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Abstract10

This paper shows that imaging the interior of solid bodies with fully non-linear physics can11

be highly beneficial compared to imaging with the equivalent linearised tomographic meth-12

ods, and that this is true for a variety of different types of physics. Including full non-linearity13

provides interpretable uncertainties, and far greater depth of image penetration into unknown14

targets such as the Earth’s subsurface. We use an adaptively parameterised Monte Carlo15

method to invert electrical resistivity data for the conductivity structure of the Earth, and16

demonstrate the method on two field datasets. Key results include the observation of di-17

rectly interpretable uncertainty loops which define possible geometrical variations in the18

edges of isolated anomalies, hence quantifying the spatial resolution of these boundaries.19

These topologies of uncertainties are similar to those observed when performing fully non-20

linear seismic travel time tomography. This shows that loop-like uncertainty topologies are21

expected in the solutions to a wide variety of tomographic problems, using a variety of data22

types and hence laws of physics (here the Laplace equation; in previous work the Eikonal or23

ray equations). We also show that the depth to which we can construct a tomographic image24

using electrical data is extended by up to a factor of 8 using non-linear methods compared25

to linearised inversion using common standard linearised programs. These advantages come26

at the cost of significantly increased computation. All of these results are illustrated on both27

synthetic and real data examples.28

1 Introduction29

Geophysical imaging methods are routinely employed in both industry and academia to30

obtain information about the composition of the Earth’s subsurface and its changes over time.31

While in some cases one might be satisfied by finding the single model which best explains32

the recorded data, it may often be the case that a single best-fitting model is of little value33

to decision makers since a comprehensive assessment of risk may only be carried out by as-34

sessing the full range of possible models that fit our observations (i.e., the post-experiment35

or posterior distribution of models given the available data). This set of models and statistics36

of their distribution are commonly referred to as the model uncertainty. For instance, when37

geophysical methods are employed to evaluate the size of a subsurface plume of leaked fluids38

or to monitor its changes over time, an accurate evaluation of model uncertainty, the range of39

subsurface models that may be permissible, is necessary in order to assess the risk related to40

the volumes and rates of escaping fluids.41

In a typical imaging scenario, geophysical data are acquired at the Earth’s surface or42

within boreholes. Depending on the type of data acquired, inversion might be required in or-43

der to recover the subsurface properties of interest from the recorded quantities. Mathemat-44

ically speaking, this involves inferring a set of model parameters m from a set of observed45

data dobs , and is achieved by solving an expression such as dobs = dtrue + ε = g(m) + ε46

for m, where dtrue represents the data that would be recorded in the absence of sources of47

error, ε is an error term, and g is a function that describes the physics relating m to dtrue.48

In this framework, ε represents the effects on recorded data of any elements of the physics49

relating dobs to m that are not represented within function g. The distribution of possible50

values of ε therefore represents the uncertainties in the observed data when compared to51

dtrue = g(m). However note that in practical applications, g(m) is normally evaluated us-52

ing numerical methods which involve a number of approximations in function g, and which53

result in further sources of error.54

In electrical resistivity tomography (ERT), electrical currents are actively injected into55

the ground from pairs of electrodes, and the resulting electrical potential is measured as the56

potential difference between other pairs of electrodes located on or below the Earth’s surface.57

These measurements constitute a set of observations dobs , and are used to estimate the resis-58

tivity structure of the subsurface parameterised by vector m. In ERT, the forward problem59

consists of finding a set of potential differences dpred through resistivity model m, which60
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can be calculated computationally by simulating the potential field induced within model61

m by the electric currents [Dey and Morrison, 1979a,b; Pridmore et al., 1981]. The inverse62

problem involves inferring the set of models m such that g(m) matches the observed poten-63

tial differences dobs to within their observational uncertainties (since all such models in that64

set represent possible subsurface structures).65

However, solving an inverse problem in geophysics poses challenges which go beyond66

merely finding a solution that mathematically fits observed data. It is almost always the case67

that more than one model m may adequately fit the observations dobs to within their uncer-68

tainties. Inverse problems may be solved by using optimisation or stochastic (often Bayesian)69

methods. In an optimisation framework (e.g., Parker [1994]), the combination of parame-70

ters that minimises an objective function (involving data misfit and regularisation terms) is71

generally regarded as the model solution. This makes sense in cases where it does not par-72

ticularly matter which solution is found out of the set of possible solutions (for example,73

when optimising the model parameterisation to best represent measured information [Cur-74

tis and Snieder, 2002], designing an optimal experiment or survey to constrain parameters75

[Curtis, 1999a,b; Maurer et al., 2000], finding parameters that smoothly interpolate through76

data [Sambridge et al., 1995], or where the problem is so large that it is computationally in-77

tractable to find more than one solution from the set [Simmons et al., 2012]). By contrast,78

stochastic inversion schemes do not limit the solution to a single model but produce a large79

ensemble of valid models. Typically such methods are associated with Bayesian inversion80

where the desired set of models are distributed according to a so-called posterior probability81

density function (PDF), so that each model parameter has a distribution of possible values82

rather than a single value [Mosegaard and Tarantola, 1995; Tarantola, 2005]. Obviously,83

regardless of the inversion scheme employed, the solution to a geophysical inverse problem84

must also make sense physically.85

Within the context of ERT, a number of authors have employed stochastic methods in86

order to overcome the problem of non-uniqueness and include prior information in the so-87

lution (e.g., Kaipio et al. [2000], Ramirez et al. [2005]). In addition, a number of studies88

have employed stochastic methods to invert direct current (DC) resistivity datasets jointly89

with other types of data. For instance, JafarGandomi and Binley [2013] use multiple types of90

geophysical datasets in a joint transdimensional McMC inversion algorithm combining data91

from DC resistivity, electromagnetic induction and ground penetrating radar (GPR); Linde92

et al. [2006] invert DC resistivity and GPR traveltime data with a regularised least-squares93

algorithm, but use stochastic regularization operators based on geostatistical models to con-94

strain the solution; Irving and Singha [2010] use McMC to jointly invert DC resistivity and95

borehole tracer concentration data to obtain posterior information on hydraulic conductivity;96

Jardani et al. [2013] perform a fully-coupled inversion of hydrogeochemical and geolectrical97

data by combining DC resistivity, self-potential, and salinity measurements.98

Data uncertainties play a fundamental role in geophysical inverse problems as they99

determine how accurately the model should fit observed data. Sources of uncertainty in geo-100

physical inversion are diverse and normally include contributions from both data measure-101

ment and modelling errors. In the context of ERT, measurement errors might for instance be102

caused by inaccuracy of the voltmeter and/or ammeter and electrode charge-up effects, while103

modelling errors are typically due to approximations in the physics of the forward problem104

represented by function g or in the numerical methods used to evaluate g(m) for any m, and105

to the mislocation of electrodes in the acquisition array leading to geometrical errors. Given106

the presence of contaminating noise during acquisition and the limitations in instrumental107

sensitivity, resolution, and computational power, such errors are unavoidable and must be108

accounted for correctly when evaluating the uncertainty associated with the set of solutions109

to the inverse problem. For instance, in cases where ERT is used to evaluate the size of a110

leakage plume or to monitor its changes over time, the solution must include an estimate of111

uncertainty in order to correctly assess the spatial resolution of the plume through inversion112

or whether leakage is still ongoing. Hence, in situations where assessing the veracity of a113
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particular potential event or hypothesis is paramount, the use of stochastic, rather than opti-114

misation, inversion methods is particularly beneficial since an estimate of model uncertainty115

can be evaluated directly from the posterior PDF of each model parameter.116

However, the benefits of stochastic tomography methods are often accompanied by117

increases in the computational time and resources required to perform the inversion. In the118

case of ERT, such increases are mainly due to the repeated computation of the forward prob-119

lem which must be solved tens or hundreds of thousands of times. A number of authors have120

attempted to mitigate the computational expense of stochastic ERT by reducing the size of121

the space of plausible solutions. For instance, Ramirez et al. [2005] use prior information122

to parameterise subsurface contaminant plumes as a set of simple volumes embedded in a123

homogeneous medium, and combine Markov chain Monte Carlo (McMC) with 3D ERT to124

monitor changes in the shape and size of the plumes with time; Rosas-Carbajal et al. [2014]125

employ a smoothing constraint in joint ERT and RMT inversion to favour models showing126

smooth spatial transitions, hence decreasing the size of the model space to those satisfy-127

ing this constraint; and Andersen et al. [2003] define the model in terms of a set of vertices128

which can be joined to create polygons whose number and size is determined by a set of129

user-defined tuning parameters.130

Within this paper we present a stochastic inversion method for resistivity tomogra-131

phy which uses Bayesian theory [Bayes and Price, 1763], the reversible-jump Markov chain132

Monte Carlo algorithm (rj-McMC – Green [1995, 2003]), and model parameterisation with133

Voronoi cells [Bodin et al., 2009; Bodin and Sambridge, 2009] to solve the inverse prob-134

lem of ERT and to produce an ensemble of valid solutions which are distributed according135

to the Bayesian posterior PDF. This method can be referred to as ‘transdimensional’ in that136

the dimensionality of the model space (the number of model parameters) is allowed to vary137

between different models. Transdimensional inversion is a relatively new concept in electri-138

cal resistivity tomography, but has previously shown great potential in tackling a number of139

diverse inverse problems such as regression [Gallagher et al., 2011], inversion of frequency-140

domain [Minsley, 2011] and controlled source [Ray et al., 2014] electromagnetic data, geoa-141

coustic inversion of seabed reflection coefficients [Dettmer et al., 2010], inversion of surface-142

wave phase and group velocities [Young et al., 2013] and traveltimes [Bodin and Sambridge,143

2009; Galetti et al., 2015], joint inversion of surface-wave dispersion and receiver function144

data [Bodin et al., 2012a], inversion of DC resistivity sounding curves [Malinverno, 2002],145

and full waveform inversion of marine seismic data [Ray et al., 2016]. In addition, Hawkins146

and Sambridge [2015] recently developed a new class of transdimensional solvers that sam-147

ple over tree structures, and this sampling approach has successfully been applied in 2D to148

the time-domain electromagnetic inverse problem [Hawkins et al., 2017] and to seismic low-149

frequency full waveform inversion Ray et al. [2018].150

One advantage of a transdimensional approach lies in the fact that, by allowing the151

model parameters (in our case the number of Voronoi cells used to discretise the Earth’s sub-152

surface resistivity structure) to vary in number, shape and size, the space of possible a priori153

parameterisations is broadened, ensuring a more comprehensive estimation of the a posteri-154

ori uncertainty since this becomes independent of any particular choice of model parameteri-155

sation. In addition, thanks to the ‘natural parsimony’ of Bayesian inference, posterior models156

are only as complex as is required by the data or by prior information: among similar mod-157

els that provide equal fit to the observations, simpler ones (those having fewer Voronoi cells)158

are assigned a higher probability since larger prior volumes are penalised. A mathematical159

proof of this concept is given by Ray et al. [2016, 2018], who describe ‘natural parsimony’160

as the result of a trade-off between Occam Factor (i.e., the ratio of posterior accessible vol-161

ume to prior accessible volume [MacKay, 2003]) and high likelihood (low misfit), and how162

this trade-off automatically provides a solution similar to regularisation but largely dependent163

on the data. Finally, by reducing the model space dimensionality to only what is required164

to explain the data, one avoids over-parameterising the space of solutions. The computa-165

tional demands of stochastically exploring higher-dimensional spaces explodes exponentially166

–4–



Confidential manuscript submitted to JGR-Solid Earth

(called the curse of dimensionality – Scales and Snieder [1997], Curtis and Lomax [2001]),167

so the natural parsimony also enormously reduces the computation required to find the so-168

lution set by limiting its number of dimensions. In turn, this makes uncertainty estimation169

tractable.170

In the next section, we provide an overview of the forward problem in electrical resis-171

tivity tomography and present the transdimensional electrical resistivity tomography (TERT)172

method, showing how it can be used to perform a fully non-linear inversion of potential173

difference measurements. In Section 3, we present results of two synthetic experiments in174

which TERT was used to perform the inversion, and compare the results to those obtained175

using a more traditional, iterative-linearised inversion method. In Section 4, we apply TERT176

to a real dataset acquired at an archaeological site in Scotland, and we present a further ob-177

servational example using a dataset acquired at an archaeological site in Slovakia in the on-178

line Supporting Information. We then discuss the main advantages and disadvantages of this179

method, and outline directions for future work before concluding.180

2 Method181

2.1 The forward problem182

In electrical resistivity imaging, pairs of ‘current electrodes’, located either on the183

Earth’s surface or within boreholes, are used to inject electrical currents into the ground,184

while the resulting electric potentials are measured by pairs of many ‘potential electrodes’185

along an array. The forward problem therefore consists of solving the following equation for186

the electrical potential Φ(x) at each potential electrode location, and calculating potential187

differences between many pairs of electrodes:188

∇ ·
[

1
ρ(x) ∇Φ(x)

]
= −I (δ(x − x+) − δ(x − x−)) (1)189

where ρ(x) denotes resistivity at location x, and x+ and x− represent the location of a positive190

and negative current electrode, respectively (for completeness, the simpler case of current191

injection from a single electrode is described in Appendix A: ).192

Analytical solutions to equation 1 can be found for simple cases such as a buried sphere193

in a homogeneous medium or a vertical boundary separating two media of different resis-194

tivity (see examples in Telford et al. [1991]). However, more sophisticated numerical tech-195

niques are needed when the resistivity structure of the subsurface is more complex. Such196

techniques include the linear filter method in 1D (e.g., Koefoed [1979]), and finite-difference197

and finite-element methods in 2D and 3D (e.g., Dey and Morrison [1979a,b]; Pridmore et al.198

[1981]).199

Many authors have developed linearised numerical techniques and programs to solve200

equation 1 for complex resistivity geometries ρ(x) in 2D and 3D [Dey and Morrison, 1979a,b;201

Pridmore et al., 1981; Lowry et al., 1989; Loke, 1994; Li and Spitzer, 2002; Rücker et al.,202

2006; Pidlisecky and Knight, 2008; Binley, 2013a,b]. Within our inversion algorithm, we203

solve the forward problem using a finite-difference scheme adapted from the MATLAB204

modelling code FW2_5D by Pidlisecky and Knight [2008]. Besides being completely open205

source and easily understood, FW2_5D is a highly efficient and customizable code, and206

we easily optimised and integrated it into our own inversion program. The forward mod-207

elling routines in FW2_5D are based on the 2.5D modelling algorithm of Dey and Morrison208

[1979a] in which subsurface structures are described in 2D (i.e., they are assumed to be con-209

stant along the y direction) but the current flow is modelled in all three dimensions using a210

Fourier-cosine transform. Hence, the 3D physics of current flow is accounted for without the211

need for far more expensive three dimensional modelling. Nevertheless, since the inversion212

algorithm is entirely separate from the forward calculations, the forward modeller could eas-213

ily be replaced by alternative routines.214
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2.2 Inversion with the rj-McMC algorithm215

The rj-McMC algorithm by Green [1995] was first applied to geophysical tomog-216

raphy problems by Bodin and Sambridge [2009], who implemented this method within a217

linearised, iterative seismic traveltime inversion scheme. In each iteration they used the rj-218

McMC algorithm to produce an ensemble of velocity models which fit the observed travel-219

time data, but with fixed ray paths (thus linearising the problem). The forward problem of220

calculating source-receiver traveltimes was then solved using the average velocity structure221

obtained from the ensemble of models to fix seismic ray paths for the next iteration. In doing222

so, Bodin and Sambridge [2009] partly accounted for the non-linearity of the tomographic223

problem since raypaths and traveltimes were updated at the end of each Markov chain loop.224

Later, Galetti et al. [2015] modified their algorithm to make it fully nonlinear: in the ap-225

proach of Galetti et al. [2015], the forward problem was solved for every individual model226

in the ensemble, thus no linearisation-related forward modelling approximations and biases227

were introduced into the solution.228

Within this study, we adapted the approach of Galetti et al. [2015] to the inverse prob-229

lem of ERT in order to produce a fully nonlinear inversion method. Similarly to Bodin and230

Sambridge [2009] and Galetti et al. [2015], this method uses an irregular Voronoi cell tes-231

sellation to parameterise the model and allows uncertainty in the solution to be estimated232

correctly. In this section, we review the rj-McMC tomography framework of Bodin and Sam-233

bridge [2009] by providing an overview of the model parameterisation employed and de-234

scribing the Bayesian approach used by the algorithm. Further details on the mathematical235

theory behind the algorithm can be found in Appendix B: .236

2.2.1 Bayes’ theorem237

Within a Bayesian framework, information is represented by probability density func-238

tions. Bayesian inference makes use of Bayes’ theorem [Bayes and Price, 1763] to estimate239

the a posteriori PDF (also known as ‘posterior distribution’) p(m|dobs), which can be de-240

fined as the probability density of model m given observed data dobs . Bayes’ theorem states241

that p(m|dobs) can be estimated by combining information from observations with a priori242

information about the model according to243

p(m|dobs) ∝ p(dobs |m)p(m) (2)244

Here, p(dobs |m) is called the likelihood function, which expresses the probability of observ-245

ing dataset dobs given model m, and prior information about model m (i.e., everything we246

knew about the model before performing the inversion) is represented by the prior probabil-247

ity density p(m). Equation 2 therefore represents how prior information about the model is248

updated by new data to give the posterior state of information described by p(m|dobs).249

2.2.2 Model parameterisation with Voronoi cells250

Our implementation of the rj-McMC algorithm in ERT uses Voronoi cells to param-251

eterise the resistivity model. A Voronoi tessellation of a 2D xz plane of resistivity values252

is achieved by defining a set of n nuclei (the black dots in Figure 1) which are identified by253

their xz coordinates, and a value of log10(resistivity) for each nucleus. For simplicity, from254

here onwards we drop the subscript in log10 and simply denote the logarithm in base 10 as255

log. The 2D plane is then divided into n non-overlapping regions (Voronoi cells) of different256

resistivity such that each region contains the portion of the plane which is closest to its nu-257

cleus. Note that Voronoi nuclei are not necessarily located at the centre of their correspond-258

ing cells, but rather cell boundaries are defined by the perpendicular bisectors of pairs of259

neighbouring nuclei. A resistivity model can therefore be defined as m = [n, c, µ], where c260

and µ = log(ρ) are n-row arrays of nuclei xz coordinates and log(resistivity) values, respec-261

tively. In our implementation resistivity is constant within each Voronoi cell so the dimen-262

sion of model m is 3n + 1.263
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(a) (b)

Figure 1. Example of Voronoi tessellation of a 2D plane. (a) Each Voronoi cell is identified by the location
of its nucleus (black dots), and cell boundaries are defined purely by the perpendicular bisectors of pairs of
neighbouring nuclei (black lines). (b) The Voronoi tessellation is turned into a resistivity model by assigning
a value of log(resistivity) to each cell.

264

265

266

267

During the inversion, the location and number of Voronoi nuclei in the model is al-268

lowed to vary, making the number of Voronoi cells in the model one of the inversion param-269

eters. Since Voronoi cells change shape and size throughout the inversion, the model param-270

eterisation dynamically adapts to the spatial distribution of both information and subsurface271

structure.272

2.2.3 Data noise parameterisation273

Within a transdimensional inversion framework, the magnitude of data uncertainties274

influences the level of complexity (here, the number of Voronoi cells) in the final solution.275

In a similar framework for seismic traveltime tomography, Bodin et al. [2012b] proposed276

a method to parameterise uncertainty which allows data noise to be varied and estimated277

during the inversion. As the use of accurate uncertainties prevents data over- or under-fitting,278

so doing allows the observations to be fit up to the appropriate uncertainty level, and makes279

the rj-McMC method almost entirely data-driven.280

If data uncertainty estimates are available, then those a priori uncertainties σprior
281

(scaled arbitrarily in absolute terms) may be up- or down-scaled by a factor λ which can be282

estimated during inversion. Hence, for datum k with a priori uncertainty σprior
k

, the a poste-283

riori uncertainty σpost
k

is given by284

σ
post
k

= λ × σprior
k

(3)285

Since λ is an additional parameter to be determined during the inversion, this makes the di-286

mension of the model equal to 3n + 2. If multiple independent datasets with potentially dif-287

ferent data noise levels are combined such that a λ value is determined for each dataset, the288

model dimension becomes 3n + nds + 1, where nds is the number of datasets.289

If no information on data uncertainties is available, data noise must be estimated dur-290

ing inversion since evaluating the data fit of any model requires that the uncertainty of each291

datum be taken into account. Although a single uncertainty value could be assigned to all292

measurements, in real acquisition scenarios it is likely that each measured potential differ-293

ence will be affected by a different amount of noise. For instance, Binley et al. [1995] sug-294

gest a type of data noise parameterisation in which data variance (the square of data standard295

deviation) increases linearly with the square of the measured resistance R (the measured po-296

tential difference divided by the injected current) as in297

(σpost
k
)2 = a2 × R2 + b2 (4)298
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where a and b represent hyperparameters that could be estimated during the inversion. This299

type of data noise parameterisation makes the model dimension equal to 3n + 3 if a single a300

and b are estimated for the entire dataset, and 3n + 2 × nds + 1 if nds datasets with different a301

and b parameters are combined.302

When data noise is parameterised and estimated during the inversion, the model is de-303

fined by the combined set m = [n, c, µ, h], where h is the array of vector hyperparameters304

(h = [λ1, λ2, ...] or h = [a1, b1, a2, b2, ...]), and where n, c and µ are defined in Section 2.2.2.305

However, note that data uncertainty estimation in ERT is an ongoing topic of research,306

hence a more sophisticated type of parameterisation for data uncertainties may be developed307

in future. For instance, Tso et al. [2017] recently highlighted how ERT measurement errors308

may not be uncorrelated as is often assumed, and developed an error model that includes the309

effect of the combination of electrodes used for each measurement as well as the linear rela-310

tionship between measurement error and transfer resistance (equation 4). In addition, note311

that the term ‘noise’ in this paper refers to both measurement and modelling errors, hence312

the posterior uncertainty σpost
k

in equations 3–4 encapsulates any effect by which the model313

cannot explain the observed data.314

2.2.4 A transdimensional Bayesian approach to tomography315

As shown in equation 2, Bayesian inference is a valuable method to characterise the316

posterior PDF p(m|dobs) by combining prior information with measured data. However,317

since the posterior PDF cannot normally be expressed in analytic form, it must be evaluated318

numerically at different positions in the model parameter space which involves solving the319

forward problem at each position. If the inverse problem has many dimensions as is usually320

the case in geophysics, the number of forward functions that need to be solved to explore the321

full parameter space becomes huge, making uniform sampling of the posterior computation-322

ally infeasible (e.g., Curtis and Lomax [2001]) and the use of alternative sampling methods a323

necessity.324

Markov chain Monte Carlo (McMC) provides an iterative stochastic framework which325

generates samples from the Bayesian posterior PDF as expressed in equation 2. Using an326

McMC sampler such as the Metropolis-Hastings (MH) algorithm [Metropolis et al., 1953;327

Hastings, 1970], samples are generated in sequence along a chain, each sample being a ran-328

dom perturbation of the one that precedes it. The initial model of the chain is selected ran-329

domly from the prior distribution described in the previous section, and often a randomly-330

selected model parameter or combination of parameters is perturbed at each step of the chain.331

However, compared to traditional McMC, the reversible jump Markov chain Monte Carlo (rj-332

McMC) algorithm [Green, 1995] does not fix the dimensionality of the model, hence ‘jumps’333

in model dimensionality can also be made by adding or deleting model parameters (in our334

case Voronoi cells).335

Our algorithm essentially consists of the following seven steps, which are displayed in341

the workflow diagram in Figure 2:342

1. An initial resistivity model m is drawn from a Uniform distribution of Voronoi-tessellated343

models and data noise parameters.344

2. Potential differences for all required configurations of current and potential electrodes345

are calculated through m (see Section 2.2.6 for implementation details in a Voronoi-346

cell model).347

3. A new model m′ is proposed by randomly perturbing the current model m using one348

of the following types of perturbation: birth to add a cell; death to delete a cell; move349

to change the location of a cell; resistivity to change the resistivity of a cell; noise to350

change a data noise parameter (see Appendix B.3 for more details on each perturba-351

tion type).352
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Figure 2. Workflow of the transdimensional electrical resistivity tomography (TERT) method. This sam-
ples the posterior PDF by producing an ensemble of Voronoi-tessellated models of subsurface resistivity using
the rj-McMC algorithm. Each Voronoi cell is defined by the location of its nucleus (the black dots in m and
m′) and a value of log(resistivity) (log(ρ)). In this example, the geometry of model m is perturbed in a birth
step by adding a Voronoi nucleus at [0 10] m.

336

337

338

339

340

4. Potential differences for all required configurations of current and potential electrodes353

are calculated through m′ (note that no forward computations are needed for a noise354

step).355

5. The acceptance ratio α(m′ |m) is calculated according to the following equation [Bodin356

and Sambridge, 2009]:357

α(m′ |m) = min
[
1,

p(m′)
p(m) ×

p(dobs |m′)
p(dobs |m)

× q(m|m′)
q(m′ |m) × |J|

]
(5)358

where the second term in the square bracket involves the product of the prior, likeli-359

hood and proposal ratios for m and m′, and the Jacobian of the transformation from m360

to m′ (see Appendix B.4 for a more detailed description of equation 5).361

6. Depending on the value of α(m′ |m), the chain goes back to step 3 after either accept-362

ing or rejecting the proposed model m′. If α ≥ r where r is a random deviate from a363

Uniform distribution between 0 and 1, the change is accepted, and m′ replaces m as364

the new current model. If α < r , the change is rejected, m′ is discarded, and model m365

is retained as the sample from this iteration.366

7. Iterate from step 3 until sufficient samples have been generated.367

Multiple chains are normally run independently of one another in parallel, ensuring368

that a larger volume of the model space is explored by starting the chains from different ini-369

tial conditions. In addition, by solving the forward problem at each Markov chain iteration,370

we ensure that the non-linearity of the forward and inverse problems are fully accounted for371

and that no modelling-related approximations and biases are introduced into the solution.372

At the end of the inversion, an ensemble of representative posterior samples is obtained373

by discarding the first few hundred thousand iterations from each Markov chain as ‘burn-in’374

(samples that might still be biased by the initial randomly-chosen sample), and by retain-375
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ing only one model every few tens or hundreds of iterations thereafter to ensure that each376

sample in the ensemble is approximately independent of others (since consecutive samples377

in Markov chains can be strongly correlated). In practice, there are no hard and fast rules378

for choosing a burn-in period and a thinning interval, and some studies even suggest that379

thinning may not always be necessary [Link and Eaton, 2011]. However, a number of stud-380

ies provide diagnostics that can be used to select and tune these parameters. For instance,381

Markov chain convergence may be assessed by comparing between-chain and within-chain382

variances for each model parameter [Gelman and Rubin, 1992; Brooks and Gelman, 1998],383

and the autocorrelation of posterior model parameters may be used to obtain an estimate of384

an appropriate thinning interval (e.g., Aster et al. [2013]). Within our study, we selected the385

burn-in period for each example by visually analysing plots displaying the change in misfit386

and number of cells with sample number across all Markov chains, discarding an initial win-387

dow of samples for which these quantities had not yet stabilised. In terms of thinning, our388

choices were mainly dictated by a compromise between allowing enough separation between389

samples and having a large enough ensemble of samples within a reasonable computation390

time. Further details on Markov chain convergence are given in Section 5.2.391

The posterior PDF on log(resistivity) at different locations in the subsurface can then392

be calculated from the ensemble by defining a regular grid of discrete points [x̄i z̄i], ex-393

tracting log(resistivity) at each grid point in each sample in the ensemble, and binning all394

of the posterior log(resistivity) values extracted at each point into a histogram. Maps show-395

ing different statistical properties of the subsurface resistivity field can also be obtained from396

the ensemble by calculating a number of statistical moments at each of these discrete points397

over the M samples in the ensemble, and merging these points together in order to create 2D398

maps of these statistical moments (see Appendix B.5 for details). However, it is important399

to emphasize that none of these statistics alone provides comprehensive information about400

the solution to the inverse problem; each should be considered within the context of a fully401

probabilistic solution.402

Alternatively, the posterior probability distribution may be visualised in terms of marginal403

histograms of resistivity with depth (i.e., across all z locations for a particular horizontal404

position x) or with horizontal position (i.e., across all x locations for a particular depth z).405

While we do not present such plots herein, the reader is referred to Bodin et al. [2012a] and406

Ray et al. [2018] for examples of such plots in 1D and 2D, respectively.407

2.2.5 Parallel tempering408

As in any McMC scheme, convergence in rj-McMC inversion may be substantially409

hampered if Markov chains effectively become trapped while exploring local likelihood max-410

ima. This normally occurs when the maximum being explored is surrounded by relatively411

low-likelihood models; the Markov chain tends to reject steps that would move from high to412

low likelihood due to the proposal ratio term in equation 5, so the chain only progresses from413

one maximum to another with very low probability, hence usually only after many attempts414

or steps.415

This issue is normally overcome by running multiple independent Markov chains in416

parallel, ensuring that different parts of model space can be explored at the same time by fol-417

lowing different random walks. In addition, the likelihood function may be ‘tempered’ by418

assigning a different temperature Tl to each of the L parallel chains [Swendsen and Wang,419

1987; Earl and Deem, 2005; Sambridge, 2014]. By doing so, the likelihood becomes a func-420

tion of model ml and temperature Tl:421

L(ml,Tl) = p(dobs |ml)1/Tl (6)422

where we drop the dependence of L on data dobs for notational convenience since dobs is423

measured and hence fixed. When T0 = 1, the tempered likelihood L(m0, 1) is the same424

as that from equation 2, and the chain at T0 = 1 is referred to as the target chain. When425
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Figure 3. An example of tempered likelihood, calculated from equation 6 at increasingly higher tempera-
tures (equally spaced on a logarithmic scale) from the target temperature T0 = 1 (black line) to the highest
temperature Tl = 8. The likelihood at the target temperature was calculated by running a Markov chain
at T0 = 1 using the synthetic dataset from Section 3.1. The other chains use the same samples but with
recalculated tempered likelihoods according to equation 6.

433

434

435

436

437

Tl > 1, the likelihood function L(ml,Tl) is a smoother version of the untempered likeli-426

hood p(dobs |m0) (i.e., it has lower ‘relief’ with flatter peaks and valleys), and it is therefore427

easier for a chain to explore since regions of high probability can be escaped more readily.428

As an example, Figure 3 shows the likelihood calculated along the same Markov chain run429

for the synthetic example described in Section 3.1 at the target temperature T0 = 1 (black)430

and recalculated using equation 6, at 16 increasingly higher temperatures equally spaced in431

log(T), up to Tl = 8.432

At each Markov chain iteration, any two randomly-chosen chains at different tempera-438

tures are allowed to exchange states (models) using the following Metropolis-Hastings accep-439

tance criterion:440

αswap = min
[
1,
L(mhot,Tcold)
L(mhot,Thot )

× L(mcold,Thot )
L(mcold,Tcold)

]
(7)441

where Thot > Tcold , and mhot and mcold are the current models on the ‘hot’ and ‘cold’442

chain, respectively. Hence, the expression L(mhot,Tcold) corresponds to evaluating equa-443

tion 6 using the model on the ‘hot’ chain mhot and the ‘cold’ temperature Tcold . The swap444

is accepted if αswap ≥ r , where r is a random deviate from a Uniform distribution between445

0 and 1, and rejected otherwise. Note that, as suggested by Sambridge [2014], the exchange446

swaps are not restricted to neighbouring temperature levels, but are allowed between any pair447

of randomly-chosen levels.448

Swapping models between chains at different temperatures promotes inter-chain mix-449

ing and allows local likelihood maxima to be escaped, ultimately speeding up convergence450

to the posterior PDF. This is particularly beneficial in cases where forward modelling cal-451

culations are computationally expensive so that considerable computing time may be spent452

on a single Markov chain iteration. Examples of applications of parallel tempering to geo-453

physical inverse problems include the inversion of controlled-source electromagnetic data454

[Ray et al., 2013], finite-fault [Dettmer et al., 2014] and direct-seismogram [Dettmer et al.,455

2015] inversion, the inversion of surface wave dispersion and receiver function data [Roy and456

Romanowicz, 2017], seismic body-wave [Bottero et al., 2016] and ambient-noise [Valentová457
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Figure 4. Electrode geometries used for the experiments described in this paper. Current electrodes are lo-
cated at C1 and C2, and potential electrodes are located at P1 and P2. (a) In a Wenner-alpha array, electrodes
are equally spaced with separation d. (b) In a dipole-dipole array, current and potential electrodes have the
same spacing d, and the two dipoles C1–C2 and P1–P2 are separated by distance f × d (where f is generally
an integer value).

485

486

487

488

489

et al., 2017] tomography, inversion of airborne electromagnetic data Hawkins et al. [2017],458

and full-waveform inversion of marine seismic data [Ray et al., 2018].459

In all of the examples presented in this paper, we performed TERT by running 32460

Markov chains in parallel, and setting 16 chains at temperature T0 = 1 (the target tem-461

perature) and 16 chains at log-uniformly spaced increasing temperatures up to Tl = 8 (the462

‘hottest’ temperature). Posterior inferences were made only from samples in the chains at the463

target temperature (but these are influenced by the other chains through equation 7). Alterna-464

tively, samples at higher temperatures could be re-weighted to T0 = 1 using an appropriate465

weighting function [Brooks and Neil Frazer, 2005; Dosso et al., 2012], and added to the pos-466

terior ensemble.467

2.2.6 Implementation details468

Since the finite-difference forward modeller that we employed requires the resistivity469

structure to be defined on a regular grid of points, at each Markov chain iteration we sampled470

the Voronoi-tessellated resistivity model over a regular grid and solved the forward problem471

using this grid. In addition, given that resistivity values can span several orders of magnitude472

in Earth science scenarios, our inversion routine was set up to invert for µ = log(ρ) rather473

than absolute resistivity values.474

Finally, in its current implementation, our inversion code does not allow for topography475

to be taken into account. However, given that the forward modelling routine is completely476

separate from the inversion algorithm, the forward modeller could easily be swapped with477

one in which topography is considered, and where the z-coordinate of the Voronoi nuclei478

represents the depth of the nucleus below the Earth’s surface.479

3 Synthetic experiments480

In order to test the effectiveness of the TERT method, we performed a number of syn-481

thetic tests using different resistivity models and acquisition geometries (Figure 4). We bench-482

marked our results against those obtained from a well known iterated-linearised inversion483

code (R2 by Binley [2013b]). These experiments are presented below.484

3.1 Example 1490

In this first experiment we created a synthetic dataset for the simple resistivity model491

shown in Figure 5(a) using the forward modelling functions in FW2_5D. Using a Wenner-492
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(a) (b)

Figure 5. Synthetic resistivity model for the example application described in Section 3.1. (a) True resis-
tivity section. (b) Resistivity pseudosection acquired using a Wenner-alpha configuration for 41 electrodes
located between -40 and 40 m, with a minimum and a maximum spacing of d = 2 and d = 26 m in the
geometry shown in Figure 4(a). A resistivity pseudosection is a contour plot where each datum (i.e., apparent
resistivity calculated using equation 8 for a Wenner-alpha configuration) is plotted horizontally at the mid-
point of the set of 4 electrodes used for the measurement, and vertically at the median depth of investigation
[Edwards, 1977] of the electrode array used. In panel (a), the white circles denote the location of the points at
which the posterior PDFs on log(resistivity) in Figure 6 were calculated. In both panels, the grey ticks at z = 0
m denote electrode locations.

506

507

508

509

510

511

512

513

514

alpha configuration (Figure 4(a)) with 41 electrodes located at regular intervals of 2 m, we493

modelled 260 potential differences for different combinations of current and potential elec-494

trodes with a minimum and maximum d spacing of 2 and 26 m, respectively. In order to em-495

ulate real scenarios where measurements are contaminated by noise, each computed potential496

difference k was perturbed by random Gaussian noise with standard deviation σprior
k

equal497

to 3% of the measurement, which was then considered as the prior data noise level during in-498

version. The apparent resistivity pseudosection is shown in Figure 5(b). In order to generate499

this image, each modelled potential difference ∆Vk was first converted to apparent resistivity500

according to501

ρappk = 2πd
∆Vk

Ik
(8)502

where Ik denotes the injected current, and then plotted in a contour plot where each datum is503

located horizontally at the mid-point of the set of 4 electrodes used for the measurement, and504

vertically at the median depth of investigation [Edwards, 1977] of the electrode array used.505

In order to account for measurement and modelling errors, data noise was assumed to515

be proportional to prior data uncertainties σprior
k

, and noise parameter λ (equation 3) was516

determined during the inversion. Uniform priors were given on the number of Voronoi cells517

as [3, 4, ..., 100], on µ = log(ρ) as [−1, 5], on the x and z coordinates of model boundaries as518

[−50, 50] and [0, 30], respectively, and on noise parameter λ as [0.01, 10]. We ran 32 tem-519

pered Markov chains (of which 16 were at the target temperature T0 = 1) in parallel for520

6 × 105 iterations, allowing two randomly-chosen chains to swap models at each iteration521

provided the condition stated in equation 7 was satisfied. Every 100th sample at the target522

temperature after a burn-in period of 2 × 105 iterations was considered as a representative523

model from the posterior PDF. This gave a solution to the inverse problem consisting of an524

ensemble of 64 × 103 samples m = [n, c, µ, h], where each parameter in m is distributed525

according to its posterior marginal PDF.526

Information about the resistivity distribution in the subsurface may be visualised using537

histograms showing the marginal PDFs at a number of points in the xz plane (e.g., Figure538

6) or by evaluating various statistics from the full PDF as described in Section 2.2.4. Some539

of these statistics are shown in Figure 7. Information on the resistivity of different subsur-540

face structures can be obtained from the arithmetic mean, the median, the mode and the root-541
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Posterior PDFs of log(ρ) at locations shown in Figure 5(a) estimated using the TERT algorithm.
Posteriors in the top row are calculated at x = 0 m and (a) z = 0 m, (b) z = 10 m, (c) z = 15 m, (d) z = 20
m, (e) z = 30 m. Posteriors in the bottom row are calculated at x = 20 m and (f) z = 0 m, (g) z = 10 m, (h)
z = 15 m, (i) z = 20 m, (j) z = 30 m. Histograms are colour-coded according to the standard deviation at their
corresponding locations from Figure 7(e).

527

528

529

530

531

mean-square maps. While each single Voronoi model in the ensemble is discontinuous and542

unrealistic, each of these statistical measures provides a smoother representation of the true543

resistivity field and highlights specific features of the PDF across the imaged area. In addi-544

tion, an impression of the uncertainty in our state of knowledge about the subsurface resis-545

tivity field may be obtained from the standard deviation and entropy maps, while skewness546

and excess kurtosis highlight information related to the shape of the PDF at each location in547

the xz plane. As previously noted in Section 2.2.4, none of these statistics can ever represent548

the complete solution to the inverse problem on their own, but should instead be interpreted549

together as part of a fully probabilistic solution.550

As can be observed in Figures 7(a)–(d), the high-resistivity vertical structure in the551

centre of the model is resolved to varying degrees of accuracy to depths of between 10 m552

(arithmetic mean) and >20 m (mode, i.e., the maximum-a-posteriori value of every individ-553

ual binned posterior resistivity pixel), while the background resistivity is generally resolved554

to larger depths (with the exception of the root-mean-square model). The standard deviation555

map in Figure 7(e) shows an increase in uncertainty vertically with increasing depth, and hor-556

izontally as the distance from the centre of the model increases. In fact, the increase in un-557

certainty with depth can also be observed on marginal PDFs along vertical profiles at x = 0558

and x = 20 m (Figure 6): as depth increases, peaks in the PDF become less defined and the559

distribution approaches the Uniform prior (although still with peaks around the two values of560

log(resistivity) that appear in the true model in Figure 5). Similarly, excess kurtosis (Figure561

7(f)) is positive in areas of low standard deviation indicating a more ‘peaked’ distribution,562

while it is negative in areas of high standard deviation when the posterior PDF approaches563

the Uniform prior.564

In addition, the standard deviation plot in Figure 7(e) displays an increase in uncer-569

tainty along the vertical edge of the high-resistivity structure, showing that the exact shape570

and size of this body cannot be reconstructed. Indeed this high-uncertainty feature defines571
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Inversion results for the synthetic model in Figure 5(a) found using the TERT algorithm. (a)
Arithmetic mean. (b) Median. (c) Mode (i.e., maximum-a-posteriori). (d) Root-mean-square. (e) Standard
deviation. (f) Entropy. (g) Skewness. (h) Excess kurtosis. Note that the excess kurtosis map is simplified to
only 3 distinct groups of values due to the many orders of magnitude spanned by this statistical moment. In all
panels, the grey ticks at z = 0 m denote electrode locations.
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533

534

535

536
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(a) (b) (c) (d) (e)

Figure 8. Posterior PDFs on log(ρ) for the synthetic model in Figure 5(a) found using the TERT algorithm.
Posteriors are calculated at (a) x = −5.5 m and z = 0 m, (b) x = −4.75 m and z = 5 m, (c) x = 0 m and
z = 12.5 m, (d) x = 4.75 m and z = 5 m, (e) x = 5.5 m and z = 0 m. Histograms are colour-coded according
to the standard deviation at their corresponding locations from Figure 7(e).

565

566

567

568

(a) (b)

Figure 9. Information on the number of cells n in the posterior distribution and their locations found using
the TERT algorithm. (a) Posterior PDF on the number of Voronoi cells (p(n|dobs)). (b) Density of Voronoi
nuclei across the ensemble of models in the PDF. At each pixel, density is measured within a 5 m × 5 m
square sector centred on the pixel and is plotted as the average number of Voronoi nuclei per m2 per sample.
The grey ticks at z = 0 m in panel (b) denote electrode locations.

593

594

595

596

597

precisely the spatial resolution of this boundary, and its presence is independent of the elec-572

trode geometry employed since it occurs as a consequence of the true resistivity structure573

of the subsurface. Similar topologies have been observed in seismic traveltime tomography.574

Defined as ‘uncertainty loops’ by Galetti et al. [2015], they surround high- and low-velocity575

anomalies and characterise the uncertainty in the location of their boundaries. Galetti et al.576

[2015] conjectured that uncertainty loops should be observed in almost all tomographic sys-577

tems provided that the full nonlinearity in the forward physics is embodied within the inver-578

sion, and that they may (erroneously) disappear in the solution of linearised systems. Loops579

have not previously been recognised in electrical resistivity tomography to the best of our580

knowledge, which may be because most publications employ inversion schemes involving581

linearised physics, or because those publications that do employ non-linearised, stochastic582

inversion methods fail to report uncertainty maps.583

The origin of the loops is confirmed by the posterior PDFs on log(ρ) at points located584

near the edge of the high-resistivity anomaly (Figure 8): since these points may fall either585

inside or outside of the anomaly in the ensemble of accepted models, depending on exactly586

where the boundary of the anomaly is located in each model, their posterior PDFs are mul-587

timodal, and present two distinct peaks: one peak corresponds to the log(resistivity) of the588

anomaly while the other corresponds to the background log(resistivity). Excess kurtosis589

along the edges of the anomaly is also negative as a consequence of the distribution being590

bi-modal. The loops therefore appear because of our uncertainty in the geometrical location591

of the boundary of the anomaly, as embodied in the set of models in the ensemble.592
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Figure 10. Example of 4 Voronoi models from the ensemble obtained from the TERT algorithm. The
log-likelihood of each model is shown in the top-right corner of each plot. In all panels, the grey ticks at z = 0
m denote electrode locations.

614

615

616

(a) (b)

Figure 11. Inversion results for the synthetic model in Figure 5 found using the iterated-linearised code
R2 by Binley [2013b]. (a) Best-fit resistivity map obtained after 4 iterations. (b) Resolution map showing the
logarithm of the diagonal elements of the resolution matrix (log values near 0 indicate better resolution). In
both panels, the grey ticks at z = 0 m denote electrode locations.

617

618

619

620

In this transdimensional approach the number of model parameters n is itself a param-598

eter. A posterior PDF is therefore also obtained on the number of Voronoi cells needed to599

constrain the data. The posterior p(n|dobs) is shown in Figure 9(a), while Figure 9(b) shows600

the density of Voronoi nuclei (given as average number of nuclei per m2 per sample) in 5 m601

× 5 m square sectors centred on each pixel. As expected, the highest density of Voronoi nu-602

clei is found near to the edges of the resistivity anomaly since this is the area in which the603

data is sufficient to resolve strongly heterogeneous structure which must be represented in604

almost any model in order to have a high enough likelihood to be included in the ensem-605

ble. However, although the structure of the true model is relatively simple and could eas-606

ily be described by only 3 Voronoi cells (if the cell nuclei are located at specific positions),607

the posterior on the number of cells peaks around 14. This is likely to be due to the fact that608

this acquisition array has very low sensitivity to structure below 10 m depth, hence Voronoi609

cells may be added or deleted from the model below this depth without significantly affecting610

the likelihood. For instance, this is illustrated in Figure 10 which shows 4 different Voronoi611

models from the ensemble that, despite the different number of cells, have very similar likeli-612

hoods.613
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In order to benchmark the TERT algorithm against a standard optimisation-based in-621

version scheme, we inverted the same dataset using the iterative linearised code R2 by Binley622

[2013b]. This code first uses a uniform resistivity model to estimate the data, and then iter-623

atively adjusts the model until a target misfit value between observed and predicted data is624

reached. The resulting best-fit resistivity model obtained after 4 iterations is shown in Fig-625

ure 11(a): although the background resistivity is correctly resolved across the model area, the626

high-resistivity structure in the middle of the model is only resolved down to ∼ 5 m, approxi-627

mately half the depth to which it was observed in the arithmetic mean resistivity section from628

TERT (Figure 7(a)) and less than a quarter of that observed using the mode (Figure 7(c)).629

However, since a single best-fitting model is produced by the algorithm, it is not possible630

to evaluate the distance of the solution from the true model when that model is not known.631

The reliability of the solution in this optimisation inversion scheme must be assessed indi-632

rectly, for instance by analysing the resolution matrix R (e.g., see equation (5.18) in Binley633

and Kemna [2005]) computed using physics that is linearised around the model found in the634

final iteration. When R equals the identity matrix I, all parameters are correctly resolved635

and uniquely determined; when R does not resemble the identity matrix, then each param-636

eter is given by a weighted average of the true model parameters. The diagonal elements of637

the resolution matrix corresponding to the target misfit model in Figure 11(a) are shown in638

Figure 11(b). As expected from the acquisition geometry, resolution is higher (diagonal ele-639

ments are closer to 1) near the surface and drops towards the bottom and lateral edges of the640

model. However, unlike the standard deviation map in Figure 7(e), the resolution matrix does641

not provide a range on the expected resistivities at any point in the model, hence it cannot be642

used as a direct measure of the uncertainty on the structures observed in Figure 11(a).643

3.2 Example 2644

In this second experiment, we created a synthetic dataset for the more complex resis-645

tivity model shown in Figure 12(a) using the forward modelling functions in FW2_5D and a646

dipole-dipole acquisition geometry (Figure 4(a)) with 41 electrodes located at regular inter-647

vals of 2 m. By letting the electrode spacing d vary between 2 and 26 m, and the dipole sep-648

aration factor f vary between 1 and 6, we modelled 903 potential differences and perturbed649

each measurement k using random Gaussian noise with a standard deviation σprior
k

of 3% of650

the observed value. The apparent resistivity pseudosection is shown in Figure 12(b). In this651

case, for a dipole-dipole electrode configuration, apparent resistivity is related to the mea-652

sured potential difference ∆Vk by:653

ρappk = πdf ( f + 1)( f + 2)∆Vk

Ik
(9)654

We assume Uniform priors on the number of Voronoi cells as [3, 4, ..., 100], on µ =663

log(ρ) as [−1, 5], on the x and z coordinates of model boundaries as [−50, 50] and [0, 30],664

respectively, and on noise parameter λ as [0.01, 10], and ran 32 tempered Markov chains (of665

which 16 were at the target temperature T0 = 1) in parallel for 1.2 × 106 iterations allowing666

two randomly-chosen chains to swap models at each iteration according to equation 7. Every667

100th sample at the target temperature after a burn-in period of 4 × 105 iterations was consid-668

ered as a representative model from the posterior PDF, giving an ensemble of 128× 103 valid669

samples.670

Figures 13(a)–(d) map information retrieved by TERT about the distribution of resis-676

tivity in the subsurface in terms of different statistical moments. The background resistivity677

is relatively well resolved across the model, while the four rectangular anomalies are resolved678

to a different extent by the different statistics. The top two anomalies are resolved by all sta-679

tistical moments in panels (a)–(d), while among the bottom two anomalies only the high-680

resistivity one on the right is resolved by all moments. The bottom low-resistivity anomaly681

is only visible as an area of slightly lower resistivity than the background in the median and682

mode maps, while it is not visible in the average and root-mean-square sections. This is not683

surprising given the higher sensitivity to larger values of these two statistical moments.684
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(a) (b)

Figure 12. Synthetic resistivity model for the example application described in Section 3.2. (a) True re-
sistivity section. (b) Resistivity pseudosection acquired using a dipole-dipole configuration for 41 electrodes
located between -40 and 40 m, with electrode spacing d between 2 and 26 m and dipole separation factor f

between 1 and 6 in the geometry shown in Figure 4(b). A resistivity pseudosection is a contour plot where
each datum (i.e., apparent resistivity calculated using equation 9 for a dipole-dipole configuration) is plotted
horizontally at the mid-point of the set of 4 electrodes used for the measurement, and vertically at the median
depth of investigation [Edwards, 1977] of the electrode array used. In both panels, the grey ticks at z = 0 m
denote electrode locations.
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The uncertainty on the solution can be visualised on the standard deviation and en-685

tropy maps in panels (e)–(f). Similarly to the previous example, loops of higher standard686

deviation define the edges of the top two anomalies, and large values of standard deviation687

are also found vertically between the two sets of anomalies (around 10 m depth). Compari-688

son of these high uncertainty features with the actual location of the anomalies’ edges shows689

that the true edges fall within the high standard deviation loops, supporting our previous sug-690

gestion that these uncertainty topologies define the spatial resolution of boundaries between691

different bodies.692

The skewness map shows areas of negative skewness corresponding to the two high693

resistivity anomalies, indicating that the tail of the PDF at these locations is longer on the694

low-resistivity side. On the other hand, the top low resistivity anomaly seems to correspond695

to an area of positive skewness, indicating that the PDF in this sector has a longer tail to-696

ward high resistivity values. This seems to agree with the fact that the background resistivity697

falls in between the resistivities of the low and high anomalies. The kurtosis map shows re-698

markable similarity to the entropy map, with areas of high entropy corresponding to areas of699

negative kurtosis. This is intuitively correct since negative kurtosis indicates flatter distribu-700

tions, which in turn correspond to a greater degree of disorder or uncertainty as identified by701

entropy. In addition, a loop of negative kurtosis marks the edges of the top-left anomaly as702

a consequence of the posterior PDF being bi-modal in this region. However, it is important703

to note that both skewness and kurtosis maps may also be affected by the size of the prior,704

hence their interpretation should be treated with caution.705

The least-misfit solution obtained using the linearised code R2 is shown in Figure706

14(a). In this case, only the top two anomalies are resolved, while the bottom two are not vis-707

ible. In terms of assessing uncertainty, calculation of the resolution matrix R (which involves708

the inversion of a large matrix with rank equal to the number of model parameters, in this709

case 4032) was not possible computationally using R2. As a less computationally-intensive710

alternative, we calculated the sensitivity map s (see equation (5.20) in Binley and Kemna711

[2005]), which may be used instead of R as a less expensive image appraisal measure. Sen-712

sitivity is high in areas where the data is more strongly influenced by the model, while it is713

low in areas where the model has little effect on the data and hence may be mainly affected714

by the regularisation. However, note that using the sensitivity map to estimate uncertainty715
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. Inversion results for the synthetic model in Figure 12 found using the TERT algorithm. (a)
Arithmetic mean. (b) Median. (c) Mode (i.e., maximum-a-posteriori). (d) Root-mean-square. (e) Standard
deviation. (f) Entropy. (g) Skewness. (h) Excess kurtosis. Note that the excess kurtosis map is simplified to
only 3 distinct groups of values due to the many orders of magnitude spanned by this statistical moment. In all
panels, the grey ticks at z = 0 m denote electrode locations.
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(a) (b)

Figure 14. Inversion results for the synthetic model in Figure 12 found using the iterated-linearised code R2
by Binley [2013b]. (a) Best-fit resistivity map obtained after 3 iterations. (b) Sensitivity map. In both panels,
the grey ticks at z = 0 m denote electrode locations.

718

719

720

may be misleading in this case, since relatively high sensitivity is found at the location of the716

bottom-right, high-resistivity anomaly which is not resolved by the best-fit model.717

4 Observational data experiments721

In order to test the efficiency and reliability of the TERT method on observational data,722

we applied the method to two observational datasets acquired at archaeological sites in Scot-723

land and Slovakia. The results from the Scotland dataset are presented below, while those724

from the Slovakia dataset are presented in the online Supporting Information.725

4.1 Scotland dataset726

In this experiment, we inverted two observational datasets recorded at an archaeologi-727

cal site at Glebe Field in Aberlady (Scotland). Glebe Field is listed as an officially Scheduled728

(protected) monument, and in recent years has yielded a number of Anglo-Saxon finds in-729

cluding small artefacts and coins. The site was also surveyed using magnetics [Neighbour730

et al., 1995] and electrical resistance mapping [Neighbour et al., 1998; Blackwell, 2008],731

revealing the presence of a number of linear features which were interpreted as building732

foundations. A resistance map (i.e., a standard archaeological twin-array output) obtained733

by Blackwell [2008] in the south-western corner of the field is shown in Figure 15.734

We inverted two datasets recorded using a Wenner-alpha configuration along the two740

profiles shown in Figure 15: profile A (the green line in Figure 15) was acquired using 53741

electrodes at 1 m spacing; profile B (the blue line in Figure 15) was acquired using 33 elec-742

trodes at 2 m spacing. Following an initial data quality check, the two profiles included 295743

and 150 measured potential differences, respectively. We assumed data noise to be unknown,744

hence also inverted for parameters a and b in equation 4 in both cases.745

We assumed Uniform priors on the number of Voronoi cells as [5, 6, ..., 200], on µ =746

log(ρ) as [0.5, 4], and on noise parameters a as [0.0001, 0.2001] and b as [0.1, 1.1], respec-747

tively. Uniform priors on the x and z coordinates of model boundaries were assumed as748

[−4, 56] and [0, 16] for profile A, and as [−4, 68] and [0, 22] for profile B. We ran 32 tem-749

pered Markov chains (of which 16 were at the target temperature T0 = 1) in parallel for750

1 × 106 iterations allowing two randomly-chosen chains to swap models at each iteration751

according to equation 7. Every 100th sample at the target temperature after a burn-in period752

of 2 × 105 iterations was considered as a representative model from the posterior PDF, giving753

an ensemble of 128 × 103 valid samples.754

The results from the inversion using the TERT algorithm are shown in Figure 16(a)–761

(f), while panels (g) and (h) in Figure 16 show the inversion results obtained using the lin-762
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A

B

Figure 15. Resistance map of the south-west corner of Glebe Field, Aberlady (Scotland) by Blackwell
[2008]. The two profiles for which imaging results are presented in Section 4.1 are denoted by the green (pro-
file A) and blue (profile B) lines, where distance along the profile is measured from the northern end of the
lines. The white circles on the two lines are for reference and denote 5-meter segments. Note that the location
of the resistance map is approximate due to the original survey by Blackwell [2008] not being georeferenced.

735

736

737

738

739
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Profile A Profile B

Figure 16. Inversion results for the observational datasets described in Section 4.1 found using (a)–(f) the
TERT algorithm, and (g)–(h) the iterated-linearised code R2 by Binley [2013b]. The left column shows results
for profile A in Figure 15, the right column for profile B. (a)–(b) Arithmetic mean. (c)–(d) Standard deviation.
(e)–(f) Node density (measured within a 5 m × 5 m square sector centred on each pixel). (g)–(h) Best-fit
resistivity map from R2. Note that the colour scale in (a)–(b) and (g)–(h) is clipped between 1 and 3.5 to aid
visualisation. In all panels, the grey ticks at z = 0 m denote electrode locations.
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(a)

(b)

Figure 17. Posterior PDF on noise hyperparameters a and b for the observational dataset described in
Section 4.1 obtained from TERT. (a) Profile A. (b) Profile B.

766

767

earised code R2. The posterior on noise hyperparameters a and b are shown in Figure 17.763

When inverting the data using R2 the noise was assumed to be proportional to the measured764

resistances according to equation 4, and a and b were set to 0.02 and 0.001, respectively.765

In both profiles A and B, a high-resistivity structure is resolved near 2 m depth at the768

northern end of the lines, and it is likely to correspond to buried paving from a building or769

walkway. This feature appears to be thinner and better resolved in the average maps from770

TERT compared to the linearised results from R2, probably as a result of smoothing in the771

linearised solution.772

In addition, the average maps from TERT reveal the presence of a high-resistivity773

structure at depth (visible near x = 40 m and z = 6 m on profile A, and below z = 10 m774

on profile B) which is not resolved at all in the linearised solution. This feature is located in a775

region of high uncertainty and poor resolution as suggested by the standard deviation maps.776

However, as shown by the synthetic example in Section 3.2, meaningful structure may still be777

resolved by TERT in areas of high uncertainty (see the bottom-right anomaly in Figure 13),778

hence it is not possible to tell whether this high-resistivity feature represents real structure or779

an artefact from the inversion. Nevertheless, the fact that it is visible on both profiles A and780

B seems to indicate that it is a robust feature which may represent resistive bedrock or some781

other archaeological structure.782

In terms of Voronoi cell density across the ensemble of valid models, similarly to the783

previous example the highest density of Voronoi nuclei is found near the surface where reso-784

lution is higher.785

5 Discussion786

5.1 Uninformative vs. informative priors787

In all of the examples presented in this study we employed uninformative Uniform pri-788

ors on all model parameters. This choice was mainly dictated by the fact that we wished to789

assume little to no prior knowledge about the medium, and it prevented the emergence of790
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uncertainty loops and the increased depth resolution from being in any sense confounded791

between the information contained in the priors and in the data.792

However, were more detailed prior information available in the form of alternative sur-793

veys or boreholes, such information could be included within the inversion in terms of infor-794

mative priors. The use of Voronoi cells to represent the model creates a very flexible type795

of model parameterisation, and such cells could easily provide approximate representations796

of both such prior information and the resulting posteriors: if prior information were both797

strong (permitting only tightly constrained, geologically-realistic structures) and detailed,798

then the number of cells may increase to reflect that level of detail; in contrast, in the absence799

of strong priors, Voronoi cells would provide a lower-dimensional, more approximate repre-800

sentation of the geology – to the extent that the geology would be reflected in the ERT data801

alone during inversion.802

Alternatively, linearised inversion starting from different initial models might be used803

to produce a set of solutions which may then be used as starting points for non-linear inver-804

sion using TERT (with each Markov chain or a set of Markov chains using a different lin-805

earised solution as an initial model). If the linearised solutions are significantly different, this806

‘hybrid’ method might allow convergence to be reached more quickly.807

While we have not implemented either of the two approaches suggested above, we be-808

lieve they would provide an interesting topic for further research.809

5.2 Convergence810

In any McMC inversion scheme it is important to collect a sufficient number of sam-811

ples so that the ensemble of sampled models will be reasonably representative of the poste-812

rior PDF. If a Markov chain could be run for an infinite amount of time, it would explore the813

full model space and reach convergence in the region of highest probability. However, since814

computational limitations impose a practical limit on the running time of the inversion, con-815

vergence may not be reached by the end of the chain if it gets trapped in a local likelihood816

maximum. A practical solution to this problem is to run a series of Markov chains in parallel817

by starting from different initial conditions. This ensures that different regions of the model818

space can be explored simultaneously, and that anomalous Markov chains that are stuck in a819

local likelihood maximum can easily be identified.820

Although few tools are currently available for assessing convergence in a transdimen-821

sional framework, information on Markov chain convergence may be obtained by plotting the822

variation of a model parameter as a function of iteration. However, as opposed to traditional823

McMC methods where model parameterisation is fixed, in a rj-McMC tomography scheme824

the use of cell position and log(resistivity) values (c, µ) to assess convergence is pointless825

since the dimensionality of the geometry of the model may change at each step of the chain.826

Instead, useful convergence diagnostics may be obtained from plots of number of cells, noise827

hyperparameters, or log(resistivity) at a certain location versus iteration number. Conver-828

gence of one of these parameters may be said to have been reached when its value becomes829

relatively stationary and no drifts are present as the parameter is plotted as a function of sam-830

ple number.831

One of the main factors affecting the speed at which convergence is reached is the832

choice of the perturbation step sizes (see Appendix B.3 for a detailed description of these833

terms). In order to promote convergence and prevent biases in the evaluated posterior PDF,834

the shape of the proposal distribution from which each proposed model is drawn should be835

as similar as possible to that of the posterior PDF. However, this is problematic given that836

the shape of the posterior is not known a priori. Hence, as expressed in equation B.12, the837

proposal distribution for m′ is chosen to be conditionally dependent on the current model838

m, so that the proposed model is simply a perturbation of m whose magnitude is determined839

by the step size. Suitable step sizes are normally chosen through trial and error by analysing840
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the acceptance rates (i.e., number of accepted samples over number of proposed samples) for841

the various types of perturbation, and a number of authors have suggested acceptance rates842

of around 1/4 for optimal sampling [Gelman et al., 1996; Sherlock and Roberts, 2009]. If a843

certain acceptance rate is too low, the step size of the perturbation is likely to be too large as844

the proposed models fall either in regions of lower probability or outside of the prior bounds.845

If the acceptance rate is too high, then the proposed models are likely to be too close to the846

current models, causing the algorithm to explore only a small portion of the model space and847

slowing down convergence.848

However, monitoring acceptance rates and manually tuning step sizes during a number849

of test runs may be cumbersome and computationally prohibitive due to the large computa-850

tional cost of the inversion (see Section 5.3). Similarly to Bodin and Sambridge [2009], we851

overcome this issue for non-transdimensional steps by implementing the ‘delayed rejection’852

scheme of Tierney and Mira [1999], which allows a second proposal on the value or posi-853

tion of Voronoi nuclei to be made by using a smaller step size if the first proposal is rejected.854

While this appears to improve the acceptance of resistivity and move steps, we find that the855

acceptance rates of transdimensional steps (birth and death) are normally very low (< 10%).856

Hence, a natural extension of this study might include attempting to improve the accep-857

tance rates of transdimensional steps by implementing a ‘transdimensional delayed rejec-858

tion’ scheme as developed by Green and Mira [2001], and/or by sampling the log(resistivity)859

value for newly-generated Voronoi cells from the prior rather than using a Gaussian perturba-860

tion (equation B.16) as suggested by Dosso et al. [2014].861

The choice of the prior also plays a role on Markov chain convergence, with wider pri-862

ors normally causing convergence to be slower. This is intuitive since, for the same Markov863

chain length, wider prior boundaries imply that a larger portion of model space must be ex-864

plored. Hence, although the use of a wider prior ensures that fewer prior-related biases are865

introduced into the solution, it also means that Markov chains need to be run for a longer866

time in order to reach convergence. A compromise between prior width and practicality must867

therefore sometimes be made given the limitations on the available computing time (even868

though this violates a strictly Bayesian approach where the prior should be independent of869

the current data and inversion algorithm).870

The fit to the observed data may be estimated by calculating the residuals obtained871

from each Voronoi model within the ensemble, which for the examples considered in this pa-872

per are shown in Figure 18 as a percentage of the observed potential differences. In all cases,873

the distribution of the residuals resembles a Gaussian distribution and is centered around 0.874

5.3 Computational cost878

We initially implemented the TERT algorithm in MATLAB since it allowed for rapid879

testing, modification and debugging. In addition, given that the resistivity modelling code880

FW2_5D by Pidlisecky and Knight [2008] which we employed is freely available as a suite881

of MATLAB functions, implementation in MATLAB allowed us to make use of a thoroughly882

tested and, to the best of our knowledge, error-free forward modeller. However, despite the883

use of the Parallel Computing MATLAB Toolbox, executing inversions in MATLAB re-884

quired a substantial amount of computation time, hence we re-wrote our program entirely885

in Fortran after the initial testing stage. This gave us a considerable gain in computation886

time (around 1/3 time required for an inversion) and allowed us to leverage the resources of a887

computing cluster by using parallel computing tools such as MPI in the inversion algorithm.888

As an example, in its current Fortran implementation the running time of the code for the889

electrode geometries discussed in Section 3 is on average 4 hours for 104 iterations, using890

32 cores for 32 parallel Markov chains on the cluster at the University of Edinburgh. Fur-891

ther reductions in computation time could be made in future by also parallelising the forward892

modelling routines.893
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(a) (b) (c)

(d)
A B

Figure 18. Residuals as percentage of the measured data evaluated for each Voronoi model in the ense-
bles obtained for the examples described in (a) Section 3.1, (b) Section 3.2, (c) Section 1 of the Supporting
Information, (d) Section 4.1 (profile A on the left, profile B on the right).

875

876

877

In terms of its applications, while TERT is computationally expensive in its current894

implementation, it is nevertheless applicable to the monitoring of higher-value targets where895

larger cost is acceptable. Examples include the detection and monitoring of leaks from nu-896

clear waste storage sites, or monitoring CO2 plumes which might escape from subsurface897

storage reservoirs through chimney structures.898

5.4 A note on natural parsimony899

As described earlier, the rj-McMC algorithm provides a naturally parsimonious way900

of performing tomography in that among models giving similar data fit, simpler ones (i.e.,901

those with fewer Voronoi cells) are assigned higher probability. This becomes obvious when902

Bayes’ theorem (equation 2) is analysed together with the prior function in equation B.11,903

which decreases exponentially as the number of cells n increases (Figure B.1).904

However, the concept of natural parsimony is not as straightforward to grasp when we905

consider the Metropolis-Hastings algorithm (which we employ to draw samples from the906

posterior PDF) since the number of cells n does not explicitly appear in any of the expres-907

sions for the acceptance parameter α(m′ |m) when a change in model dimension is involved908

(equations B.26 and B.27). In order to gain more intuition on the concept of natural parsi-909

mony, let us analyse equations B.26 and B.27 in more detail.910

As described in Section 2.2.4, a proposed model m′ is accepted if α(m′ |m) ≥ r , where911

r is a random deviate from a Uniform distribution between 0 and 1, while it is randomly ac-912

cepted or rejected if α(m′ |m) < r . This selection criterion ensures that all samples that im-913

prove the data fit are accepted, while also allowing lower-probability regions in the model914

space to be explored.915

In the case of perturbation types of fixed dimensionality (i.e., changing resistivity or916

noise, or moving a Voronoi nucleus), the acceptance parameter α(m′ |m) only depends on the917

likelihoods of the current and proposed models (equation B.25), and the proposed model m′918
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is always accepted if its likelihood is greater than that of the current model m. In the case919

of birth and death steps, however, the acceptance parameter α(m′ |m) depends not only on920

the likelihoods of m and m′, but also on a number of other parameters such as the standard921

deviation of the step size σbd , the prior probability of log(resistivity) ∆µ, and the difference922

in log(resistivity) between the current and proposed model at the location where a Voronoi923

nucleus is added or removed (equations B.26–B.27). As a result, in order for a birth/death924

step to be definitely accepted, the term in the square brackets of equation B.26/B.27 must925

be greater than or equal to 1 (or, equivalently, its logarithm must be greater than or equal926

to 0). By taking the natural logarithm of this term, setting it equal to or greater than 0, and927

rearranging the terms, we obtain928

ψ(m) − ψ(m′) ≥ −2 ×
[
ln

(
σbd

√
2π

∆µ

)
+
(µ′

n+1 − µi)
2

2σ2
bd

]
(10)929

in case of a birth step, and930

ψ(m) − ψ(m′) ≥ −2 ×
[
ln

(
∆µ

σbd

√
2π

)
−
(µ′j − µi)2

2σ2
bd

]
(11)931

in case of a death step, where µ = log(ρ), ψ(m) and ψ(m′) denote the data misfit (defined in932

equation B.2) of the present and proposed model, σbd is the proposal step size for birth and933

death steps, ln denotes the logarithm in base e, and for simplicity we have assumed data noise934

to be constant between model m and m′ (i.e., σk = σ
′
k
in equations B.26–B.27).935

Equations 10 and 11 illustrate how, for a birth or death step to be definitely accepted,936

the difference in misfit between the current and the proposed model (ψ(m) − ψ(m′)) must937

be greater than or equal to the quantity on the right-hand-side of each equation, while the938

model is randomly accepted or rejected if the difference in misfit is less than this quantity939

(see Section 2.2.4). The right-hand-side of equations 10 and 11 is displayed in Figure 19940

as a function of the change in log(resistivity), δµ, between the proposed and current model941

(where δµ = |µ′
n+1 − µi | in a birth step, and δµ = |µ

′
j − µi | in a death step), using the same942

prior and step size as in the synthetic examples from Section 3. The two curves in Figure 19943

cross at944

δµ0 = σbd

√
2 × ln

(
∆µ

σbd

√
2π

)
(12)945

This value is important as it separates the values of δµ for which there are expected to be946

more death steps than birth steps (to the left of this value) from those for which the reverse is947

true (to the right). This value varies with the proposal step size σbd and peaks at948

σmax
bd =

∆µ
√

2π
e−1/2 (13)949

For simplicity, let us refer to the area of the plot in Figure 19 located to the left of δµ0 as950

the region where the change in the model is small, and the region to the right of δµ0 as the951

region where the change in the model is large.952

When the change in the model is small, all death steps which decrease the misfit (even960

by a very small amount) are accepted, while birth steps are only definitely accepted if model961

m′ yields a significantly lower misfit than the current model. This ensures that an increase962

in model dimensions is justified by a substantial decrease in misfit from m to m′ if the two963

models are similar, and that the number of model dimensions always decreases if accompa-964

nied by an improvement in data fit – according to the principles of natural parsimony. How-965

ever, note that, in practical applications, the acceptance rate of birth steps is normally found966

to be low when the step size σbd is very small, since it is unlikely that the decrease in misfit967

will be large enough for small model perturbations.968

When the change in the model is large, birth steps are always accepted if they improve969

the data fit, while death steps must yield a substantial improvement in fit in order to be defi-970

nitely accepted. Although this appears to be against the principles of natural parsimony, note971
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bd bd bd
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}

misfit

birth
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data fit

misfit

data fit

Figure 19. Difference in misfit between current model m and proposed model m′ as a function of change
in log(resistivity), δµ (where δµ = |µ′

n+1 − µi | in a birth step, and δµ = |µ′j − µi | in a death step), calculated
using equations 10 (birth, purple line) and 11 (death, light blue line), and the prior parameters from the syn-
thetic examples in Section 3. Model m′ is always accepted if the difference in misfit ψ(m) − ψ(m′) lies above
the purple line for a birth step and above the light blue line for a death step, and randomly accepted or rejected
otherwise. The vertical dashed lines indicate the values below which δµ is likely to fall with probability
68.27% (at σbd), 95.45% (at 2σbd) and 99.73% (at 3σbd).

953

954

955

956

957

958

959

that the majority of the time the change in log(resistivity), δµ, will be less than σbd , which972

is assumed to be significantly less than the prior range of log(resistivity), ∆µ. In fact, be-973

cause the proposal distributions for birth and death steps are Gaussian, δµ has a probability974

of around 68%, 95% and 99.7% of falling respectively within one, two and three standard975

deviations σbd from µi , as displayed by the vertical dashed lines in Figure 19.976

Similarly to Figure 19, the right-hand-side of equations 10 and 11 for different values977

of σbd is displayed in Figure 20. As σbd increases, the crossing point δµ0 moves to the right978

(panels (a)–(c)) (extending the region of naturally parsimonious proposals to the right) up to979

σbd = σmax
bd

in panel (c). The crossing point δµ0 moves back to the left for σbd > σmax
bd

980

(panels (d)–(e)), and the two curves cross at δµ0 = 0 when σbd = ∆µ/
√

2π (panel (e)).981

Beyond this value all birth steps that improve the data fit are accepted, while only death steps982

that provide a substantial decrease in misfit are always accepted (panel (f)).983

Clearly the latter case is not parsimonious as birth steps are likely to exceed death steps990

(and δµ would be so large that either µ′
n+1 would fall outside the prior support or model m′991

could not be considered ‘similar’ to model m as required by natural parsimony), and hence992

this places a bound on reasonable values of σbd . Plots such as those shown in Figure 20 may993

therefore be used to choose an appropriate value for σbd , such that the crossing point of the994

two curves is greater than 1 or 2 standard deviations from µi , ensuring that natural parsimony995

will be achieved on average. Alternatively, the resistivity of a newly-generated cell in a birth996

step may be sampled from the prior as suggested by Dosso et al. [2014], which obviates the997

need for such tuning when prior ranges are narrow.998
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(a) (b) (c) (d) (e) (f)

increasing 
bd

Figure 20. Difference in misfit between current model m and proposed model m′ as a function of change in
log(resistivity) δµ (where δµ = |µ′

n+1− µi | in a birth step, and δµ = |µ′j − µi | in a death step), calculated using
equations 10 (birth, purple line) and 11 (death, light blue line), the prior on log(resistivity) from the synthetic
examples in Section 3, and different proposal sizes σbd : (a) 0.2, (b) 0.8, (c) 1.4518 (i.e., σmax

bd
as given in

equation 13), (d) 2, (e) 2.3937 (i.e., ∆µ/
√

2π), (f) 4. Where visible, the vertical dashed lines denote δµ equal
to σbd , 2σbd and 3σbd as in Figure 19.

984

985

986
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988
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6 Conclusions999

We have described a method for electrical resistivity tomography which uses the reversible-1000

jump Markov chain Monte Carlo algorithm and model parameterisation with Voronoi cells1001

to produce an ensemble of solutions to the inverse problem which are distributed accord-1002

ing to the posterior probability density function. The advantage of this approach lies in the1003

fact that, by never linearising the physics of the forward modelling problem and allowing1004

the model parameterisation to vary freely during inversion, we reduce both modelling- and1005

parameterisation-related biases to a minimum while efficiently exploring the model space.1006

In addition, since no actual matrix inversion is involved in the inversion process, this method1007

obviates the need for any user-defined regularisation – the variation and smoothness of the1008

solution is constrained by noise in the data. More importantly, both synthetic and observa-1009

tional examples showed that depth resolution increases when non-linearities are correctly1010

accounted for during the inversion.1011

Each of the models in the ensemble solution is defined by a tessellation of Voronoi1012

cells with different resistivity. While each of these models is unrealistic when taken on its1013

own, the full ensemble of solutions provides a probabilistic representation of subsurface1014

resistivity structures and of their uncertainties. Statistical moments such as the arithmetic1015

mean, the harmonic mean, the median, the mode and the root-mean-square can be computed1016

through the ensemble to obtain a visual representation of the subsurface resistivity field.1017

Each of these moments is sensitive to different properties of the ensemble (see Section B.51018

in the Appendix) and, despite the discontinuous nature of the underlying Voronoi models,1019

provides a smooth representation of subsurface resistivity.1020

In addition, compared to an optimisation approach, a sampling-based probabilistic so-1021

lution has the inherent advantage that uncertainties can be directly evaluated from the pos-1022

terior probability density function. Within this paper, we considered standard deviation and1023

entropy as measures of uncertainty, and found that their magnitude is not only dictated by the1024

resolution provided by the data, but also by the true underlying resistivity structure. In fact,1025

both synthetic and observational data examples showed that the density of Voronoi nuclei is1026

greater where the variability of the true resistivity field is larger and where structures are of1027

smaller scale.1028
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A: Forward modelling1029

The flow of electrical current in the Earth’s subsurface is governed by Ohm’s law,1030

which states that at each point the current density J is directly proportional to the electric1031

field intensity E and inversely proportional to the resistivity of the medium ρ:1032

J =
1
ρ

E (A.1)1033

If the electric field E is stationary in time, it can be expressed in terms of a scalar potential Φ1034

as1035

E = −∇Φ (A.2)1036

which allows us to re-write equation A.1 as1037

J = − 1
ρ
∇Φ (A.3)1038

By the principle of conservation of charge and the equation of continuity, we obtain the fol-1039

lowing expression,1040

∇ · J = ∂q
∂t

δ(x − xS) (A.4)1041

where xS is the location of a point source of charge density q, and δ(x − xS) is the Dirac delta1042

function centred at the current source location xS . By combining equations A.3 and A.4, and1043

expressing current I as the change of charge density over time (I = ∂q/∂t), we obtain the1044

domain equation [Dey and Morrison, 1979a,b; Pridmore et al., 1981]1045

∇ ·
[

1
ρ(x) ∇Φ(x)

]
= −I δ(x − xS) (A.5)1046

which describes the distribution of the electrical potential generated by a point source of1047

electrical current at location xS . Solving this equation to determine the potential Φ which is1048

generated by the injection of electrical current from an electrode located at xS and observed1049

at x, given a certain distribution of resistivity ρ(x) in the subsurface, corresponds to most of1050

the forward problem. The data usually recorded in ERT are differences in the electrical po-1051

tential at pairs of locations; calculating these differences for the potential Φ completes the1052

forward problem.1053

B: Mathematical details for the rj-McMC algorithm1054

B.1 The likelihood1055

The likelihood function p(dobs |m) can be thought of as a measure of the misfit be-1056

tween observed and predicted data. Using a Gaussian distribution to represent data uncer-1057

tainty, the likelihood function can be expressed as1058

p(dobs |m) = 1√
(2π)K |Cd |

exp
{
−1

2
(dobs − dpred)T C−1

d (d
obs − dpred)

}
(B.1)1059

where dpred = g(m), Cd is the data covariance matrix and |Cd | represents its determinant.1060

If data noise is uncorrelated, Cd in equation B.1 is a diagonal matrix whose elements1061

are the variances (i.e., squared standard deviations) of the data uncertainties. The data misfit1062

function ψ(m) can then be defined using the L2 norm (chi-squared error) as1063

ψ(m) =
K∑
k=1

(
dobs
k
− dpred

k

σk

)2

(B.2)1064
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where K represents the total number of data points, dpred
k

is the k th datum predicted from1065

model m, and σk is the standard deviation of the uncertainty associated with datum dobs
k

.1066

Combining equations B.1 and B.2 yields1067

p(dobs |m) = 1
K∏
k=1

(√
2π σk

) e−ψ(m)/2 (B.3)1068

B.2 The prior1069

Since all inferences about the posterior PDF are relative to the prior distribution, priors1070

have great importance in Bayesian inversion schemes as the final result may be heavily influ-1071

enced by the choice of an inappropriate prior. In order to minimise the contribution of prior-1072

related biases that are introduced into the solution, we choose Uniform prior distributions1073

with wide bounds for all model parameters in the examples herein. Given that all parameters1074

are independent and have different dimensions, the model prior can then be divided into the1075

product of four terms:1076

p(m) = p(n) p(c|n) p(µ |n) p(h) (B.4)1077

where n is the number of Voronoi nuclei, p(n) is the prior on the number of Voronoi nu-1078

clei/cells, p(c|n) is the prior on Voronoi nuclei location, p(µ |n) is the prior on cell log(resistivity),1079

and p(h) is the prior on noise hyperparameters.1080

The prior on the number of Voronoi cells p(n) is a discrete Uniform distribution be-1081

tween a minimum (nmin) and a maximum (nmax) number of Voronoi nuclei, such that1082

p(n) =
{

1
∆n if n ∈ N
0 otherwise

(B.5)1083

where N =
[
nmin, nmin + 1, ..., nmax − 1, nmax

]
and ∆n =

(
nmax − nmin + 1

)
.1084

In order to evaluate the prior on Voronoi cell locations p(c|n), we define a rectangular1085

area bounded in x and z by
[
xmin, xmax

]
and

[
zmin, zmax

]
within which Voronoi nuclei may1086

be located. For simplicity, let us assume that this rectangle can be discretised into a fictitious1087

grid of N points at which Voronoi nuclei can be located (where N = Nx × Nz). For n Voronoi1088

nuclei there then exist N !
n!(N−n)! ways in which the nuclei can be arranged, all having the same1089

probability. Hence, the prior on Voronoi nuclei location is given by1090

p(c|n) =

(

N !
n! (N−n)!

)−1 ∀i ∈ [1, n], xi ∈ X and zi ∈ Z
0 otherwise

(B.6)1091

where X =
[
xmin, xmax

]
andZ =

[
zmin, zmax

]
. Alternatively, the prior on Voronoi cell1092

locations may be set to a Dirichlet distribution as discussed by Steininger et al. [2013], which1093

precludes the need for a fictitious grid to be defined.1094

The prior on cell resistivity is a continuous Uniform distribution bounded by a mini-1095

mum (µmin) and a maximum (µmax) log(resistivity) value, such that for each cell i1096

p(µi |n) =
{

1
∆µ if µi ∈ M
0 otherwise

(B.7)1097

whereM =
[
µmin, µmax

]
and ∆µ =

(
µmax − µmin

)
. Since the resistivity of each cell is1098

independent of that of any other cell, the prior over log(resistivity) for all cells is1099

p(µ |n) = cµ
n∏
i=1

p(µi |n) (B.8)1100
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Figure B.1. Prior p(m) as a function of number of cells n, calculated using equation B.11 and the prior
parameters from the synthetic example in Section 3.1. Note that the y-axis uses a logarithmic scale.

1120

1121

where cµ is a normalising constant, and p(µ |n) is only greater than zero if the log(resistivity)1101

of every cell falls within the interval
[
µmin, µmax

]
.1102

Similarly, the prior on the set of noise hyperparameters h is assigned assuming that1103

all hyperparameters are mutually independent (in other words, without imposing any depen-1104

dence between hyperparameters a priori). The prior on each hyperparameter h j is described1105

by a continuous Uniform distribution between a minimum (hmin
j ) and a maximum (hmax

j )1106

value such that1107

p(h j) =
{

1
∆h j

if h j ∈ Hj

0 otherwise
(B.9)1108

whereHj =
[
hmin
j , hmax

j

]
and ∆h j =

(
hmax
j − hmin

j

)
. Since each hyperparameter is indepen-1109

dent of all the others, the prior over all hyperparameters is1110

p(h) = ch
J∏
j=1

p(h j) (B.10)1111

where ch is a normalising constant and J is the total number of hyperparameters.1112

By combining equations B.5, B.6, B.8 and B.10 as in equation B.4, the full prior prob-1113

ability density function can be expressed as1114

p(m) = cm n! (N − n)!

N! (∆µ)n ∆n

(
J∏
j=1
∆h j

) (B.11)1115

where cm = cµ ch , provided that all parameters fall within the boundaries of their respective1116

priors. If one of the parameters falls outside of the range of its prior, the full prior in equation1117

B.11 becomes zero. As an example, the prior calculated from equation B.11 using the prior1118

parameters from the synthetic example in Section 3.1 is shown in Figure B.1.1119

B.3 Proposal distributions1122

At each step of the Markov chain, a perturbed model m′ is drawn from a proposal dis-1123

tribution q(m′ |m), which is only dependent on the present model m and which might take1124
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the form1125

q(m′ |m) ∝ exp
{
−1

2
(m −m′)T C−1 (m −m′)

}
(B.12)1126

representing a Gaussian distribution with mean m and with a typically diagonal covari-1127

ance matrix C. In practical applications, in order to create a new model m′ from the current1128

model m the ith component of m may be perturbed according to the proposal distribution as1129

m′ = m + uσiei (B.13)1130

where u is a random deviate from a standard normal distribution (a Gaussian with mean of1131

0 and variance of 1), σi is the standard deviation of the proposal (step size), and ei is a unit1132

vector in the ith direction. Overall, five types of perturbations can be performed on the model1133

m used here:1134

• A resistivity step perturbs the resistivity of a randomly-selected cell. If the resistivity1135

of cell i is to be perturbed, a new log(resistivity) value µ′i for the cell can be obtained1136

from1137

µ′i = µi + uσr (B.14)1138

where µi is the present log(resistivity) of cell i, and σr is the step size of the proposal1139

for a change in cell log(resistivity).1140

• A move step changes the position of a randomly-selected Voronoi nucleus. If the loca-1141

tion of cell i is to be perturbed, a new location c′i (given by coordinates x ′i and z′i) for1142

the cell nucleus can be obtained from1143

x ′i = xi + uσc

z′i = zi + uσc

(B.15)1144

where xi and zi are the current x and z coordinates of nucleus i, and σc is the step1145

size of the proposal for a change in cell location.1146

• A death step removes a randomly-selected Voronoi cell nucleus from the model vector1147

m.1148

• A birth step adds a Voronoi cell nucleus to the current model. If a new cell is added at1149

a random location c′
n+1, the log(resistivity) of the new cell is obtained from1150

µ′n+1 = µi + uσbd (B.16)1151

where µi is the present log(resistivity) at location c′
n+1, and σbd is the step size of the1152

resistivity proposal in the case of birth and death steps.1153

• A noise step perturbs a randomly-selected data noise hyperparameter. If noise hyper-1154

parameter h j is perturbed (while the resistivity structure of the model remains un-1155

changed), a new hyperparameter h′j can be obtained from1156

h′j = h j + uσh j
(B.17)1157

where h j is the current value of hyperparameter j, and σh j is the step size of the pro-1158

posal for a change in h j .1159

B.4 The acceptance parameter α1160

The use of α(m′ |m) as an acceptance parameter in step 6 of the TERT algorithm en-1161

sures that, for perturbation types of fixed dimensionality (i.e., changing resistivity and noise,1162

and moving a Voronoi nucleus), all models that improve the data fit are accepted and those1163

that do not are randomly accepted or rejected depending on their likelihood, while in the case1164

of perturbation types involving a change in model dimension (i.e., birth and death steps) the1165

acceptance of proposed models involves a balance between likelihood, prior and proposal1166

ratios (as discussed in more detail in Section 5.4). Green [1995, 2003] showed that this in1167
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turn ensures that the sample population follows the posterior distribution p(m|dobs) as the1168

number of iterations tends to infinity.1169

As can be seen in equation 5, the expression for the acceptance ratio α(m′ |m) involves1170

the product of prior, likelihood and proposal ratios and the Jacobian of the transformation1171

from m to m′. A detailed derivation of all of these terms can be found in Bodin and Sam-1172

bridge [2009] for the case of seismic traveltime tomography, and the derivation is almost1173

identical for TERT. Since to the best of our knowledge this transdimensional inversion al-1174

gorithm has not previously been used in electrical resistivity tomography, here we briefly1175

introduce each term in equation 5.1176

The calculation of the prior ratio involves the evaluation of the prior for m and m′ us-1177

ing equation B.11. In the case of perturbation types of fixed dimensionality, p(m) = p(m′),1178

hence the prior ratio is unity provided that the proposed values fall within the support of their1179

respective priors (the support is the set of values for which the probability is non-zero):1180 [
p(m′)
p(m)

]
f ixed

=

{
1 if m′ ∈ N,M,X,Z,H
0 otherwise

(B.18)1181

For perturbation types which involve a jump in dimensionality, the prior ratio for a birth step1182

is1183 [
p(m′)
p(m)

]
birth

=

{
n+1

(N−n) ∆µ if m′ ∈ N,M,X,Z,H
0 otherwise

(B.19)1184

and for a death step is1185 [
p(m′)
p(m)

]
death

=

{
(N−n+1) ∆µ

n if m′ ∈ N,M,X,Z,H
0 otherwise

(B.20)1186

For perturbations that change the resistivity structure of the model, the evaluation of1187

the likelihood ratio involves the computation of the electrical potential Φ generated by each1188

pair of current electrodes through the Voronoi tessellation of m and m′, and the calculation1189

of potential differences (and data uncertainties if necessary – equation 4) for all required1190

combinations of current and potential electrodes. For noise perturbations it requires only the1191

calculation of new data uncertainties. Once all potential differences and/or noise parameters1192

have been calculated, the likelihood function may be evaluated using equation B.3, giving1193

p(dobs |m′)
p(dobs |m)

=

(
K∏
k=1

σk

σ′
k

)
exp

{
−ψ(m

′) − ψ(m)
2

}
(B.21)1194

where σk and σ′k are the current and proposed uncertainties associated with the k th datum,1195

respectively.1196

The proposal probability q(m′ |m) expresses the probability to move from m to m′,1197

while q(m|m′) expresses the probability for the reverse move, from m′ to m. In the case of1198

perturbation types which do not involve a change in dimension, q(m′ |m) and q(m|m′) are1199

symmetrical distributions, hence their ratio is unity:1200 [
q(m|m′)
q(m′ |m)

]
f ixed

= 1 (B.22)1201

For perturbation types which involve a jump in dimension, the proposal distributions q(m′ |m)1202

and q(m|m′) are not symmetric and we obtain different proposal ratios depending on the1203

type of perturbation. For a birth step which creates a new cell at location c′
n+1 the ratio is1204 [

q(m|m′)
q(m′ |m)

]
birth

=

√
2π (N − n)

n + 1
σbd exp

{
(µ′

n+1 − µi)
2

2σ2
bd

}
(B.23)1205
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where µ′
n+1 is the log(resistivity) of the added cell, µi is the present log(resistivity) at loca-1206

tion c′
n+1, and σbd is defined in equation B.16. For a death step which involves the deletion1207

of cell i the proposal ratio is1208 [
q(m|m′)
q(m′ |m)

]
death

=
n

σbd

√
2π (N − n + 1)

exp

{
−
(µ′j − µi)2

2σ2
bd

}
(B.24)1209

where µ′j is the log(resistivity) at ci in the new tessellation (i.e., after the deletion of cell i).1210

The Jacobian term |J| accounts for scale changes occurring in the case of transdimen-1211

sional perturbations by normalising the difference in volume of the two model spaces of dif-1212

ferent dimension [Green, 2003]. Besides being equal to one in the case of model perturba-1213

tions which do not involve a change in dimension, Bodin and Sambridge [2009] show that |J|1214

is unity even for birth and death steps, hence can be ignored.1215

By substituting the expressions for the Jacobian and for the prior, likelihood and pro-1216

posal ratio into equation 5, an expression for α(m′ |m) can be obtained for each type of model1217

perturbation. For model perturbations which do not involve a change in dimension, the prod-1218

uct of ratios in equation 5 becomes simply the ratio of likelihoods in the proposed and cur-1219

rent model since the prior and proposal ratios are both unity:1220

α(m′ |m) f ixed =


min
[
1,

(
K∏
k=1

σk

σ′
k

)
exp

{
−ψ(m

′)−ψ(m)
2

}]
if m′ ∈ N,M,X,Z,H

0 otherwise
(B.25)1221

For model perturbations involving a change in dimension, for a birth step1222

α(m′ |m)birth =


min
[
1, σbd

√
2π

∆µ

(
K∏
k=1

σk

σ′
k

)
exp

{
(µ′

n+1−µi )
2

2σ2
bd

− ψ(m′)−ψ(m)
2

}]
if m′ ∈ N,M,X,Z,H

0 otherwise
(B.26)1223

and for a death step1224

α(m′ |m)death =


min
[
1, ∆µ

σbd

√
2π

(
K∏
k=1

σk

σ′
k

)
exp

{
− (µ

′
j−µi )

2

2σ2
bd

− ψ(m′)−ψ(m)
2

}]
if m′ ∈ N,M,X,Z,H

0 otherwise
(B.27)1225

Note that, since equations B.25–B.27 do not contain variable N (previously defined in equa-1226

tion B.6), the priors over x and z are here given over the continuous ranges X =
[
xmin, xmax

]
1227

andZ =
[
zmin, zmax

]
.1228

B.5 Statistical solutions1229

At the end of the inversion, maps showing different statistical properties of the subsur-1230

face resistivity field may be obtained from the ensemble by calculating a number of statistical1231

moments through a regular grid of discrete points [x̄i z̄i] over the M samples in the ensem-1232

ble. These statistical properties may include (but are not limited to) the following measures:1233

• the arithmetic mean (i.e., the average or first statistical moment), given by1234

µ̄ =
1
M

M∑
m=1

µm (B.28)1235

This statistic is ideal in purely Gaussian PDFs, but may be heavily affected by outliers1236

or by the tails of the distribution when the posterior is not Gaussian.1237

• the harmonic mean, given by1238

HM(µ) = 1
1
M

∑M
m=1

1
µm

(B.29)1239
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Since the harmonic mean involves taking the inverse of each value, this statistic is1240

more sensitive to low resistivities within the ensemble than is the arithmetic mean.1241

• the root-mean-square, given by1242

RMS(µ) =

√√√
1
M

M∑
m=1

µ2
m (B.30)1243

Since the root-mean-square involves squaring each value, this statistic is more sensi-1244

tive to high resistivities within the ensemble than the arithmetic mean.1245

• the median, which can be defined as the parameter value that separates the lower half1246

from the upper half of probabilities in the PDF. It is a robust statistic which is less1247

affected by extremely large or small values than the arithmetic mean.1248

• the mode, or maximum-a-posteriori value, which can be defined as the parameter1249

value appearing most often in the ensemble, and hence which has the largest value of1250

the posterior PDF. Compared to the previous statistics, it tends to preserve the discrete1251

character of the underlying Voronoi cells in the ensemble, hence maps of this statisti-1252

cal moment are normally characterised by sharp discontinuities between structures of1253

different resistivity.1254

• the standard deviation (i.e., the square root of the second statistical moment), given by1255

σµ =

√√√
1
M

M∑
m=1
(µm − µ̄)2 (B.31)1256

This statistic is particularly useful within a stochastic inversion scheme as it provides a1257

direct measure of the uncertainty in the solution.1258

• entropy, given by1259

Entropy(µ) =
J∑
j=1

[
−pj log2(pj)

]
(B.32)1260

where J is the number of bins in a histogram representing the posterior PDF on log(resistivity)1261

at location [x̄i z̄i] (see Figure 6), and pj is the probability of log(resistivity) µj in1262

the posterior PDF. Entropy can be described as a measure of disorder (lack of in-1263

formation), hence it is high at locations where the PDF resembles the Uniform prior1264

(e.g., Figure 6(a)), and low where the posterior PDF is represented by sharp and well-1265

defined peaks (e.g., Figure 6(e)).1266

• skewness (i.e., the third statistical moment), given by1267

Skewness(µ) = 1
σ3
µ

(
1
M

M∑
m=1

µ3
m − 3µ̄

1
M

M∑
m=1

µ2
m + 2µ̄3

)
(B.33)1268

This statistic provides information on the asymmetry of the PDF, with negatively-1269

skewed distributions having a longer tail to the left and positively-skewed distributions1270

having a longer tail to the right. Since a Gaussian distribution is symmetric around its1271

arithmetic mean, purely Gaussian PDFs have zero skewness.1272

• excess kurtosis (i.e., the fourth statistical moment), given by1273

ExKurtosis(µ) = 1
σ4
µ

(
1
M

M∑
m=1

µ4
m − 4µ̄

1
M

M∑
m=1

µ3
m + 6µ̄2 1

M

M∑
m=1

µ2
m − 3µ̄4

)
− 3 (B.34)1274

This statistic can be used to obtain information on the ‘peakedness’ of the PDF, with1275

negative excess kurtosis indicating broader and flatter distributions (such as a Uniform1276

distribution), and positive excess kurtosis indicating more ‘pointy’ distributions with1277

flatter tails and narrower peaks (such as a Laplacian distribution). In addition, nega-1278

tive kurtosis can also indicate bimodal distributions which may be observed at sharp1279

discontinuities (e.g., Figure 8).1280
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1. Observational data experiments: Slovakia dataset

In this experiment, we inverted an observational dataset (donated courtesy of Tina

Wunderlich at Kiel University) recorded at an archaeological site in the western Small

Carpathians (Slovakia). A detailed investigation involving multiple geophysical techniques

was carried out by Wilken et al. [2015] at this site with the purpose of imaging the ruins of a

number of chapels belonging to the abandoned Franciscan monastery of Katarınka. Wilken

et al. [2015] found that the combined interpretation of results from different methods

(magnetics, ground penetrating radar and ERT) was particularly beneficial in that each

technique complemented the others. Given that the same anomalies were imaged using
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multiple techniques, this dataset provides an ideal setting to test our inversion method

on observational data.

We inverted a dataset recorded using a Wenner-alpha configuration and 51 electrodes

with spacing 0.5 m (gray rectangles in Figures S1–S3), giving 408 measured potential

differences in total. We assumed data noise to be unknown, hence also inverted for

parameters a and b in equation 3 in the main text. A simplified model showing the

interpretation of the profile by Wilken et al. [2015] is shown in Figure S1.

We assumed Uniform priors on the number of Voronoi cells as [5, 6, ..., 200], on µ =

log(ρ) as [0.5, 4.5], on the x and z coordinates of model boundaries as [−2, 27] and [0, 10],

respectively, and on noise parameters a as [0.0001, 0.2001] and b as [0.1, 1.1], respectively.

We ran 32 tempered Markov chains (of which 16 were at the target temperature T0 = 1)

in parallel for 1 × 106 iterations allowing two randomly-chosen chains to swap models at

each iteration according to equation 7 in the main text. Every 100th sample at the target

temperature after a burn-in period of 2.5×105 iterations was considered as a representative

model from the posterior PDF, giving an ensemble of 120 × 103 valid samples.

The results from the inversion using the TERT algorithm are shown in Figure S2. In this

case, since the prior on log(resistivity) does not cross 0, we also include the harmonic mean

among the statistical maps produced with TERT. Figure S3 shows the inversion results

obtained using the linearised code R2, where data noise was assumed to be proportional

to the measured resistances according to equation 3 in the main text, and a and b were

obtained from the posterior calculated with TERT (Figure S4).

In all cases (a)–(e), a high resistivity anomaly is imaged near [12, 2] m, together with a

thin high-resistivity layer near the surface to its left. The central high-resistivity anomaly
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corresponds to an anomaly which is also imaged with ground penetrating radar (see Wilken

et al. [2015] for details), and was originally interpreted as a pot-shaped structure of high

resistivity embedded in soil by Wilken et al. [2015] (Figure S1). The resistivity of the

background medium is resolved differently by different statistical moments: as expected,

the harmonic mean map is more sensitive to low resistivities in the ensemble and the root-

mean-square map is more sensitive to high resistivity values, while both the arithmetic

mean and the median seem to fall somewhere in between.

In terms of uncertainty, the standard deviation and entropy maps show that resolution

is limited below 2 m depth. As expected, the density of Voronoi nuclei within the ensemble

peaks near the surface, specifically near the thin, high-resistivity layer to the left of the

central anomaly. This is intuitively correct since a large number of small Voronoi cells are

required to describe smaller-scale structures.

Since we considered data noise as an unknown in the inversion, the posterior on noise

hyperparameters a and b are shown in Figure S4. While parameter b peaks at 0.1 (i.e., the

lower prior boundary, suggesting that the prior should have probably been extended below

0.1), parameter a peaks around 0.04, suggesting that the level of noise in this dataset is

∼ 4%.

The thin high-resistivity layer and the central anomaly are also resolved by the iterated-

linearised inversion with code R2. However, while sensitivity can be calculated (Figure

S3(b)), a map of uncertainty is not produced with this code so it is not possible to

associate a measure of the accuracy of the reconstructed structure in Figure S3(a). In

addition, some of the maps retrieved through TERT (i.e., Figure S2(a)–(e)) seem to

indicate the presence of a high-resistivity structure near [20, 3] m which is not resolved at
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all by linearised inversion. Although it is located in an area of high standard deviation

and entropy (Figure S2(g)–(h)), the synthetic examples in Section 3 of the main text

showed that mean structure may be correctly retrieved with TERT even in regions of

high uncertainty, hence it is possible that this anomaly represents a high-resistivity body

embedded in soil.
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W E

Figure S1. Simplified model showing Wilken et al. [2015]’s interpretation of the

profile that we imaged using the TERT algorithm. A u-shaped high-resistivity anomaly

embedded in low-resistivity material (i.e., soil) is visible near the centre of the profile,

together with a thin, high-resistivity layer near the surface to the west of the anomaly.

Re-plotted after Figure 11(c) in Wilken et al. [2015]. The grey ticks at z = 0 m denote

electrode locations used in our inversion.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure S2. Inversion results for the Slovakia observational dataset found using the

TERT algorithm. (a) Arithmetic mean. (b) Median. (c) Mode (i.e., maximum-a-

posteriori). (d) Root-mean-square. (e) Harmonic mean. (f) Node density (measured

within a 2 m × 2 m square sector centred on each pixel). (g) Standard deviation. (h)

Entropy. Note that the colour scale in (a)–(e) is clipped between 1 and 3.5 to aid visual-

isation. In all panels, the grey ticks at z = 0 m denote electrode locations.
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(a) (b)

Figure S3. Inversion results for the Slovakia observational dataset found using the

iterated-linearised code R2 by Binley [2013]. (a) Best-fit resistivity map. (b) Sensitivity

map. In both panels, the grey ticks at z = 0 m denote electrode locations.

(a) (b)

Figure S4. Posterior PDF on noise hyperparameters (a) a and (b) b for the Slovakia

observational dataset obtained from TERT.
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