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ARTICLE

CSF1R regulates the dendritic cell pool size in adult
mice via embryo-derived tissue-resident
macrophages
Gulce Itir Percin1,2, Jiri Eitler1, Andrea Kranz 3, Jun Fu3, Jeffrey W. Pollard 4,5, Ronald Naumann6 &

Claudia Waskow1,2,7,8

Regulatory mechanisms controlling the pool size of spleen dendritic cells (DC) remain

incompletely understood. DCs are continuously replenished from hematopoietic stem cells,

and FLT3-mediated signals cell-intrinsically regulate homeostatic expansion of spleen DCs.

Here we show that combining FLT3 and CSF1R-deficiencies results in specific and complete

abrogation of spleen DCs in vivo. Spatiotemporally controlled CSF1R depletion reveals a cell-

extrinsic and non-hematopoietic mechanism for DC pool size regulation. Lack of CSF1R-

mediated signals impedes the differentiation of spleen macrophages of embryonic origin, and

the resulted macrophage depletion during development or in adult mice results in loss of

DCs. Moreover, embryo-derived macrophages are important for the physiologic regeneration

of DC after activation-induced depletion in situ. In summary, we show that the differentiation

of DC and their regeneration relies on ontogenetically distinct spleen macrophages, thereby

providing a novel regulatory principle that may also be important for the differentiation of

other hematopoietic cell types.
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Dendritic cells (DCs) are key modulators of the immune
system by presenting antigen not only for the initiation of
antigen-specific adaptive immune responses but also for

the induction of self-tolerance in the absence of activating signals.
DCs are short-lived and therefore continuously replenished by
the progeny of adult hematopoietic stem cells (HSCs)1. Owing to
striking overlaps of functional and morphological characteristics
compared to other cells of the mononuclear phagocyte system,
significant efforts were made to characterize DC identity based on
the isolation of lineage-restricted or committed precursor cells,
lineage tracing, and transcription and growth factor requirements
important for DC differentiation2,3. Despite these efforts, definite
information on the differentiation path and/or growth factor
requirements for DC generation in vivo remain incomplete.

Fetal liver kinase 2 ligand (FLK2L, FLT3L, FL) stands out in its
effects on DC differentiation because it efficiently promotes the
expansion of DCs and their precursors in vivo4,5 and the differ-
entiation of all DC subsets in vitro6. Consistently, lack of FL or its
receptor FLT3 (FLK2, CD135) results in markedly reduced DC
numbers in vivo4,5. However, in both cases a sizable DC popu-
lation persists in the spleen, strongly suggesting that a signal of a
hitherto unknown kind synergizes with FLT3-mediated effects to
ensure efficient differentiation of DCs. Combined lack of Flt3 and
Csf2rb (encoding for granulocyte macrophage colony-stimulating
factor receptor (GM-CSFR), interleukin (IL)-3Rb, IL-5Rb)4 or of
Fl and Csf2 (encoding for GM-CSF)7 failed to affect or only
partially aggravated DC differentiation, respectively, leaving
growth factor requirements for spleen DC differentiation
unknown3. FLT3 and CSF1R (M-CSFR, CD115) are the defining
“markers” for the prospective separation of DC progenitor cells in
the bone marrow (BM)4,8, and CSF1R expression is associated
predominantly with the propensity for the differentiation into
conventional DCs4,9,10. Mice carrying Csf1r-null alleles show
normal DC differentiation and numbers in peripheral lymphoid
organs but have an impaired generation of specific nonlymphoid
tissue DCs in the epidermis11, lamina propria12, dermis, lung, and
kidney13, and such mice show defects in the differentiation of
monocytes into inflammatory DCs14, indicating the involvement
of CSF1R-mediated signals in DC differentiation.

During embryonic development yolk sac-derived erythro-
myeloid progenitors (EMP) differentiate into tissue-resident
macrophages (TR-Mps) including the red-pulp macrophages
(RP-Mps) in the spleen, which are maintained throughout life
and which are very slowly replaced by adult HSC-derived
progeny15,16. EMPs emerge at embryonic day 8.5 (E8.5) in the
yolk sac and shortly after migrate to the fetal liver where they
initialize adult-like hematopoiesis restricted to erythroid, mega-
karyocytic, and macrophage lineages17. Embryo-derived TR-Mps
are the only EMP-derived cell types known to persist in many
organs throughout adulthood15,18,19. Emergence of RP-Mps
depends on Spi-C20 and Myb16 transcription factors and they
differentiate through Runx+21, Tie2+CSF1R+15, and Kit+22

cellular intermediates, potentially sequentially. However, growth
factor receptor signals that are important for their differentiation
remain largely unknown. Functionally, spleen RP-Mps have
mainly been implicated in systemic iron homeostasis23.

Here we show that the combined deficiency of FLT3 and
CSF1R leads to the absence of DCs in the spleen of juvenile and
adult mice. Contrasting the cell-intrinsic requirement for FLT3-
mediated signals, CSF1R contributes to DC differentiation via a
cell-extrinsic mechanism. Using a novel mouse tool that allows
the lineage tracing of embryo-derived macrophages, we show that
CSF1R-mediated signals are crucial for the generation of
embryonic macrophages that persist in the spleen after birth, the
RP-Mps. We show here that RP-Mps are required to establish the
spleen DC pool in FLT3-deficient animals, assigning a novel role

to embryo-derived RP-Mps in regulating the pool size of onto-
genetically distinct hematopoietic cells. Finally, RP-Mps are
important regulators of steady-state hematopoiesis in the adult
mouse by continuously supporting DC regeneration. This data
links blood cell differentiation of adult HSCs to a cell type of a
different ontogeny, providing another layer of complexity to the
regulation of innate immune cell differentiation.

Results
FLT3 and CSF1R double null mice lack DCs. To test whether
lack of CSF1R aggravates paucity of DCs on a FLT3-deficient
background, we generated Flt3−/−24 Csf1r−/−25 double mutant
mice that were born to normal Mendelian frequencies. Flt3−/−;
Csf1r−/− mice recapitulated the phenotype of Csf1r−/− mice25

and lacked teeth prompting us to analyze the mice 18–21 days
after birth. Consistent with previous results, Flt3 single mutant
mice showed a severe reduction in the frequency of DCs4,
whereas DC differentiation was independent of CSF1R-mediated
signals11 (Fig. 1a, Supplementary Fig. 1a). In contrast, a highly
significant loss of DCs occurred in mice double deficient for Flt3
and Csf1r compared to Flt3-null mice alone. Analysis of large
cohorts of mice confirmed the significant reduction of DCs in
Flt3−/−;Csf1r−/− mice (Fig. 1b). The reduction of DCs out-
numbered loss of overall spleen cellularity as shown by the fold-
change reduction of spleen leukocytes (CD45+) versus DCs
(Fig. 1b right, Supplementary Fig. 1b). CD8+ or CD11b+ DC
subsets were affected equally (Supplementary Fig. 1c). The effect
of Flt3 and Csf1r double deficiency was specific for DCs since
closely related macrophages (Fig. 1c, Supplementary Fig. 1d) and
RP-Mps (Fig. 1d)26 were not affected. Absence of spleen DCs was
confirmed by immunohistology on spleen sections (Fig. 1e,
Supplementary Fig. 1e). A potential contribution of genetic var-
iations to the DC phenotype based on the use of outbred C57/BL/
6J×C3Heb/FeJ mice was excluded by generating congenic
Flt3−/−;Csf1r−/− mice on the C57BL/6J genetic background that
also showed the reduction of DCs (Supplementary Fig. 1f). We
conclude that functional FLT3 and CSF1R receptors are pivotal
for the generation of a normally sized DC pool in the spleen of
18–21-day-old mice.

Normal numbers of DC progenitors in Flt3−/−;Csf1r−/− mice.
DC progenitors are identified by the expression of FLT3 and
CSF1R or CX3CR1-GFP on the surface of immature BM cells4,8.
To determine whether CSF1R-mediated signals become crucial
for the generation of committed DC precursors on a Flt3-null
genetic background, we determined the fraction of CX3CR1-
GFP-expressing cells within the lineage negative (Lin−) Sca-1−

compartment in the BM, because these cells identify macrophage
dendritic cell precursors (MDPs)8 (Fig. 1f, g, Supplementary
Fig. 1g). MDPs were found to comparable frequencies in Flt3−/−;
Csf1r−/−;Cx3cr1-gfp+ and Flt3−/−;Csf1r+/−;Cx3cr1-gfp+ control
mice. Furthermore, frequencies and numbers of pre-cDC1 and
pre-cDC2 in the BM and spleen were normal in Flt3 and Csf1r
double deficient mice (Supplementary Fig. 1h-j). Taken together,
CSF1R signaling in Flt3-deficient mice is dispensable for the
generation of BM and spleen DC progenitors but CSF1R-
mediated signals are important for DC differentiation beyond the
MDP and pre-cDC stages.

Cell-extrinsic and non-hematopoietic mechanism. To test
whether CSF1R expression is cell-intrinsically required for the
generation of DCs beyond the MDP stage, we used a conditional
Csf1r allele27 and generated Flt3−/−;Csf1rF/− mice combined with
CD11c-Cre deleter mice that express the Cre-recombinase at late
stages during DC differentiation28 (Fig. 2a, Supplementary

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07685-x

2 NATURE COMMUNICATIONS |          (2018) 9:5279 | https://doi.org/10.1038/s41467-018-07685-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 2a). Efficient recombination was confirmed by molecular
analysis (Supplementary Fig. 2b). CD11c-Cre+;Flt3−/−;Csf1rF/−

and CD11c-Cre+;Flt3−/−;Csf1rF/+ control mice contained com-
parable numbers of DCs, suggesting that the DC pool size in the
spleen is independent of CSF1R-mediated signals in mature DCs
(Fig. 2a, right).

To test whether CSF1R expression on any hematopoietic cell in
the adult mouse is important for DC differentiation in the context

of FLT3 deficiency, CSF1R was depleted on HSCs using Vav-Cre
deleter mice29. The Csf1rF allele was efficiently recombined in Vav-
Cre+;Flt3−/−;Csf1rF/− mice (Supplementary Fig. 2c). However, lack
of CSF1R on hematopoietic cells of adult origin had no effect on
DC numbers compared to controls as revealed by comparing the
fold-change reduction between spleen cells and DCs (Fig. 2b, right),
suggesting that the regulation of the DC pool size is independent of
CSF1R-mediated signals in hematopoietic cells.

e

c

a b

f

K
it

105

104

103

102

0

105

104

103

102

0

105

104

103

102

0

0 102 103 104 105 0 102 103 104 105 0 102 103 104 105

CX3CR1-GFP

%
 B

M

g
CX3CR1-GFP+

13.4 12.3 0.575

CX3CR1-GFP–

B220 CD3 CD11c

RP-Mp

d
Macrophages

Sp DC

Flt3 –/–

Sp RP-Mp

Flt3–/–

F
ol

d 
ch

an
ge

(C
sf

1r
F

/–
/C

sf
1r

F
/+

)

F
ol

d 
ch

an
ge

(C
sf

1r
F

/–
/C

sf
1r

F
/+

)

%
 s

pl
ee

n 
ce

lls

DC

+/–

+/–

+/– +/–

+/– –/–
+/–

32%
*** ***

–/–

–/–

+/–

–/–

–/–Csf1r

Flt3

0.9 0.8 0.2 0.02

Csf1r

Flt3

CD11c

4.0

3.0

2.0

1.0

0.0

1.5 1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.5

0.0

M
H

C
II

105

104

103

102

0

0 102 103 104 105 0 102 103 104 105 0 102 103 104 105 0 102 103 104 105

105

104

103

102

0

105

104

103

102

0

105

104

103

102

0

Flt3

Csf1r

–/–

+/–

–/–

–/–

+/– +/–
+/– –/–

Flt3
Csf1r

–/–
+/–

–/–
–/–

–/–

+/–

–/–

+/–
Flt3

Csf1r

Flt3

Csf1r
–/–

+/–

–/–

–/–

–/–

–/–

+/– +/–

+/– –/–

–/–

+/–

%
 s

pl
ee

n 
ce

lls

%
 s

pl
ee

n 
ce

lls

–/–

–/–

Sp DC

Flt3 –/–

MDP

Flt3 +/– Csf1r +/– Flt3 +/– Csf1r –/–

Flt3 –/– Csf1r +/– Flt3 –/– Csf1r –/–

5.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0

1.0

2.0

3.0

4.0

1.0

0.0 0 0

2

4

6

0.0

0.6

0.4

0.2

0.0

0.5

1.0

1.5

F
ol

d 
ch

an
ge

(C
sf

1r
F

/–
/C

sf
1r

F
/+

)

5

10

15

0.2

0.4

0.6

0.8

Fig. 1 Flt3−/−;Csf1r−/− mice lack spleen DCs. a Flow cytometry of spleen cells from wild-type, Flt3−/−, Csf1r−/−, and Flt3−/−;Csf1r−/− mice. Numbers
indicate frequencies of dendritic cells (DCs, CD11chi MHCIIhi) within Dapi− cells. b Summary of DC frequencies (left, middle) in growth factor mutant mice.
Right plot shows comparisons of fold changes between absolute leukocytes (CD45+) and DCs from the spleens of wild-type and receptor-deficient mice to
normalize for overall changes in cellularity. Absolute cell numbers are shown in Supplementary Fig. 1b. Two-sided t test (left) and Mann–Whitney U test
(right) were performed. SD is shown. c Frequencies and fold-change comparison of spleen macrophages (Gr-1lo/− CD11b+ F4/80lo SSClo) of wild-type and
receptor-deficient mice as indicated. Gating is shown in Supplementary Fig. 1a. Two-sided t test (left) and Mann–Whitney U test (right) were performed.
SD is shown. d Frequencies and fold-change comparison of spleen red-pulp macrophages (RP-Mps, Gr-1lo/− CD11blo F4/80hi SSClo) of wild-type and
receptor-deficient mice as indicated. Two-sided t test (left) and Mann–Whitney U test (right) were performed. SD is shown. e Immunohistology of spleen
sections of 3-week-old wild-type and receptor-deficient mice as indicated. Sections were stained using specific antibodies recognizing B220 (green), CD3
(blue), and CD11c (red). ×20 objective was used for picture acquisition, scale bar corresponds to 50 μm. Pictures are representative of three mice analyzed
for each genotype. f Dot plots show the expression of CX3CR1-GFP in Lin− (Lin= CD3, CD19, TER119, NK1.1, CD11b, CD11c, B220, Gr-1) Sca-1lo/− bone
marrow hematopoietic progenitor cells in Flt3−/−;Csfr1+/−;Cx3cr1-gfp+ or Flt3−/−;Csf1r−/−;Cx3cr1-gfp+ mice. g Plot shows the quantification of macrophage
dendritic cell progenitor (MDP) frequencies in the bone marrow as shown in f. Two-sided t tests was performed and SD is shown
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To test for a role of CSF1R expression on any cell in the adult
mouse, R26-CreERT2+;Flt3−/−;Csf1rF/− mice30 were generated
and CSF1R expression depleted by tamoxifen (TAM) induction in
adult mice (Fig. 2c, scheme Supplementary Fig. 2d). CSF1R
depletion was found efficient 1–2 weeks after induction on blood
monocytes (Supplementary Fig. 2e, f) and 4–6 weeks later, at the
time point of analysis, on BM precursor cells (Supplementary
Fig. 2g) and on spleen macrophages (Supplementary Fig. 2h).
Molecular analysis confirmed the efficient recombination of the
Csf1rF allele in the BM and spleen (Supplementary Fig. 2i). This
strategy ensured that DC differentiation took place in the absence
of CSF1R expression for 4–6 weeks. Given that the replacement of
the DC pool in the spleen takes 7–14 days1, effects based on the

lack of CSF1R expression should become evident. The depletion
of large peritoneal macrophages31 but not spleen RP-Mps
(Supplementary Fig. 2j, Fig. 1d) confirmed the success of this
strategy. In contrast, DC numbers in the spleens of TAM-induced
R26-CreERT2+;Flt3−/−;Csf1rF/− mice were comparable to con-
trols (Fig. 2c), suggesting that DC differentiation occurs
independently of CSF1R expression in the entire adult organism.

Full functionality of the “floxed” Csf1r allele27 was confirmed
using Pgk-Cre+ deleter mice that express the Cre-recombinase in
oocytes through maternal transmission, ensuring ubiquitous and
complete recombination of LoxP-flanked alleles32 (Supplemen-
tary Fig. 2k). Spleens of Pgk-Cre+;Flt3−/−;Csf1rF/− mice lacked
DCs (Fig. 2d), recapitulating the DC phenotype of constitutive
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Flt3−/−;Csf1r−/− mice. Taken together, these results strongly
suggest that CSF1R expression in the adult mouse is dispensable
for normal DC differentiation pointing at a role for CSF1R-
mediated signals during development.

Fetal liver CD11blo F4/80hi macrophages depend on CSF1R.
During development, EMP give rise to spleen CD11blo F4/80hi

RP-Mps that persist throughout life15. During that process, cel-
lular intermediates express the CSF1 receptor15,16,21. In the yolk
sac as well as throughout the body of E10.5 embryos, CSF1R is
exclusively expressed within the CD45+ fraction (Fig. 3a–c).
Moreover, all CSF1R-positive cells co-express the macrophage
marker F4/80 (Fig. 3b, c). To test for functional effects of CSF1R
depletion on the formation of embryonic macrophages, mothers
of R26-CreERT2+;Csf1rF/− mice were TAM-treated at E10.5 and

fetal liver cells analyzed 4 days later at E14.5 (scheme in Fig. 3d,
top). The frequency of CD11blo F4/80hi fetal liver embryonic
macrophages was found significantly reduced compared to
R26-CreERT2+;Csf1rF/+ controls (Fig. 3d, e), evidencing the
dependency of embryonic macrophage differentiation on CSF1R-
mediated signals. The effect was cell-type specific because CD11b
+ F4/80lo macrophages that originate from adult-type definitive
HSCs were unaltered by the depletion of CSF1R (Fig. 3d, e). We
conclude that CSF1R is expressed by CD11blo F4/80hi fetal liver
embryonic macrophages and/or their immediate progenitors and
that they depend on CSF1R-mediated signals for their generation
and/or maintenance.

Spleen CD11blo F4/80hi macrophages depend on CSF1R. To
test whether the depletion of CSF1R in the embryo has a direct
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effect on the establishment of the DC pool, mothers of R26-
CreERT2+;Flt3−/−;Csf1rF/− embryos were TAM-induced at E10.5
and analyzed at birth (E19.5) or at 3 weeks of age (scheme,
Fig. 3f). Consistent with the phenotype of CD11blo F4/80hi

embryonic macrophages in the fetal liver (Fig. 3d, e), the popu-
lation of spleen CD11blo F4/80hi RP-Mps was significantly
reduced irrespective of the genotype for Flt3 (Fig. 3g). We next
tested for the effects on DC differentiation: In R26-CreERT2+;
Flt3−/−;Csf1rF/− but not in control mice, spleen DCs were found
severely reduced in newborn (E19.5, Fig. 3h, i) and 3-week-old
mice (Fig. 3j). However, TAM-induced depletion of CSF1R
expression in the embryo resulted in ablation of CSF1R expres-
sion on BM precursor cells at 3 weeks of age (Supplementary
Fig. 2l). We conclude that the generation of CD11blo F4/80hi

embryo-derived TR-Mps in the spleen depends on CSF1R-
mediated signals during development and abrogation of these
signals results in lack of spleen DCs in FLT3-deficient mice. Thus
this experimental setting underlined the importance for CSF1R
expression during embryonic development but formally cannot
exclude that CSF1R-mediated signals during postnatal stages
contribute to the DC phenotype.

Depletion of CSF1R in embryonic macrophages. To directly test
whether CSF1R-mediated signals are only important during the
differentiation of embryonic macrophages, a novel lineage-tracing
mouse model was generated by introducing the codon-improved
Cre (iCre)-recombinase into the Tnfrsf11a (Rank) gene locus
(Fig. 4a, Supplementary Fig. 3a). Receptor activator of nuclear
factor-κB (RANK) is an essential mediator for osteoclast devel-
opment and diseases associated with mutations at this locus
include familial expansile osteolysis and autosomal-recessive
osteopetrosis, pointing at a role for the RANK ligand–RANK
signaling pathway in the differentiation of embryo-derived mac-
rophages. Lineage tracing using Rank-iCre+;eYFPwt/ki mice
revealed a specific label of embryo-derived spleen CD11blo F4/
80hi RP-Mps and Langerhans cells in the skin but no or very low
labeling of hematopoietic cells derived from adult-type HSCs in
the spleen, blood, BM, and skin (Fig. 4b, c, Supplementary
Fig. 3b-d). Lack of labeling of short-lived hematopoietic cells in
the blood, spleen, and skin and of long-term HSCs in the BM
confirmed the absence of iCre expression in the stem and pro-
genitor cell compartment after birth (Fig. 4c). Consistently, yolk
sac embryonic macrophages but not fetal liver HSCs were effi-
ciently labeled in Rank-iCre+;eYFPwt/ki embryos (Fig. 4d, e),
evidencing that the iCre recombinase is specifically expressed in
embryo-derived TR-Mps. Spatiotemporally controlled depletion

of CSF1R in Rank-iCre+;Csf1rF/− mice leads to the loss of
CD11blo F4/80hi RP-Mps but not of CD11b+ F4/80lo Mp in the
spleen of newborn mice (Fig. 4f). As a consequence, frequencies
and numbers of DCs were reduced in Rank-iCre+;Flt3−/−;
Csf1rF/− but not in Rank-iCre+;Flt3+/−;Csf1rF/− control mice
(Fig. 4g). We conclude that CSF1R signaling is crucial for the
generation of spleen embryo-derived RP-Mps during develop-
ment that, in turn, are crucial for the establishment of the spleen
DC pool in adult Flt3−/− mice.

RP-Mps are crucial for the regeneration of spleen DCs. To test
whether CD11blo F4/80hi RP-Mps are important for the main-
tenance of DC numbers in the spleen of adult FLT3-null mice,
clodronate-loaded liposomes (Clod) were injected into Flt3−/−

and wild-type mice (scheme, Fig. 5a). Because Clod treatment can
result in inflammation, the depletion and regeneration of the
affected cell types were closely monitored. Loss of blood mono-
cytes 24 h after treatment (Fig. 5b, c) and of spleen macrophages,
RP-Mps, and DCs (Fig. 5d) 1–2 weeks after injection confirmed
the toxicity toward phagocytic cells. Two weeks later (4 weeks
after Clod treatment), CD11b+ F4/80lo spleen macrophages had
recovered in all mice due replenishment from adult-type HSCs
(Fig. 5e, left). In contrast, CD11blo F4/80hi RP-Mps remained
reduced irrespective of the Flt3 genotype (Fig. 5e, middle). DCs
were significantly reduced in Flt3−/− but not in wild-type mice
(Fig. 5e, right), suggesting that the importance for cell-extrinsic
support for DC regeneration becomes evident in vivo in a
situation where DCs and their progenitors carry a cell-intrinsic
challenge, such as Flt3 deficiency.

Finally, we tested for the physiological relevance of DC/RP-Mp
interaction in vivo. Spleen DCs regenerate after activation-
induced depletion in vivo33,34. To determine whether DC
regeneration in such a context depends on RP-Mps, we
established a situation where DCs regenerate in a spleen that is
devoid of RP-Mps (scheme, Fig. 6a). To this end, wild-type mice
were treated with Clod and blood monocyte depletion was
confirmed after 22 h (Fig. 6b). Blood monocytes (Fig. 6c), spleen
CD11b+ F4/80lo macrophages (Fig. 6d), and DCs (Fig. 6e) had
recovered 4 weeks after Clod treatment to wild-type numbers. In
contrast, RP-Mps were still reduced (Fig. 6f). At this time point,
Clod-treated and control mice were injected with lipopolysac-
charide (LPS) resulting in the activation of DCs in situ as
determined by the increased expression of the co-stimulatory
molecule CD86 (Fig. 6g). Following this activation, DC numbers
expectedly decreased in all LPS-treated mice 2 days after
activation (Fig. 6h). DC numbers quickly regenerated in mice

Fig. 3 Embryo-derived spleen CD11blo F4/80hi macrophages depend on CSF1R-mediated signals for their generation. a Photograph of E10.5 embryo with
yolk sac (YS). Scale bar corresponds to 1 mm. b, c Dot plots show yolk sac (b) or body cells excluding head tissues (c) analyzed for the expression of CD45
and KIT (left). CD45-expressing cells are further resolved for the expression of CD11b and CSF1R (second left). CSF1R+ cells co-express F4/80 (third left).
Plots show the frequencies of F4/80-expressing cells within the CSF1R-positive population (second right). Each dot represents one mouse. CD45-negative
cells are resolved for the expression of F4/80 and CSF1R (right). d Schematic outline of TAM-induced depletion of CSF1R expression in the embryo (top).
Contour plots resolve CD45+ fetal liver cells from E14.5 R26-CreERT2+;Csf1rF/− and control embryos for the expression of CD11b and F4/80 (bottom).
e Plots show the frequencies of CD11b+ F4/80lo (left) or CD11blo F4/80hi (middle) cells in the fetal liver of R26-CreERT2+;Csf1rF/− and control embryos.
Right plot shows fold-change differences of leukocyte and macrophage populations in the fetal livers. Data are summarized from three independent
experiments. Two-sided t test (left) and Mann–Whitney U test (right) were performed. SD is shown. f Schematic outline of TAM-induced depletion of
CSF1R expression in R26-CreERT2+;Flt3−/−;Csf1rF/− and control embryos. TAM was administered at E10.5. g Frequencies (left) and fold-change differences
(right) of leukocytes and RP-Mps in the spleens of R26-CreERT2+;Flt3−/−;Csf1rF/− and control pups at E19.5. Data are summarized from four independent
experiments. Two-sided t test (left) and Mann–Whitney U test (right) were performed. SD is shown. h Dot plots show DCs in R26-CreERT2+;Flt3−/−;
Csf1rF/− and control mice at E19.5. Numbers indicate frequencies of dendritic cells within Dapi− cells. i, j Plots show DC frequencies and fold-change
differences of leukocytes and DCs in the spleen of E19.5 pups (i) or at 3 weeks of age (j) in R26-CreERT2+;Flt3−/−;Csf1rF/− and control mice that were
TAM-induced at E10.5. Data are summarized from three independent experiments. Two-sided t tests (left) and Mann–Whitney U tests (right) were
performed. SD are shown
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Fig. 4 Tissue-specific depletion of CSF1R in RP-Mps and their progenitors results in loss of DCs. a Scheme of the generation of Rank-iCre mice (iCre=
codon-improved Cre). The iCre-recombinase was knocked into exon 1 of the Rank gene. b Immunohistology on spleen sections from 3-week-old Rank-iCre
+;Td-rfp+ mice, ×40 objective was used for picture acquisition, scale bar corresponds to 20 μm. c Lineage tracing of RANK-expressing cells in adult Rank-
iCre+;eYFPki/wt mice. LT-HSC long-term HSCs, MPP multipotent progenitors, MP myeloid progenitors, LC Langerhans cells. SD is shown. Gatings are
shown in Supplementary Fig. 1a and Supplementary Fig. 3b-d. d Dot plots show the labeling of fetal liver Kit+ Sca-1+ Lineage− (KSL) hematopoietic stem
and progenitor cells (top) and yolk sac CD11b+ F4/80hi macrophages (bottom) from E18.5 Rank-iCre+;eYFPki/wt embryos. e Lineage tracing in Rank-iCre;
eYFPki/wt embryos gating on CD11blo F4/80hi embryonic macrophages in the yolk sac at the indicated time points. SD is shown. f Plots show the
frequencies (left, second right) and fold changes (second left, right) of CD11blo F4/80hi RP-Mps or CD11b+ F4/80lo macrophages and spleen leukocytes
from newborn Rank-iCre+;Csf1rF/− and control mice. Two-sided t test (left and second right) and Mann–Whitney U test (right and second right) were
performed. SD is shown. g Plots show frequencies and fold changes of DCs and spleen leukocytes from Rank-iCre+;Flt3−/−;Csf1rF/− and control mice at
3 weeks of age. Two-sided t test (left) and Mann–Whitney U test (right) were performed. SD is shown
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that had normal numbers of RP-Mps. In contrast, the regenera-
tion of DCs from LPS-induced depletion was severely blunted in
mice that lacked RP-Mps during the regeneration phase (Fig. 6i).
We conclude that DC regeneration in adult mice depends on the
presence of RP-Mps in the spleen not only under experimental
but also under physiological conditions in vivo.

Discussion
We show here that CSF1R-mediated signals control the DC pool
size in FLT3-deficient animals by a cell-extrinsic and non-
hematopoietic mechanism providing a novel regulatory pathway
to control the differentiation of mature blood cells from adult
HSCs. Using novel lineage-tracing mouse tools, we provide evi-
dence that CSF1R is important for the regulation of the DC pool
size by an indirect mechanism engaging embryo-derived spleen-
resident macrophages that require CSF1R-mediated signals for

their generation during development. With these experiments, we
further assign a novel and unprecedented function to spleen
tissue-resident RP-Mps of embryonic origin for supporting the
establishment and maintenance of a sizable DC pool.

DCs in the spleen of constitutive FLT3 and CSF1R double
knockout mice are severely reduced compared to either growth
factor receptor mutant alone, defining the growth factors neces-
sary and sufficient for the generation of DCs in vivo. FLT3 is
important for homeostatic DC expansion by regulating their
division in the spleen4, whereas, in contrast, we show here that
CSF1R-mediated signals are important for the generation of RP-
Mps during development that in turn are crucial for the estab-
lishment of the DC pool in the spleen of newborn FLT3 mice.
Until now, the control mechanisms of CSF1R-mediated signals
are exclusively known to be direct and cell intrinsic and instigated
by either of the two ligands, CSF1 and IL-34, that provide tissue

Cloda

b
c

d

e

24 h

PB (b, c)

WT

C
D

11
b

105

105

104

104

103

103

102

102

0

0 1051041031020 1051041031020 1051041031020

105

104

103

102

0

105

104

103

102

0

105

104

103

102

0

Clod (24 h)w/o

5.8

7.4

0.9

6.3

6.1 1.6

***

* *

** ** **

* * * *

***

9.96.6

Clod (24 h)w/o

Flt3 –/–

Sp (e)

6

4

%
 o

f P
B

2

0
+/+
– + – +

+/+ –/– –/–Flt3
Clod

+/+
– + – +

+/+ –/– –/–+/+
– + – +

+/+ –/– –/–+/+
– + – +

+/+ –/– –/–Flt3
Clod

Time

SSClo Gr1–CD11b+

Blood mono (24 h)

Sp (d)

Gr-1

1.5

1.0

1–2 weeks

4 weeks

0.5

C
el

l n
um

be
rs

 n
or

m
al

iz
ed

to
 n

on
-t

re
at

ed
 c

tr
ls

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

Macrophages DCsRP-Mp

1–2 weeks 4 weeks

Fig. 5 Depletion of spleen CD11blo F4/80hi macrophages in adult FLT3-deficient mice results in loss of DCs. a Schematic outline of the experiment.
b Clodronate liposomes (Clod) were injected into Flt3−/− and wild-type (WT) mice and the efficient depletion of blood monocytes (CD11b+ Gr-1lo) was
analyzed 24 h later (left). c Plot shows the reduction of blood monocytes. Data are pooled from two independent experiments. SD is shown. d Cell numbers
of spleen macrophages (left), RP-Mps (middle), and DCs (right) normalized to non-injected controls from the same experiments 1–2 weeks after Clod
injection. All cell types were depleted efficiently. Data are pooled from two independent experiments. SD is shown. e Cell numbers of spleen macrophages
(left), RP-Mps (middle), and DCs (right) normalized to non-injected controls from the same experiments 4 weeks after Clod injection. Macrophages
recovered in all mice. RP-Mps failed to recover in all mice. DCs recovered in Flt3-proficient but not in Flt3-deficient mice. Two-sided t tests were performed
and SD is shown throughout the figure. SD is shown

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07685-x

8 NATURE COMMUNICATIONS |          (2018) 9:5279 | https://doi.org/10.1038/s41467-018-07685-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


specificity to CSF1R-mediated effects on macrophages popula-
tions35. Consistent with effects of lack of CSF1R26, CSF1R-
mediated signals are important for the generation of embryonic
macrophages in the fetal liver during development and in the
spleen of neonate mice. Thus spleens of newborn mice deficient
for CSF1R exhibit only 15% of the RP-Mp density compared to
wild-type mice but the frequencies ameliorate to wild-type levels
over time26. In turn, the presence of embryo-derived macro-
phages in the spleen is pivotal for the establishment of the adult
HSC-derived DC pool, suggesting that a crosstalk between these
cell types is essential for DC differentiation. In adult mice, RP-
Mps remain in charge of controlling the DC pool size in the
spleen of FLT3 mice but become independent of CSF1R-mediated
signals for their generation. The precise mechanism of crosstalk
between RP-Mps and DCs remains unknown. However, using an

in vitro differentiation assay, spleen cells enhance the differ-
entiation of DCs in vitro and this support was found independent
of direct cell–cell contact, suggesting that a soluble factor may be
the molecular mediator of that support. Taken together, our data
adds another mechanism of CSF1R-mediated control of myeloid
cell differentiation via regulating the generation of RP-Mps.

In Flt3-deficient mice, spleen DC numbers are reduced due to a
cell-intrinsic requirement for FLT3 for homeostatic DC
division3,4. Csf1r- or Csf1-deficient mice have normal11 or mildly
reduced36 numbers of spleen DCs, respectively, and only the
combined deficiency of Flt3 and Csf1r results in the complete
absence of spleen DCs in situ. We show here that cell-extrinsic
support for DC differentiation becomes evident and important
exclusively under stress situations. These stressors can be FLT3
deficiency, which is experimental stress during development
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(Fig. 1) and in adult mice (Fig. 5), or the need for rapid regen-
eration after activation-induced depletion in situ, which provides
a physiological challenge in adult mice (Fig. 6). Thus only in the
context of the establishment or maintenance of a normally sized
DC pool the CSF1R-activated pathway is crucial. The support
provided by CSF1R-mediated signals can be seen as a novel kind
of redundancy where the effects of the supporting receptor targets
a different cell type and thereby works by a cell-extrinsic
mechanism. This may serve as a support system to ensure the
presence of immune regulatory DCs in situ. Taken together, our
data link blood cell differentiation from adult HSCs to a cell type
of a different ontogeny, providing a novel regulatory principle for
innate immune cell differentiation. The interdependency between
cells of different ontogenies may be just an example, and the
differentiation of other cells of the mononuclear phagocyte sys-
tem and may be also of adaptive immune cells may depend on
similar principles.

The spleen contains several subpopulations of macrophages.
The marginal metallophilic macrophages and marginal zone
macrophages are considered important bridges between innate
and adaptive immunity, whereas RP-Mps are mainly accounted
responsible for iron homeostasis by scavenging senescent ery-
throcytes37. Consistent with this function is the heme-induced
expression of Spi-C, a transcription factor that specifically con-
trols the differentiation of RP-Mps during development38 and
from monocytes in adult mice under conditions of pathologic
hemolysis20. RP-Mps are also thought to contribute to the
priming of adaptive immune responses by shaping the progres-
sion of inflammatory response after injury or infection and
subsequent return to homeostasis37. We provide data here that
suggests the addition of a very different role for RP-Mps in the
regulatory circuit controlling the differentiation of an innate
immune cell type from adult HSCs. The generation of the spleen
RP-Mp pool during development is crucial for the establishment
of the DC pool in neonate FLT3 mice. Moreover, in adult mice,
the presence of RP-Mps remains pivotal for the maintenance of
the DC pool size because depletion of RP-Mps in Flt3−/− mice
results in the loss of DCs. Finally, lack of RP-Mps in wild-type
mice impinges on the regeneration of DCs after their activation-
induced depletion in situ. RP-Mps are a mixed cell population
that initially largely consists of embryo-derived cells that are
progressively replaced with age by cells of an identical phenotype
but originating from definitive HSCs15,16. Our data suggest that
RP-Mps of different ontogenetic origin have distinct requirement
for CSF1R-mediated signals for their differentiation but fulfill the
same function with respect to DC pool size control. We conclude
that the spleen microenvironment, specifically RP-Mps, repre-
sents a novel regulator for maintaining immune cell integrity
within tissues.

Collectively, our results provide evidence that a crosstalk
between hematopoietic cell types of distinct origins is required for
steady-state hematopoiesis throughout life, implying existence of
a novel layer of complexity for the understanding and potentially
manipulation of differentiation processes in vivo. In future stu-
dies, it will be interesting to determine whether direct or indirect
mechanisms account responsible for DC pool size control
through RP-Mps and to decipher the molecular nature of
DC–RP-Mp interactions in vivo. Moreover, this interdependency
between cells of different ontogenies may be just an example, and
the differentiation of other cells of the mononuclear phagocytic
system and may be also cells of adaptive immunity may depend
on similar principles.

Methods
Mice. The following mouse strains were bred and kept under specific pathogen
conditions in separated ventilated cages in the animal facility of the TU Dresden

and they were kindly provided by: Csf1r−/−25 from Richard Stanley, Csf1rF/F27

from Jeffrey Pollard, Flt3−/−24 from Ihor Lemischka, Vav-Cre29 from Thomas
Graf, Rosa.26-CreERT2 (R26-CreERT2)30 from Pierre Chambon and Anton Berns,
and Td-rfp mice39 from Jörg Fehling. CD11c-Cre (#008068), Cx3cr1-gfp (#008451),
Pgk-Cre32 (#020811), and C57BL/6J (#000664) mouse strains were purchased from
the Jackson laboratory. CD-1 lactating females were provided by the Transgenic
Core Facility MPI-CBG Dresden. Owing to lack of teeth in Csf1r−/− mice25, all
experiments were performed with mice maximal 3 weeks of age that were kept with
the lactating mother to avoid secondary effects from malnutrition.

Generation of Rank-iCre mice: The bacterial artificial chromosome (BAC)
containing Rank (Tnfrsf11a, clone name: RP24-353D23) was modified by
recombineering40 to introduce an iCre-pA-FRT-PGK-Em7-neo-polyA-FRT
cassette into the first exon of Rank. The homology arms are 8.9 kb for 5’ and 9.6 kb
for 3’. R1 embryonic stem cell were cultured with fetal calf serum (FCS)-based
medium [Dulbecco’s modified Eagle’s medium+GlutaMAXTM (Invitrogen), 15%
FCS (PAA), 2 mM L-glutamine (Invitrogen), 1× non-essential amino acids
(Invitrogen), 1 mM sodium pyruvate (Invitrogen), 0.1 mM β-mercaptoethanol, in
the presence of 1000 units LIF (Chemicon) per ml] on mitomycin-C inactivated
mouse embryonic fibroblasts. Cells (1 × 107) were electroporated with 40 μg
linearized targeting construct using standard conditions (250 V, 500 μF) and
selected with 0.2 mg/ml G418. Colonies were screened for correct targeted events
by Southern blot hybridization using an internal probe and 5′ and 3′ external
probes. Two correctly targeted clones were selected for morula laser injection. The
chimera were bred to C57BL/6 mice resulting in germ line transmission for clone
28. RankiCre+ /− mice were crossed to CAGGS-Flpo41 in order remove the PGK-
neo cassette. The mice were subsequently bred back three times to C57BL/6J mice.
Animals were assigned to groups based on their genotype and age. The investigator
was blinded to the group allocation for analysis of embryos or newborn mice.
Genoytping primers are listed in Table S1. All animal experiments and protocols
were approved by the relevant authorities: Landesdirektion Dresden, Saxony,
Germany.

Cell isolation from embryos: To analyze embryos, timed pregnancies were
performed and the day of embryonic development was estimated by taking the day
of vaginal plug as 0.5 days post-conception, termed 0.5. Yolk sac from E10.5
embryos was digested 60 min at 37 °C in 5% FCS/phosphate-buffered saline (PBS)
containing 0.3 U/ml collagenase D (Roche) and 100 μg/ml DNAseI (Sigma-
Aldrich). The reaction was stopped by incubation with 12.5 mM EDTA. Fetal liver
was processed similarly but it was gently disintegrated before digest by pipetting
and digested for 20 min.

Tamoxifen: TAM was introduced to adult mice by combination of oral gavage
and TAM-containing diet. TAM was dissolved in SMOFlipid oil (Fresenius Kabi)
overnight at 4 °C and used the next day. Adult mice were gavaged twice at the age
of 8–12 weeks with a 1-week interval with 5 mg of TAM and kept on TAM diet for
6–8 weeks. Pregnant females were induced by a single TAM gavage (2 mg) at E10.5,
E14.5, or E17.5 as indicated. To prevent abortions, progesterone (37.5 μg/g body
weight resolved in Sunflower seed oil, Sigma-Aldrich) was injected
intraperitoneally directly after gavage. To analyze newborn or 3-week-old mice,
caesarean sections were carried out at term and neonates were fostered using
lactating CD-1 females.

Clodronate liposomes: Clodronate liposomes (clodronateliposomes.org) were
injected intravenously (i.v.; 5 μl/g body weight) and Flt3−/− or wild-type mice were
bled 24 h later to test for blood macrophages and analyzed 4 weeks later for spleen
myeloid cells (Fig. 5). Clodronate liposomes were injected into wild-type mice and
depletion was confirmed 22 h later. Regeneration of blood monocytes, spleen
macrophages, and DC was confirmed 4 weeks later. In this time interval, RP-Mps
had not recovered. LPS (25 μg, i.v., Sigma) was injected into Clod-treated and wild-
type mice and the activation of DCs was confirmed. Cell numbers of spleen DCs
were analyzed 2 and 7 days after LPS treatment (Fig. 6).

Flow cytometry. Spleen and BM cell suspensions were prepared, counted, and
stained using the antibodies indicated below42. BM cells were harvested by
crushing or flushing femurs using a syringe and a 23 G needle with 10 ml of PBS/
5% FCS. BM was dissociated by gently pipetting up and down with a 1 ml pipette.
Spleens were gently dispersed between frosted slides and digested for 30 min at
37 °C in PBS with 5% FCS containing Collagenase Type 4 (Worthington) at a final
concentration of 4.2 U/ml and 100 μg/ml DNAseI (Sigma-Aldrich). The reaction
was stopped by incubation with 12.5 mM EDTA. Peritoneal cells were harvested by
flushing the peritoneal cavity with 10 ml PBS/5% FCS heated to 37 °C. Spleens of
Csf1r−/− and Csf1op/op36 mice are smaller compared to controls. To take overall
loss of cellularity into account, the fold change of individual cell types were
compared to the fold change of organ cellularity. Fold changes were calculated by
dividing each data point of the mutant and the control genotype with the mean of
wild-type samples for each experiment. Cells were stained using antibodies specific
for the following antigens: B220 (RA3-6B2), CD3 (2C11), CD11b (M1/70), CD11c
(N418), CD19 (1D3), CD45 (30-F11), CD45.1 (A20), CD45.2 (104), CD172a (P84),
CD117 (2B8), CD115 (AFS98), CD135 (A2F10), F4/80 (BM8), Gr-1 (RB6-8C5),
NK1.1 (PK136), Sca-1 (D7), TER119 (Ter119) (eBioscience), MHCII (AF6-120.1,
BD Pharmingen), and Streptavidin PB (Molecular Probes). There are no differ-
ences in spleen DC numbers between wild-type and heterozygous Flt3 or Csf1r
mice or Cre+;Flt3F/+ and Cre+;Flt3+/+ or Cre+;Csf1rF/+ and Cre+;Csf1r+/+ mice,
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thus cell numbers from these control mice were pooled throughout the manuscript.
Samples were acquired and sorted using an LSRII and AriaII cytometer (BD),
respectively, and the data were analyzed using the FlowJo software (Tree Star).

Immunohistology. Spleens were frozen in OCT embedding medium (Tissue-Tek)
according to the manufacturer's protocol and 3-μm-thick cryosections were per-
formed on Cryotome CM1900 (Leica). Sections were fixed in acetone and blocked
with rat Ig (500 μg/ml, Jackson ImmunoResearch Laboratories) and the Strepta-
vidin/Biotin Blocking Kit (Vector Laboratories). Samples were stained with anti-
bodies directed against the following antigens: F4/80 (A3-1, Abcam), rabbit anti-
RFP (polyclonal, Rockland), CD11b (M1/70), CD11c (N418), CD3 (2C11), and
B220 (RA3-6B2) (all from eBioscience). Anti-FITC-Alexa488 (Molecular Probes),
anti-rabbit IgG A555 (Life Technologies), anti-rat IgG Cy5 (Jackson), and
streptavidin-Cy3 (Jackson ImmunoResearch Laboratories) were used for secondary
steps. Dapi (4,6-diamidino-2-phenylindole; 2 μg/ml) was used to stain nuclei.
Stained sections were mounted with fluoromount G (Southern Biotech). Samples
were analyzed by fluorescence microscope BZ-9000E (Keyence) and images were
processed by the Fuji software.

Molecular analysis. Genomic DNA from sorted cells, spleen, BM, and tail was
isolated by using the DNeasy® Kit (Qiagen) according to the manufacturer's pro-
tocol. Following primers were used to detect the Csf1rF and Csf1rdelta alleles: fwd,
ATCCTCAAACGTGGAGACACC; rev,GCCACCATGTCTCCGTGCTT. PCR
specific for the glycerol-3-phosphate dehydrogenase (Gapdh) gene locus was used
as loading control: fwd, TACGCATTATGCCCGAGGAC; rev,
TGTAGGCCAGGTGATGCAAG.

Statistics. Student's unpaired, two-sided t test was performed to calculate the
statistical significance between individual groups with expected normal distribu-
tion. Mann–Whitney U test was performed to calculate the statistical significance
between groups where normal distribution was not expected (fold-change com-
parisons). Not significant (ns)= P value (P) > 0.05; *P= 0.05–0.01; **P=
0.01–0.001; ***P < 0.001). Prism 5 software (GraphPad) was used to perform sta-
tistical analysis. If not indicated differently, mean and standard deviation is shown.
The program G*Power 3.1 was used to estimate sample size.

Data availability
All data generated or analyzed during this study are included in this published
article (and its supplementary information files). Primary data files are available
from the corresponding author on reasonable request.
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