (Fig. 4). 337 

 338 

Estimates of population structure were higher for E. b. foreli than for the associated Ecitophya and Ecitomorpha 339 

beetles (Table 4). In the host, genetic differentiation was found at all levels of analyses, with the majority of the 340 

genetic variation explained by differences among groups (76.31%), and hardly any variation explained due to 341 

differences within populations (0.20%).  In Ecitophya and Ecitomorpha, most of the genetic variation was also 342 

explained by differences among groups (84.62% and 79.57%, respectively) but genetic variation due to differences 343 

within populations (15.51% and 22.03%, respectively) was much larger than that found for the host. Negative 344 

values in variation among populations within groups found in Ecitophya and Ecitomorpha indicate the large 345 

haplotype variation within populations and the sharing of haplotypes between these. No genetic variation was 346 

attributed to differences among populations collected on either side of the river within each of the beetle species, 347 

further corroborating that the Chagres River was not a gene flow barrier for these myrmecophiles. 348 

 349 

Discussion 350 

Taxonomy of Eciton and associated Ecitophya and Ecitomorpha  351 

The phylogenetic analyses and haplotype networks generated for this study revealed that current taxonomic 352 

treatments of E. burchellii and of its Ecitophya simulans and Ecitomorpha arachnoides associates need further 353 

revision to take into account further speciation within these taxa. Morphological descriptions of E. b. parvispinum 354 

have highlighted its black colouration, reduced spines in the metanotum and barely protruding epinotum teeth 355 
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(Borgmeier, 1955; Santschi, 1925), but these characteristics were considered not to warrant species status for E. 356 

b. parvispinum. However, our results clearly indicate that genetic divergence between E. b. foreli and E. b. 357 

parvispinum is as high as (or higher than) between taxa currently considered separate Eciton species. Divergence 358 

estimates calculated in terms of S and k further suggest this speciation, as values between E. b. foreli and E. b. 359 

parvispinum were higher than the those obtained between E. hamatum – E. dulcium and E. hamatum – E. 360 

lucanoides; therefore, indicating that taxonomic treatments of E. burchellii need to be revised. Our results coupled 361 

with those from a recent study phylogeographic study of this species in Central America (Winston et al., 2017), 362 

provide strong evidence that speciation within this taxon has long been underestimated.  363 

 364 

Although divergence between the Eciton species, and within E. burchellii, is clear from our genetic analyses,  365 

phylogenetic relationships between Eciton species were not fully resolved in our study, despite the suitability and 366 

widespread use of COI for resolving relationships between closely related insect taxa (Lin and Danforth, 2004; 367 

Sunnucks, 2000). Weak statistical support for relationships between Eciton species does not appear solely reflect 368 

our choice of COI as a molecular marker, because combined analyses of COI and nuclear markers (Brady, 2003), 369 

and even a recent phylogenomic approach (Winston et al., 2017), also failed to unambiguously resolve these Eciton 370 

species relationships. Rather, the lack of resolution in phylogenetic trees reported here is more likely indicative of 371 

a rapid diversification of lineages within Eciton (Whitfield and Lockhart, 2007). 372 

 373 

Important insights into the taxonomy of Ecitophya and Ecitomorpha were also revealed by our genetic analyses. 374 

The taxonomy of these myrmecophiles has been challenging due to the subtle differences observed in 375 

morphological characters, besides colouration, within each of these genera (Kistner and Jacobson, 1990; Seevers, 376 

1965). The Ecitomorpha species key by Reichensperger was based on head dimensions, thoracic plates 377 

sculpturing, length of the hind tibias and depressions behind the eyes (Reichensperger, 1933).  Further differences 378 

between the species were highlighted in each of the species descriptions; these included different antennae 379 

formation, elytra sculpturing, and colouration in different parts of the body of the specimens. Species 380 

characterisation according to colouration was also indicated in previous descriptions such as that of Em. 381 

melanotica found with E. b. parvispinum (Mann, 1926). Kistner and Jacobson (1990), after analysing a large series 382 

of specimens, concluded that variation in colour was not consistent; however, they reported that black specimens 383 

of Ecitomorpha were more frequently found in geographical areas where E. b. parvispinum was present, and rarer 384 

in areas populated by E. b. foreli. In terms of other morphological features, Kistner and Jacobson (1990) did not 385 
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find consistency either in the shape of the groove of the pronotum or in spermathecas in the male genitalia that 386 

would allow species differentiation. They, therefore, considered that early classifications of the Ecitomorpha 387 

species by Reichensperger could not be supported. For Ecitophya, early species classification by Reichensperger 388 

(1935, 1933) were based on the general appearance of specimens, measurements and characteristics of the head 389 

and legs, differences in antennal segments, elytra sculpturing, presence and characteristics of abdominal bristles, 390 

and the colouration of different body parts. In their analysis of Ecitophya specimens, that included dissections of 391 

male genitalia, Kistner and Jacobson (1990) concluded that only some characteristics of the abdominal bristles, 392 

the relative measurements of size of body parts and the relative length of antennal segments were reliable 393 

characters for species identification. This reduction in the number of reliable characters to distinguish species led 394 

Kistner and Jacobson (1990) to lump some of the earlier species described by Reichensperger into a single species, 395 

E. simulans.  396 

 397 

Our study has shown the importance of the use of genetic studies for resolving taxonomic challenges and has 398 

provided strong evidence of speciation of Ecitomorpha and Ecitophya as a result of their specialisation to their 399 

Eciton hosts. The speciation patterns found in our study for both myrmecophile genera (i.e. specialisation to an 400 

Eciton host) would further support that E. b. foreli and E. b. parvispinum may be considered separate species. The 401 

diversification patterns obtained for Ecitophya and Ecitomorpha were more concordant with initial species 402 

classifications by Reichensperger (1935, 1933) . Divergence estimated as S and k further supported the speciation 403 

of Ecitomorpha and Ecitophya according to their host, with values between Ep. simulans found with E. b. foreli 404 

or E. b. parvispinum differing by a similar number of segregating sites than between Ep. simulans found with E. 405 

b. foreli and those found with Ep. gracillima (found with E. hamatum). Therefore, the current taxonomic treatment 406 

of these Eciton burchellii associates as single species, i.e. Ep. simulans and Em. arachnoides, merits revision to 407 

take into account the speciation patterns revealed by our genetic data. For Ecitomorpha beetles found associated 408 

with E. b. parvispinum we suggest the adoption of the previous name of Em. melanotica Mann. Given our results 409 

and those from Winston et al. (2017) supporting speciation of E. burchellii in Central America, we expect that 410 

further species of E. burchellii and its Ecitomorpha and Ecitophya associates will be reported, as morphological 411 

diversification of E. burchellii within its broad distributional range has long been acknowledged (Kistner and 412 

Jacobson, 1990; Reichensperger, 1935, 1933; Seevers, 1965).  413 

 414 
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The lack of consistent and reliable morphological characters to differentiate species within Ecitomorpha and 415 

Ecitophya reported by Kistner and Jacobson (1990) cannot be explained simply in terms of the recent and rapid 416 

diversification within these genera, as indicated by our genetic analyses. In myrmecophiles, it is expected that 417 

morphological variation between species may be reduced or absent due to strong selection on morphological, 418 

behavioural and physiological characters as adaptations to exploit their hosts (Schonrogge et al., 2002). Often, 419 

species are determined by visual inspection of morphological features; however, chemical and acoustic characters 420 

can be more important for species recognition in arthropods. Future studies of Ecitophya and Ecitomorpha 421 

diversification, therefore, will benefit from thorough analyses of chemical and acoustic characters, as these cues 422 

are likely to be very important for their adaptation to their Eciton hosts (Lenoir et al., 2001).  423 

 424 

Diversification of Ecitophya and Ecitomorpha with Eciton species 425 

Phylogenetic patterns of Ecitophya and Ecitomorpha indicated specialization of these myrmecophiles with their 426 

Eciton hosts, confirming previous observations of ant-resemblance and colouration parallels (Akre and 427 

Rettenmeyer, 1966; Kistner and Jacobson, 1990; Reichensperger, 1933), and behavioural observations such as the 428 

preference of following trails of the host species (Akre and Rettenmeyer, 1968). However, the patterns of 429 

speciation of the myrmecophiles did not mirror those of the host revealing that the beetles’ phylogenies were not 430 

an ‘evolutionary print’ of the host (Thomas et al., 1996). Furthermore, phylogenetic analyses and estimates of S 431 

and k disagreed with previously reported evolutionary relationships between Ecitophya species based on 432 

morphological characters (Kistner and Jacobson, 1990). Ep. simulans found with colonies of E. b. foreli were more 433 

closely related to Ep. gracillima (associated with E. hamatum) than to the Ep. simulans found with E. b. 434 

parvispinum. Additionally, Ep. rettenmeyeri (associated with E. lucanoides) was not closely related to Ep. 435 

gracillima as previously inferred by the similar colouration between the ant hosts (Kistner and Jacobson, 1990); 436 

in fact, Ep. rettenmeyeri was sister to the other Ecitophya. 437 

 438 

Confidence intervals for time divergence estimates overlapped slightly between the ants and the myrmecophiles 439 

and, therefore, we cannot discard with certainty potential coevolutionary processes between hosts and guests. 440 

However, median time divergence estimates indicated that diversification patterns of the ants probably pre-dates 441 

that of the associated beetles. We acknowledge that our divergence estimates are derived from a single genetic 442 

marker and therefore we focus our discussion on Eciton and myrmecophile divergences on relative (rather than 443 

absolute) date estimates. Comparisons of median time divergence estimates from the molecular clock analyses for 444 
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both beetle genera suggest that diversification of Ecitophya with Eciton ants is likely to have occurred earlier than 445 

for Ecitomorpha. A possible earlier diversification of Ecitophya, and subsequently a longer time frame to fine-446 

tune their interaction with their host, could explain the association of Ecitophya with a larger number of Eciton 447 

species.   448 

 449 

Myrmecophily in Staphylinidae beetles is an ancient phenomenon, with a fossil of Protoclaviger trichodens gen. 450 

et sp. nov. (Clavigeritae) in amber being dated to the Early Eocene (c. 52 MYA; Parker and Grimaldi, 2014). This 451 

early association of Clavigeritae beetles with ants can explain the remarkable diversity of myrmecophilous species 452 

within this supertribe (Parker and Grimaldi, 2014). High species diversification due to myrmecophily has also 453 

been reported for ant-nest beetles of the genus Paussus L. (subfamily Paussinae; Moore and Robertson, 2014). 454 

Although new species of Ecitophya and Ecitomorpha are likely to be described, due to underestimated speciation 455 

within E. burchellii (and maybe in other Eciton species), the diversification of these two Aleocharinae genera is 456 

not as exceptional as that found for other myrmecophile Staphilinidae such as Paussus. This difference probably 457 

reflects the high specialisation of Ecitophya and Ecitomorpha to the genus Eciton, in contrast to Paussus beetles 458 

that are found associated with different, and sometimes distantly unrelated, ant genera (Moore and Robertson, 459 

2014). Furthermore, our results suggest that contrary to other myrmecophile beetles found associated with Eciton 460 

colonies (e.g. Vatesus), Ecitophya and Ecitomorpha species have evolved more host-specific adaptations, probably 461 

as a result of stronger selection pressures because they are hunting guests of day-time raiding epigaegic army ants.    462 

 463 

Geographical patterns of diversification of Ecitophya and Ecitomorpha with E. b. foreli 464 

Broad phylogeographic patterns of Ecitophya and Ecitomorpha were concordant with their E. b. foreli host, with 465 

a clear separation of haplotypes between the West and Central Panama study areas. However, patterns of 466 

diversification of the host and these two myrmecophiles differed at smaller geographical scales, indicating that 467 

local differences might be the result of the spatial distribution of the host and the capability of dispersal of the 468 

myrmecophiles (Tack and Roslin, 2010; Thompson, 2005). The haplotype networks revealed that Ecitophya and 469 

Ecitomorpha beetles are not colony- or ant-mtDNA lineage-specific even though vertical transmission of 470 

myrmecophiles is likely to occur during colony fission (Schneirla, 1971). Ant colonies with different mtDNA 471 

haplotypes shared myrmecophile haplotypes, indicating that horizontal transmission of Ecitophya and 472 

Ecitomorpha mtDNA lineages occurs between colonies. Horizontal transmission of myrmecophiles between 473 

Eciton colonies has been previously reported for  Vatesus (Akre and Torgerson, 1969), a beetle that does not mimic 474 
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the physical appearance of the ants but most of its life cycle is tightly linked to that of its host (Von Beeren et al., 475 

2016a). Horizontal transmission of Ecitophya and Ecitomorpha individuals, as a potential strategy to avoid 476 

inbreeding within a colony, might occur by dispersal through flight between colonies such as shown for Vatesus 477 

(Chatzimanolis et al., 2004; Von Beeren et al., 2016a), or whenever colony fusion - the aggregation of workers to 478 

another colony after losing their queen (Schneirla, 1940; Schneirla & Brown, 1950) - takes place (Kronauer et al., 479 

2010).  In our study, gene flow between the myrmecophile populations of each species was also found across the 480 

Chagres River despite this being a major gene flow barrier for E. b. foreli females (Pérez-Espona et al., 2012). 481 

Gene flow across the Chagres River, therefore, indicates a higher dispersal capability of the beetles in contrast to 482 

the obligate pedestrian dispersal of Eciton queen and worker ants. Reports of flight in these beetles have only been 483 

anecdotal and limited to observations of hovering of Ep. consecta over a colony of E. vagans when this colony 484 

was spreading to attack the observer (Mann, 1921), and an individual of Ep. gracillima found with a colony of E. 485 

hamatum (Pérez-Espona pers. obs.). In the latter case, hovering was observed when trying to aspirate one 486 

individual from a raiding column. This specimen hovered to seek refuge under some fallen leaves but after a few 487 

minutes tried to follow the ant trail (when it was successfully collected and included in this study). Fully developed 488 

wings with venation characteristic of staphylinids have been described for both Ecitophya and Ecitomorpha 489 

(Kistner and Jacobson, 1990). However, due to the close dependence of these beetles with their specific host and 490 

the relatively low density of colonies, at least for E. burchellii (Franks, 1982), dispersal of the myrmecophiles 491 

between colonies, in particular those located at further distance or separated by landscape features that act as 492 

barriers for Eciton female dispersal, might be challenging. In such scenarios, it is likely that dispersal between 493 

colonies is mediated by large and alate Eciton males when they leave their natal colony in search of conspecific 494 

colonies to find a queen for mating (Gotwald Jr., 1995; Schneirla, 1971). Males of E. b. foreli are produced in 495 

large numbers (c. 3,000) as part of sexual broods (including a small number of queens) when colony fission is 496 

imminent (Franks and Hölldobler, 1987; Gotwald Jr., 1995; Schneirla, 1971). Males have been shown to be strong 497 

fliers and able to disperse over 1km distances (Jaffé et al., 2009). They are therefore responsible for the majority 498 

of gene flow between colonies (Berghoff et al., 2008; Jaffé et al., 2009; Pérez-Espona et al., 2012; Soare et al., 499 

2014). Dispersal of myrmecophiles by ant alate reproductives have been shown in Atta leaf-cutting ants, with 500 

Attafila cockroaches observed on ant queens departing for nuptial flights (Moser, 1967), and similar strategies 501 

have been suggested for the movement of myrmecophiles between Eciton colonies (Kronauer et al., 2010). 502 

 503 
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Ecological and evolutionary studies of myrmecophiles of army ants at the population-level are still in their infancy 504 

due to the difficulty of keeping the host and myrmecophiles in laboratory conditions (Kistner and Jacobson, 1990). 505 

However, as shown in this and recent studies in Vatesus and Tetradonia beetles (Von Beeren et al., 2016a, 2016b), 506 

genetic approaches can shed light on the evolution and levels of specificity of these army ant imposters. Our study 507 

was based on variation in mtDNA therefore future studies aiming to further elucidate the level of association of 508 

Ecitomorpha and Ecitophya, in particular at small geographical scales, would benefit through the use of highly 509 

variable markers such as microsatellites. Using a combination of mitochondrial and microsatellite data in previous 510 

studies has been demonstrated that deforestation has a major impact on the connectivity of E. burchellii 511 

populations (Pérez-Espona et al., 2012; Soare et al., 2014), threatening the long-term persistence not only of these 512 

top neotropical predators but also the multitudes of species associated with them. Further research on Eciton and 513 

their associates is crucial if we are to provide conservation solutions that would guarantee the maintenance of this 514 

manifestation of Darwin’s ‘entangled bank’. 515 
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 666 
Figure legends 667 
 668 
Figure 1. Map of Panama indicating the main study areas. RFF = Reserva Forestal de Fortuna, BPPS = Bosque 669 

Protector de Palo Seco, APSL = Area Protegida de San Lorenzo and its buffer zone; SOB = Soberanía National 670 

Park. Colonies collected in APSL and its buffer zone were grouped in the analyses as APSLA and APSLB to 671 

reflect colonies collected on either side of the Chagres River.  672 

 673 

Figure 2. Majority-rule consensus phylograms for unique haplotypes derived from Eciton species (a) and the 674 

associated myrmecophiles Ecitophya and Ecitomorpha (b), generated with MrBayes using a mixed nucleotide 675 

model and gamma corrected rate heterogeneity. Support values are shown for nodes (marked by filled circles) 676 

found in ≥ 50% of parsimony bootstrap and posterior probability samples. Coloured bars indicate differences in 677 

abdomen (or whole body) colour of different taxa. 678 

 679 

Figure 3. All compatible groups consensus chronograms for the selected Eciton (a) and associated myrmecophiles 680 

Ecitophya and Ecitomorpha (b) haplotypes, generated with MrBayes using a mixed nucleotide model, gamma 681 

corrected rate heterogeneity, tk02 relaxed clock and fixed node calibration of 26 (Eciton) or 25 (associated 682 

myrmecophiles) MYA (indicated by a star). Nodes are scaled to median date estimates with the 95% Highest 683 

Posterior Density indicated by a translucent blue bar. Nodes with date estimates are labelled with roman numerals 684 

and correspond to values shown in Table 2. Node support values are given for the presented chronograms, filled 685 

circles indicate nodes found in ≥ 50% of parsimony bootstrap and posterior probability samples in the main 686 

phylogenetic analyses. Coloured bars indicate the abdomen (or whole body)’s colour of different taxa. 687 

 688 

Figure 4. Haplotype networks of Eciton burchellii (a) and associated Ecitophya (b) and Ecitomorpha (c) in the 689 

main study areas in Panama (RFF, BPPS, APSLA, APSLB) constructed using a median-joining approach. Study 690 

areas are indicated with different colours. The size of the circles is proportional to the number of individuals 691 

representing a particular haplotype. Missing intermediated haplotypes are indicated with black dots, nucleotide 692 

substitutions between haplotypes are indicated by small lines over the haplotype connecting branches. 693 

  694 
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Table 1. Details of collection and sequencing of Ecitophya and Ecitomorpha myrmecophiles found with different 695 
Eciton army ant species in the study areas in Panama 696 
 697 

     

   Individuals collected Individuals sequenced 

Ant species Location Ant colony Ecitomorpha Ecitophya Ecitomorpha Ecitophya 

       

E. b. parvispinum RFF E85 6 2 3 2 

E. b. parvispinum RFF E86 4 12 2 0 

E. b. parvispinum RFF E87 1 0 1 0 

E. b. parvispinum RFF E94 3 8 3 4 

E. b. parvispinum RFF E95 23 8 4 2 

E. b. parvispinum RFF E96 2 0 2 0 

E. b. parvispinum RFF E97 12 5 3 2 

E. b. parvispinum RFF E99 8 20 2 6 

E. b. parvispinum RFF E100 13 10 4 6 

E. b. parvispinum RFF E108 15 4 2 1 

E. b. parvispinum RFF E109 58 28 1 5 

E. b. parvispinum RFF E114 78 32 8 8 

E. b. foreli BPPS E89 15 40 4 2 

E. b. foreli BPPS E101 21 2 2 2 

E. b. foreli BPPS E103 5 13 2 2 

E. b. foreli BPPS E104 7 12 2 2 

E. b. foreli APSLA E126 8 6 6 2 

E. b. foreli APSLA E127 9 3 2 2 

E. b. foreli APSLA E132 28 17 14 8 

E. b. foreli APSLA E143 14 6 13 5 

E. b. foreli APSLA E154 4 0 2 2 

E. b. foreli APSLA E156 8 4 2 1 

E. b. foreli APSLB E162 3 5 2 3 

E. b. foreli APSLB E165 2 3 2 2 

E. b. foreli APSLB E166 8 4 2 2 

E. hamatum BPPS E88 0 69 0 6 

E. hamatum RFF E105 0 13 0 3 

E. hamatum BPPS E110 0 8 0 2 

E. hamatum SOB E169 0 1 0 1 

E. lucanoides RFF E107 0 6 0 1 

       

 698 

  699 
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Table 2. Date estimates for selected nodes in the Ecitophya and myrmecophiles’ chronograms generated using 700 
MrBayes with TK02, IGR and strict clock models and either a fixed date calibration according to Brady (2003) 701 
and Maruyama and Parker (2017) or 1% rate calibration. 702 
 703 

Code Dataset Method Median 95% Lower 95% Upper 

I Eciton TK02 clock, 26 MYA date calibration 26.0 n.a. n.a. 

I Eciton TK02 clock, 1% rate calibration 13.7 8.8 21.9 

I Eciton IGR clock, 26 MYA date calibration 26.0 n.a. n.a. 

I Eciton IGR clock, 1% rate calibration 12.1 8.9 16.7 

I Eciton Strict clock, 26 MYA date calibration 26.0 n.a. n.a. 

I Eciton Strict clock, 1% rate calibration 11.5 9.2 14.5 

II Eciton TK02 clock, 26 MYA date calibration 18.0 12.3 24.0 

II Eciton TK02 clock, 1% rate calibration 9.5 5.0 16.4 

II Eciton IGR clock, 26 MYA date calibration 16.8 10.2 23.6 

II Eciton IGR clock, 1% rate calibration 7.8 4.3 11.8 

II Eciton Strict clock, 26 MYA date calibration 17.9 13.4 22.8 

II Eciton Strict clock, 1% rate calibration 7.8 5.7 10.3 

III Eciton TK02 clock, 26 MYA date calibration 3.5 1.3 7.5 

III Eciton TK02 clock, 1% rate calibration 1.8 0.6 5.3 

III Eciton IGR clock, 26 MYA date calibration 3.9 1.2 8.3 

III Eciton IGR clock, 1% rate calibration 1.8 0.5 4.0 

III Eciton Strict clock, 26 MYA date calibration 2.4 1.3 3.8 

III Eciton Strict clock, 1% rate calibration 1.1 0.6 1.6 

IV Eciton TK02 clock, 26 MYA date calibration 1.3 0.3 3.5 

IV Eciton TK02 clock, 1% rate calibration 0.7 0.1 2.3 

IV Eciton IGR clock, 26 MYA date calibration 1.6 0.2 4.1 
IV Eciton IGR clock, 1% rate calibration 0.7 0.1 1.9 

IV Eciton Strict clock, 26 MYA date calibration 0.9 0.4 1.7 

IV Eciton Strict clock, 1% rate calibration 0.4 0.2 0.7 

IX Myrmecophiles TK02 clock, 25 MYA date calibration 0.8 0.2 2.0 

IX Myrmecophiles TK02 clock, 1% rate calibration 0.5 0.1 1.4 

IX Myrmecophiles IGR clock, 25 MYA date calibration 1.1 0.1 2.9 

IX Myrmecophiles IGR clock, 1% rate calibration 0.5 0.1 1.2 

IX Myrmecophiles Strict clock, 25 MYA date calibration 0.7 0.2 1.4 

IX Myrmecophiles Strict clock, 1% rate calibration 0.4 0.1 0.7 

V Myrmecophiles TK02 clock, 25 MYA date calibration 25.0 n.a. n.a. 

V Myrmecophiles TK02 clock, 1% rate calibration 14.3 9.5 23.1 

V Myrmecophiles IGR clock, 25 MYA date calibration 25.0 n.a. n.a. 

V Myrmecophiles IGR clock, 1% rate calibration 12.3 9.3 16.1 

V Myrmecophiles Strict clock, 25 MYA date calibration 25.0 n.a. n.a. 

V Myrmecophiles Strict clock, 1% rate calibration 12.3 9.8 15.4 

VI Myrmecophiles TK02 clock, 25 MYA date calibration 8.0 4.2 14.1 

VI Myrmecophiles TK02 clock, 1% rate calibration 4.5 1.9 11.2 

VI Myrmecophiles IGR clock, 25 MYA date calibration 6.7 3.4 11.7 

VI Myrmecophiles IGR clock, 1% rate calibration 3.2 1.7 5.2 

VI Myrmecophiles Strict clock, 25 MYA date calibration 5.9 3.8 8.1 

VI Myrmecophiles Strict clock, 1% rate calibration 2.9 2.0 4.0 

VII Myrmecophiles TK02 clock, 25 MYA date calibration 13.8 9.9 18.0 

VII Myrmecophiles TK02 clock, 1% rate calibration 7.8 4.4 14.2 

VII Myrmecophiles IGR clock, 25 MYA date calibration 14.7 10.4 19.9 

VII Myrmecophiles IGR clock, 1% rate calibration 7.1 4.8 9.7 

VII Myrmecophiles Strict clock, 25 MYA date calibration 14.2 11.2 17.4 

VII Myrmecophiles Strict clock, 1% rate calibration 6.9 5.3 8.8 

VIII Myrmecophiles TK02 clock, 25 MYA date calibration 7.8 4.6 12.0 

VIII Myrmecophiles TK02 clock, 1% rate calibration 4.4 2.1 9.5 

VIII Myrmecophiles IGR clock, 25 MYA date calibration 8.4 5.1 13.3 

VIII Myrmecophiles IGR clock, 1% rate calibration 4.0 2.6 6.0 

VIII Myrmecophiles Strict clock, 25 MYA date calibration 7.4 5.4 9.6 

VIII Myrmecophiles Strict clock, 1% rate calibration 3.7 2.7 4.8 

 704 
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Table 3. Number of segregating sites (S) and average number of nucleotide differences (k) between Eciton species, 705 
between the Ecitophya and Ecitomorpha, and between species within each of these genera; based on unique 706 
haplotypes (802bp mtDNA COI).  707 
 708 

 Comparison S k 

Ants    

Eciton b. parvispinum – dulcium  104 103.5 

 b. parvispinum – hamatum 100 94.33 

 b. foreli – dulcium 100 91.67 

 b. parvispinum – lucanoides 88 88.00 

 lucanoides – dulcium 86 85.50 

 b. foreli – lucanoides 90 81.83 

 b. foreli – b. parvispinum 90 81.00 

 b. foreli – hamatum 92 79.28 

 hamatum - dulcium 81 74.33 

 hamatum – lucanoides 80 73.33 

 

Beetles Ecitomorpha – Ecitophya 185 103.98 

    

Ecitomorpha  arachnoides (foreli) – arachnoides 

(parvispinum) 

19 33.90 

    

Ecitophya simulans (foreli) – rettenmeyeri 82 77.30 

 gracillima – rettenmeyeri 97 74.67 

 simulans (parvispinum) – rettenmeyeri 79 73.71 

 simulans (parvispinum) – gracillima 72 42.43 

 simulans (foreli) – simulans (parvispinum) 54 41.81 

 simulans (foreli) – gracillima  55 24.83 
    

 709 
 710 
 711 
 712 
 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
 724 
 725 
 726 
 727 
 728 
 729 
 730 
 731 
 732 
 733 
 734 
 735 
 736 
 737 
 738 
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Table 4. Population structure estimates derived from haplotypic data from E. burchelli foreli and their associated 739 
populations of Ecitophya and Ecitomorpha myrmecophile beetles between the areas studied in West (BPPS) and 740 
Central Panama (APSLA, APSLB). * P <0.001, NS non-significant 741 
 742 

Source of variation df SSQ Variance % variation Fixation index 

Eciton burchellii foreli 

      

Among groups 1 1139.658 76.888 76.31 ST = 0.9979* 

Among populations within groups 1  210.061 23.660 23.48 SC = 0.9914* 

Within populations 28       5.765   0.206   0.20 CT = 0.7631 

Total 30 1355.484 100.574   

 

Ecitophya simulans  

      

Among groups 1 107.796 8.859 84.62 ST =0.8449* 

Among populations within groups 1 1.522 -0.014 -0.13 SC =-0.0088NS 

Within populations 24 38.978 1.624 15.51 CT =0.8462* 

Total 26 148.296 10.469   

 

Ecitomorpha arachnoides  

      

Among groups 1 218.331 14.713 79.57 ST =0.7797* 

Among populations within groups 1 1.032 -0.296 -1.59 SC =-0.0783NS 

Within populations 48 195.5 4.073 22.03 CT =0.7957* 

Total 50 414.863 18.491   

      

 743 
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