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ABSTRACT
Many analyses in data science are not one-off projects, but are

repeated over multiple data samples, such as once per month, once

per quarter, and so on. For example, if a data scientist performs

an analysis in 2017 that saves a significant amount of money, then

she will likely to be asked to perform the same analysis on data

from 2018. But more data analyses means more effort spent in data

wrangling. We introduce the data diff problem, which attempts to

turn this problem into an opportunity. Comparing the repeated data

samples against each other, inconsistencies may be indicative of

underlying issues in data quality. By analogy to text diff, the data
diff problem is to find a “patch”, that is, transformation in a specified

domain-specific language, that transforms the data samples so that

they are identically distributed. We present a prototype tool for data

diff that formalizes the problem as a bipartite matching problem,

calibrating its parameters using a bootstrap procedure. The tool

is evaluated quantitatively and through a case study on an open

government data set.
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1 INTRODUCTION
Data wrangling is the process of transforming raw data into a clean

sample that can be used for analysis, data mining, and machine

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD’18, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

learning. Wrangling includes steps such as structuring data into

tables, standardizing formats, and addressing data quality issues

such as typographical errors, changes in units of measure, coding

of missing values, and so on. Individually, each of these transfor-

mations are quite simple, but the wrangling process as a whole

becomes expensive and tedious, for two reasons. The first, which

we might call death by a thousand wranglings, is usually there is not
just one issue in the data to fix, but many, and each requires sepa-

rate data wrangling effort. The second, an Anna Karenina principle,
is that every dirty data set is dirty is its own way. In our experience,

it is uncommon for data cleaning and preprocessing workflows to

be transferable across data sets.
1
For these reasons, data wrangling

is often cited as taking up a large proportion of the time required

for a data science or machine learning project [5, 16].

Often data scientists will write a series of data preparation scripts

[16, 18], but because of the Anna Karenina principle, the analyst

is aware that these scripts are likely to be one-offs, and so the

scripts are brittle and closely tied to details of the data source and

format. It is therefore unfortunate that there is in fact a large class

of data analyses that are not “one offs” but are repeated over time.

For example, suppose a data scientist creates a report analysing

hospital admissions. If the report is useful, then it may well be

requested again, but computed on a data sample from the next

year. More generally, many data sets arrive in batches, which we

call data samples, at periodic intervals, e.g., every month, every

quarter, every year and so on. But even when created by the same

organization, with great care, repeated data samples are often not

exactly alike, because of changes to what columns are available,

how data is coded, and so on. Each difference between the data

samples means more data wrangling effort.

The “data diff” task that we propose is an attempt to transform

the difficulty of repeated data samples into an opportunity.
2
The

opportunity is that if the data samples are expected to be identically

distributed, or at least in the same format, we can perform a first pass

of data cleaning by comparing the latest data sample to the earlier

ones. Differences discovered in this comparison may represent

underlying data quality issues, or formatting differences that are

1
A similar point is made in advice to UK government data scientists here: https:

//ukgovdatascience.github.io/rap_companion/exemplar.html (see Section 4.2)

2
"data diff" was proposed by R. Caruana as an AutoML challenge task in a talk on

"Open Research Problems in AutoML" at the 2015 ICML AutoML Workshop in Lille,

France.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://ukgovdatascience.github.io/rap_companion/exemplar.html
https://ukgovdatascience.github.io/rap_companion/exemplar.html


KDD’18, August 2018, London, UK C. Sutton et al.

likely to break data preparation scripts, which warrant further

investigation.

More specifically, the data diff tool is analogous to the Unix

diff tool for text files, which examines two text files and reports a

small change, called a patch, that will transform one file to another.

However, running text diff on a pair of data sets, e.g., as comma-

separated value files, is not likely to produce useful output—in most

cases, we know the rows in the new data set are different, but we

want to test whether the data distribution and format are the same.

Instead, in data diff, a patch between two data sets D1 and D2 is a

simple transformation that will make D1 appear as if it were sam-

pled from the same population as D2. Transformations can include

permutation of columns, linear transformations of columns, and

so on. We introduce a first method for the data diff as a structure

learning problem, in which we search for a transformation that min-

imizes a measure difference between distributions, with a penalty

term to favour simpler, more interpretable diffs.

We present a case study of applying data diff to an open govern-

ment data set. In the case study we have multiple data samples that

were generated by the same organization over different time spans.

There are significant changes in the format across the samples that

would be highly likely to break most data preparation scripts. The

data diff tool is able to detect these differences and explain them to

an analyst, thus eliminating the tedious debugging time that would

be required to discover them manually.

More broadly, the potential applications of a data diff tool range

far beyond data wrangling. Detecting changes in distributions is

one of the most fundamental tasks in data analysis. As an example,

consider the deployment of machine learning models. We might

need to deploy the same classifier across multiple sites, for example,

multiple hospitals for a clinical application, multiple factories for a

manufacturing application, and so on. But the classifier has been

trained on data of a particular format, and it is highly unlikely that

every site will format the input data for the classifier correctly the

first time. A data diff tool can provide guidance on fixing errors in

input format. As another example, deployed machine learning mod-

els commonly experience changes over time in the distribution of

test examples, perhaps due to concept drift [17], or due to feedback

effects in a large production system [21]. When the distribution of

run-time samples deviates too far from the original training distri-

bution, a data diff tool can provide an interpretable summary of

what has changed. Although many statistical tests have been devel-

oped to detect differences in distributions, the data diff problem is

unique in that it aims at a “diff”, a compact, interpretable summary

of the difference. Data diff aims beyond detecting differences in

distributions, to providing information to help analysts understand

and respond to those differences.

2 MOTIVATION
This is a relatively new research area with little prior literature, so

we first present examples to motivate the need for such a capability.

In our experience, on real projects that span multiple years, we have

never found that a complex data set can be generated a year or two

later that has the exact same structure, coding and statistics as prior

samples. Modern data sets are so complex, and are collected from

so many different sources, that it is very difficult to create a new

sample of data that is exactly like prior samples. For example, a few

years ago we trained a model to predict 30-day readmission using

hospital data collected from 2011-2013. There were about 100,000

patient records per year and 4,000 features per patient. Because

there is seasonality in the data and some patients occur multiple

times in the records, we used data from 2011 as training data, 2012

as validation data, and 2013 as test data. The model performed well

and was released at the hospital in 2014.

In 2015, we decided to update the model using a new table of

100,000 records and 4,000 columns collected in 2014, in order to

double the size of the training set. Before training a new model,

however, we ran a primitive data diff tool on the new sample of data

from 2014 to compare it to the previous three years’ data, which

had all been prepared a year earlier. The new data looked good,

except that the statistics for columns 562–568 looked different in

the new table compared to the preceding three years. The hospital

reviewed the SQL scripts used to prepare the new data and found a

subtle bug that explained the differences in these columns. These

differences would have silently reduced the accuracy of the new

model, requiring time consuming debugging, if they had not been

detected by the primitive data diff tool.

To highlight some of the “mundane complexity" that arises in

“living, breathing" data sets, here are quotes from email exchanges

for projects in our recent experience. We label each quote with the

type of wrangling issue that it describes:

• Changes in units of measure: “... Just want to verify format. Before

we had a separate file with age in two columns. I think one was

for age in years, and the other was age in days? Looks like you

added these two columns for age at the end of the new files as

new cols 3996 and 3997, right?"

• Missing columns: “... The matrix you uploaded has 3755 columns

(not including the ID column), but the data we’ve been using has

3982 columns. Are we missing 227 columns in the new data? Or

maybe I’m doing something wrong at my end."

• Changes to distribution within a column: “... The model wasn’t

working so I spent some time debugging. Looks like we suddenly

have 323 columns with only one unique value in each of them.

Most are -1’s, but a few are all 0’s. Any idea how long ago that

happened?"

• New data violates integrity conditions: “... I sorted that ages from

highest to lowest. In the new data we 2000 people over 100, and

1400 over 120. That doesn’t sound right. The ages are all integers.

Maybe months are getting mixed with years?"

• Anomalies in new data: “... Looks like there’s a problem with

column 41: it has ROC = 0.56, but all other columns have ROC

above 0.75. Looks like there are many cases with predicted values

of 0.0000 in column 41. Any idea what went wrong with that

column?"

• Changes in column order: “... Got the new matrix. I think I should

reorder the columns to put them back into the order we originally

used. Where should the last two columns go? If we use col 0 to

refer to the targets, so now col 1 is the 1st column of predictions

and cols 199 and 200 are the two new columns, then I think the

new cols should move between the predictions in column 158
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and 159, creating new columns 159 and 160. Have I got that right?

And the new columns are in the correct order for scaling?"

Although our current data diff tool would not have resolved all

of these problems, it would have detected them, often providing

specific enough information to make identifying the true problem

much easier. The most important stage in data debugging is to know

you have a problem in the first place.

3 PROBLEM STATEMENT
Data diff is the general problem of providing a concise, interpretable

summary of the differences between two data sets. We call this sum-

mary a patch, by analogy to the Unix diff utility. By reading the

patch, an analyst can quickly understand the differences in format

and distribution between the data sets. The analyst can then inves-

tigate whether the differences in the patch are expected, whether

they reflect interesting changes in the population, or whether they

reflect data quality issues, and act accordingly.

For text files, the Unix patch command applies a patch to trans-

form a text file. In data diff, patches can have two potential purposes:

to inform or to transform. In some cases—just as in Unix—the data

diff patches are executable, and can transform the new data to be

compatible with the older data. For example, suppose the new data

set introduces additional columns; the patch would simply remove

these. In other cases, such as if a column has radically changed

distribution, there is no sensible way to transform the new data

to be backwards compatible. Then the patch serves the purpose of

informing the analyst of the change across the data sets.

To formalize the data diff problem, it is easiest to take the trans-

formation viewpoint, even though the patches will in the end be

used for both purposes. Specifically, given two data tables D1 and

D2, the formal data diff problem is to identify a patch Π, which is

simply a function on data sets, so that D1 and Π(D2) are encoded

in the same format and drawn from the same distribution. Note

that we do not assume that the data in D1 and D2 are paired in any

way, or that they have the same number of rows or columns. For

example, D1 and D2 might be two data sets of different size that

are drawn from the same distribution, except that D2 contains a

new column that does not appear in D1, and that column 73 in data

set D2 is measured in Celsius instead of Fahrenheit as in D1. Then

executing Π(D2) will remove the additional column and linearly

transform column 73 appropriately.

Clearly, the set of allowable patches must be restricted, or Π may

simply remove all rows fromD1 and insert all rows fromD2. Instead,

the set of allowable transformations is restricted to those that can

be described by an expression defined in a transformation language.
The transformation language is designed both to describe typical

ways that sequences of data samples tend to diverge over time, and

also to be easily read by an analyst. Ideally, the transformations

should be specific, so that they do more than simply detect a change,

but also explain what type of change occurred. It is easy to imagine

a broad variety of transformations which would be important to

detect, such as changes in numbers of columns and column order;

changes in number, date, and time format; changes in currencies and

units of measure; changes in the marginal distribution of columns;

changes in statistical dependences between columns; and so on.

The idea of using a transformation language is inspired by previous

work in data wrangling [9, 16], but for our purposes, the language

must be designed specifically for the data diff problem.

Because detecting changes in distributions is a fundamental

problem, a wide variety of methods have been proposed in the

statistics literature, depending on whether the expected change is

abrupt or gradual, and whether we know when the change might

have taken place. These methods include two-sample tests, change-

pointmethods, and sequential analysis [3, 4, 8, 11, 22, 24]. Data diff is

different from all of these, because it is about how to proceed further

when the two data sets were not drawn from the same distribution,

but this discrepancy is due to issues that can be described by a

compact, interpretable transformation, such as differences in data

formats, units of measure, coding of missing values, and so on.

Essentially, the difference is that data diff aims to produce a diff.

4 THE DATA DIFF SYSTEM
In this section, we describe a prototype of a system for tackling the

data diff problem.
3
Although the framework could be applied to

a broad variety of settings, including unstructured and semistruc-

tured data, complex string transformations, and so on, we present

an initial data diff implementation that focuses on a simple set

of column transformations that we have observed repeatedly in

our practical experience (Section 4.1). We measure the quality of a

proposed patch by a nonparametric measure of distance between

distributions, which we formalize as a linear assignment problem

(Section 4.2). The objective function contains a penalty term to

encourage the method to return simpler patches. The weights for

this penalty are selected using a bootstrap procedure to match a

false positive rate given by the analyst (Section 4.3).

4.1 Transformation Language
The transformation language L defines the set of patches that we

consider in our system. There is a large potential design space here.

In our prototype, we use a fairly simple transformation language,

chosen specifically by reflecting on our own experiences, which we

described in Section 2.

To set notation, a patchΠ(D) is a function thatmaps data tables to

data tables. We assume that the input dataD is a table with columns

A = {A1, . . .AM }. Each row inD is a tuple ti = (A1[ti ], . . . ,AM [ti ])
for i ∈ {1 . . .N }. We use the notation D[i] to refer to a single

column, or occasionally, for a index set I ⊆ {1 . . .N }, we use

D[I ] to denote the appropriate projection of D. Each attribute Ai
has a domain Xi , which for this paper we take to be either real-

valued or a finite set, so each tuple ti is a member of the set X =

X1 × . . . ×XM . A patch Π is a function that transforms one table to

another, but importantly, a patch can change the schema of D, e.g.,
by transposing columns, or converting a column from one type to

another. So if we denote a table D = (A, t1:N ), then a patch defines

a transformation Π : (A, t1 . . . tN ) 7→ (A
′,π (t1) . . . π (tN )), where

π : X → X acts on individual tuples. In other words, patches can

add or remove attributes and can perform arbitrary transformations

on one tuple at a time. Most patches have parameters a0 . . . a J
beyond the data table D, for example, which column to delete. To

handle this in our notation, we will define a class of patches via a

3
The prototype system will be released publicly after completion of the review process.
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generator function fn(a0 . . . a J ), which is a higher-order function

that returns a patch Π that can be applied to a specific data table.

We begin by defining classes of elementary patches:
• Permute column patches have the form permute(ℓ), where ℓ is a
permutation of {1 . . .M}. This patch has the effect of permuting

the columns of the data set.

• Insert column patches have the form insert(i,C), where i is an
integer in {0 . . .M}. This patch inserts the column C into D just

after the column with index i , where we take insert(0,C) to

mean that the new column should be inserted as the first column.

• Delete column patches have the form delete(i), and removes

the column Ai .

• Replace column patches have the form replace(i,C), where i is
an integer in {1 . . .M}, and replace the current cells in column

D[i]with the values inC . This patch is useful where we can detect
that the distribution of a column has changed, e.g. with a standard

two-sample test, but the library contains no transformation that

will repair this discrepancy.

• Recode column patches modify the values of a categorical column.

The patch recode(i, {(v1, v̂1), . . . , (vn , v̂n )}) can be applied

whenever column i is categorical, i.e. n := |Xi | is finite. The meta-

parameter is a set of pairs (v, v̂) ∈ Xi × ˆXi in which everyv inXi
is represented and the v̂ are unique (so |Xi | ≤ | ˆXi |). The effect is

to replace value v , whenever it appears in column i , with value v̂ .
One particularly important use of this is for missing data, which

is often coded by special values, such as “NA", -1, 0, 999, which

are easy to inadvertently change across data samples. This has

been a common source of discrepancies in our experience, and

others report this as well [18].

• Linear transform patches have the form linear(i, a, b) and

can be applied when Ai is a real-valued attribute. The effect is to

multiply every cell in the column by a and add b. This transfor-
mation is especially useful for detecting inadvertent changes in

units of measure.

• The identity patch identity() makes no change to the data set.

Finally, we introduce composite patches compose(Π1 . . .ΠK), whose
effect is to return the function composition Π = Π1 ◦ · · · ◦ ΠK of

the given sequence of patches Π1 . . .ΠK . A univariate patch is one

that affects only a single column. So all of the elementary patch

types are univariate, except for permute, and any composition of

univariate patches over the same column is also univariate.

4.2 Optimizing over Patches
The main algorithmic challenge of data diff is the search through

the space of possible patches. In this section we describe the objec-

tive function that datadiff uses to rank possible patches, and the

optimization algorithm that it uses to minimize this objective.

4.2.1 Objective Function. We wish to return a patch Π so that

Π(D2) andD1 appear to have been sampled independently from the

same distribution. This notion can be formalized by the optimization

problem

min

Π∈L
D(D1,Π(D2)) + Ω(Π), (1)

where D() is a distance measure between data sets and Ω() is a
penalty function to discourage patches that are too complex. For

the distance measureD(), we sum, over all columns, a column-wise

distance measure that depends on the attribute type. For real-valued

columns C1 and C2, we use the Kolmogorov-Smirnov (KS) statistic

KS(C1,C2) = max

x
|F1(x) − F2(x)| , (2)

where F1 and F2 are the empirical cumulative distribution functions

of C1 and C2, respectively. We choose the KS distance because of

its simplicity, but one could consider a large number of possible

measures, such as Euclidean distances between vectors of moments

or maximum mean discrepancy (MMD) [8].

For categorical columns we use the total variation (TV) statistic:

TV(C1,C2) =
∑
x
|D1(x) − D2(x)| , (3)

where now D1 and D2 are the empirical discrete distribution func-

tions (not the cumulative distribution functions). When the two

columns C1 and C2 are of different types we arbitrarily assign a

distance of 1.

Putting these definitions together, we can define a column-wise

distance measure:

Dc (C1,C2) =


KS(C1,C2) if both C1 and C2 continuous,

TV(C1,C2) if both C1 and C2 discrete,

1 otherwise.

(4)

Then our distance measure D() over data sets becomes

D(D1,D2) =

M1∑
i=1
Dc (D1[i],D2[i]) . (5)

If D1 and D2 do not have the same number of columns, then we

take D(D1,D2) to be∞.

The penalty Ω() is necessary because patches can overfit. For

example, suppose D1 and D2 are both generated from standard

multivariate Gaussians. Without the penalty, the optimal diff is

likely to multiply every column of D2 by a small constant so that

the column means of Π(D2) are exactly those of D1. The penalty

discourages this behaviour. We find that a simple choice for Ω(Π) is
effective, basically the number of elementary patches inΠ, weighted
by patch type. More formally, for each type t of elementary patch

in the language, we introduce as a parameter a nonnegative weight

λ[t]. We define type(Π) to be the type of an elementary patch, and

P(Π) to be the set of elementary patches contained in a given patch

Π. Then we can define

Ω(Π) =
∑

Πi ∈P(Π)

λ[type(Πi )] (6)

4.2.2 Optimization Algorithm. The problem (1) is a difficult com-

binatorial optimization problem, and strategies for solving it may

well depend on specific features of the transformation language L.

In datadiff we notice that, except for permute, all of the elemen-

tary patch types are univariate patches. Therefore our optimization

algorithm will first compute the best univariate patch over pairs of

columns from D1 and D2, and then optimize over possible permu-

tations of the columns.

This is described in Algorithm 1. First, for all pairs of columns i
from D1 and j from D2 (lines 3–6), we compute the optimal patch

assuming that a permutation patch has already aligned columns

D1[i] andD2[j]. The function BestUnivariatePatch optimizes the
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Algorithm 1Main datadiff algorithm

1: procedure DataDiff(D1,D2, λ)
2: ▷ Optimize over univariate patches
3: for i ∈ 1 . . .M1 do
4: for j ∈ 1 . . .M2 do
5: Πi j ← BestUnivariatePatch(D1[i],D2[j])
6: Ci j ← D(D1,Πi j (D2)) + Ω(Πi j )

7: ▷ Optimize over permute patches
8: Σ← MinBipartiteMatching(C)
9: ▷ Construct the patch to be returned
10: ℓ ← ()

11: Append permute(Σ) to ℓ unless Σ is identity

12: for (i, j) ∈ Σ do
13: Append Πi j to ℓ unless type(Πi j ) = identity

14: for i ∈ 1 . . .M1 do
15: if (i, ∅) ∈ Σ then
16: Append insert(i, D1[i]) to ℓ

17: for j ∈ 1 . . .M2 do
18: if (∅, j) ∈ Σ then
19: Append delete(j) to ℓ

20: return compose(ℓ)

univariate data diff problem, i.e., it optimizes (1) for the pair of data

sets (D1[i],D2[j]). We describe the details of this function in a mo-

ment. Now that we have constructed the cost matrix C , finding the

optimal permute patch according to (1) corresponds to a minimum

weight assignment problem, i.e., a complete bipartite matching,

which we solve in line 8. We can represent the returned matching

as the set of pairs of columns that are aligned. Our implementa-

tion uses the Hungarian algorithm, and we use an implementation

which produces matchings that are complete in the sense that they

contains as many edges as possible. However, if C is not square,

i.e., if D1 and D2 have different numbers of columns, then some

columns will be unmatched in one of the data sets. The returned

matching uses a special token ∅ to indicate unmatched columns,

i.e. (i, ∅) indicates that column i in D1 was unmatched, etc.

Finally, in lines 10–20, we construct the patch to be returned.

First we construct the permute patch corresponding to Σ, and then

for each pair of columns that are aligned between the two data

sets, we include the univariate patch that best matches those two

columns. This has been previously computed from the calls to

BestUnivariatePatch. Columns that were unmatched in Σ have

insert or delete patches added as appropriate.

Now we describe the optimization over univariate patches. The

function BestUnivariatePatch takes two columns C1 and C2 as

input, and returns a patch Π12 that minimizes (1) for those two

columns in isolation. The only three patch types that this func-

tion needs to handle are recode, linear and identity, as other
patch types are handled by the main datadiff algorithm. We can

assume that the optimal patch within this class is elementary, be-

cause recode and linear are mutually exclusive, and there is no

need to compose a patch with the identity patch. So the BestUni-
variatePatch optimizes (1) in turn for the best recode and linear
patches, then computes the objective for the identity patch, and
finally returns the minimum of the three. There is one additional

case to be handled, that in which columnsC1 andC2 have different

types, one being real-valued and the other categorical. The return

value in that case is a replace patch, representing an irreconcil-

able difference, with an associated penalty chosen large enough to

reflect that this outcome is a last resort.

To finish the description of BestUnivariatePatch, we need

to describe how to optimize over the parameters of recode and

linear patches. First, for linear patches, the optimization problem

is only two-dimensional, so we simply minimize (1) with respect to

the parameters of the linear function using a bisection method. For

recode patches, we observe that the mapping between old values

and new values can be expressed as a bipartite matching, so we

again use the Hungarian algorithm to find the best parameters.

4.2.3 Correctness. We can formalize how this algorithm op-

timizes (1). First, we define a canonical form over patches Π(D),
where D hasM columns. A patch in canonical form is a composite

patch Π = (Π0,Π1, . . .ΠM ), where Π0 is a patch of type permute,
and each of the patches Πm , form ∈ 1 . . .M , is a univariate elemen-

tary patch whose first argument is column indexm. Two patches

Π1 and Π2 are semantically equivalent if they define the same func-

tion over data sets, that is, Π1(D) = Π2(D) for all D. Then we have

(proof in online supplementary material):

Proposition 4.1. For every patch Π, there exists a semantically
equivalent patch Π̃ in canonical form.

The patch language L is ambiguous because of the presence of

insert, delete, and replace. To resolve this ambiguity, we make

the assumption (A1) that patches returned from DataDiff do not

include insert, delete, and replace unless they are necessary to

produce a patch with finite cost. That is, ifM1 < M2, then DataDiff

(D1,D2) contains exactlyM2 −M1 insert patches, and so on. This

corresponds to setting a very large penalty λ[insert], etc., so as to
overwhelm the effect of Dc (). Let P(M1,M2) be the set of patches

that satisfy this assumption. Then we can show that

Proposition 4.2. Algorithm 1 returns the canonical patch Π∗

that minimizes D() under assumption (A1), that is,

Π∗ = argmin

Π∈P(M1,M2)

D(D1,Π(D2)) + Ω(Π). (7)

Proof. Let d∗ denote the optimizing value of (7), andU(i) de-
note the set of all elementary univariate patches Πi for which

column D2[i] is a valid argument.

First suppose thatM1 = M2 = M . Then optimizing over patches

in canonical form yields

d∗ = min

σ

M∑
m=1

min

Πm ∈U(m)
Dc

(
D1[σ

−1(m)],Πm (D2[m])
)
+ Ω(type(Πm )),

(8)

where σ ranges over all permutations over {1 . . .M}. By definition,

the function BestUnivariatePatch computes the inner minimiza-

tion, i.e., after line 6, for all i, j ∈ {1 . . .M}, we have

Ci j = min

Π̃∈U(j)
Dc

(
D1[i], Π̃ (D2[j])

)
+ Ω(type(Π̃)). (9)

Then line 8 computes the minimization Σ = argminσ Ci,σ (i). This
completes the proof for M1 = M2. If M1 , M2, then first suppose
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M1 < M2. Optimizing (1) over canonical patches that satisfy (A1)

is equivalent to optimizing

min

I ⊆{1...M2 }, |I |=M1

d∗(D1,D2[I ]), (10)

where d∗ is defined as in (8). This step follows because all patches in
P(M1,M2) contain exactlyM2 −M1 delete patches, so the penalty
for those patches can be ignored in the optimization. Now line 8

again optimizes (10) over I , as after this line, we have I = {j | (∅, j) ∈
Σ}. Finally, the proof forM2 < M1 is similar. □

4.3 Calibrating Patch Complexity
The complexity of the returned patches is controlled by the penalty

weights on each patch type. The best choice of weights may well

depend on the number of rows, whetherD1 contains many columns

with similar distributions, and so on. In this section we propose a

simple and generic procedure for choosing the penalty weights.

In an analogy to hypothesis testing, we allow the analyst to

choose a false positive rate (FPR) α , and we aim to set the penalty

weights such that if D1 and D2 were drawn from the same distri-

bution, we return a non-identity patch with probability at most

α . An obvious, but not entirely helpful, attempt to meet this goal

is to perform a standard two sample test at the beginning of the

datadiff algorithm, and return an identity patch if the test fails

to reject the null hypothesis of equality of distributions. This pro-

posal is not fully helpful because, although it would prevent us from

incorrectly returning a diff when D1 and D2 are entirely similar,

it does not prevent the system from returning a complicated diff

when a simpler one would be almost as good. It is for this reason

that we use the regularised formulation of (1) instead.

Instead, we select the penalty weights using a slightly differ-

ent, but related criterion. For each elementary patch type t (except
for identity), we aim to set the penalties so that under the null

hypothesis that D1 and D2 are identically distributed, the compos-

ite patch returned by datadiff contains an elementary patch of

type t with probability at most α . This measure for false positive

rate, which we might call “partial match FPR for patch type t” (par-
tial FPR), provides a signal for controlling the penalty weight of

each patch individually. Choosing the penalty weights for a given

false positive rate α is difficult because there are many interactions

within the data diff procedure, for example, increasing the penalty

for including a permute patch will affect all of the other patches

that are selected. Therefore, we set the penalty weights using a

bootstrap-type procedure [6].

Specifically, we draw R pairs of data sets of size (M1,M2) by

sampling independently from the data set D1 with replacement. We

run DataDiff(Dr1,Dr2) individually for each sampled pair of data

sets, and compute the partial FPR for each patch type over the R
samples. We tune the penalty weights for each patch type using a

simple greedy search until the empirical partial FPRs for all patch

types are as close as possible to α .

5 EVALUATION
Evaluating a data diff system is complicated by the fact that one

of its main goals is to inform human analysts. Our final goal is

to reduce the amount of analysts’ time required to carry out the

end-to-end analysis task, as well as the quality of the final analysis,

but this can be difficult to measure, possibly requiring an exten-

sive study with human analysts. Instead, as a more preliminary

evaluation, performance of the datadiff system was evaluated

through a series of experiments involving synthetically corrupted

data, for which we can measure whether datadiff recovers the

true corruption. Nine of the most popular data sets from the UCI

machine learning repository [19] were used for this purpose. Each

experiment involved generating a corruption patch (either elemen-

tary or composite), of a given type, by selecting its parameters at

random. For instance, in the case of linear patches, the shift pa-
rameterb was selected by sampling from aU [−2, 2] distribution and
multiplying by the standard deviation of the (randomly-selected,

numerical) attribute. The corruption was applied to one half of a

random partition of the data, before running datadiff on the two

halves. The experiments were repeated R = 100 times, with ten

different randomly-chosen corruptions of each corruption type, and

ten different random splits of the data for each sampled corruption.

We define a collection of metrics to quantify the fidelity of the

datadiff output. The first two, precisionpt and recall rt , are param-

eterised by patch type t , and measure the algorithm’s performance

at selecting transformations of the correct type. For each repetition

i , let Π∗i be the patch that represents the true corruption of the data,

and Πi be the corresponding output of datadiff. As before, we
define type(P(Π)) for the set of elementary types in patch Π. Then
precision and recall are defined as

pt =

∑R
i=1 δ {t ∈ type(P(Π

∗
i )) and t ∈ type(P(Πi ))}∑R

i=1 δ {t ∈ type(P(Πi ))}
(11)

rt =

∑R
i=1 δ {t ∈ type(P(Π

∗
i )) and t ∈ type(P(Πi ))}∑R

i=1 δ {t ∈ type(P(Π
∗
i ))}

, (12)

where the function δ {·} is 1 if the given condition is true, and 0

otherwise. Precision measures how often datadiff is correct when
it reports that a particular patch type is present, and recall measures

how often a patch of type t is detected when it is in fact present.

The remaining three metrics measure the accuracy of datadiff
in identifying the parameters of the corruption, in cases where

the type is correctly identified. For univariate patch types, we de-

fine the column accuracy to be the frequency with which, when

an elementary patch of the correct type appears in the result, the

column index is also correct. For patch types with real-valued pa-

rameters (currently only linear), we report the root-mean-square

error (RMSE) over the parameter values. For recode patches, we
report parameter accuracy, which counts the frequency with which

the set of recoding pairs in the result is identical to that in the

corruption. This is a strict, exact match measure of the percentage

of cases in which the entire matching between categorical values is

correct, and does not give any credit to partially correct matches.

Finally, if the corruption and result contain elementary patches

permute(ℓ∗) and permute(ℓ), then we measure parameter accu-

racy as the Hamming distance between ℓ∗ and ℓ expressed as a

sequence of integers.

For all of the experiments in this section, the penalty weights

were chosen by the calibration procedure described in Section 4.3.

The calibration procedure was run once to achieve a target partial

FPR α = 0.05 on average across the nine data sets. (This is designed
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Patch

Type

Type

Precision

Type

Recall

Column

accuracy

Parameter

RMSE

Parameter

accuracy

Linear 0.787 0.885 0.888 1.550 —

Recode 0.862 0.977 0.935 — 0.314

Insert 1.000 0.989 0.964 — —

Delete 1.000 0.980 0.937 — —

Table 1: Performance of datadiff at recognizing known cor-
ruptions, on single univariate corruptions.

Patch

Type

Type

Precision

Type

Recall

Column

accuracy

Parameter

RMSE

Parameter

accuracy

Linear 0.703 0.757 0.856 2.143 —

Recode 0.830 0.973 0.935 — 0.306

Insert 1.000 1.000 0.978 — —

Delete 1.000 1.000 0.954 — —

Permute 1.000 0.931 — — 0.395

Table 2: Performance of datadiff, when the true corruption
contains both a column transposition and a univariate cor-
ruption.

to reflect a situation in which the analyst calibrates datadiff on
D1 just before running it.) The resulting penalty weights were then

used for datadiff for all R repetitions of the experiments.

The synthetic experiments were divided into four groups accord-

ing to the complexity of the corruption. Each of the corruptions in

the first group was an elementary, univariate patch (Table 1). In

the second group a column transposition was added (Table 2). The

third group consisted of corruptions composed of two univariate

patches (Table 3), and the fourth added to this a column transpo-

sition (Table 4). In general, we see that the precision, recall, and

accuracy at identifying columns are over 0.85 and often over 0.90,

even for the more complex cases in 4 where there are multiple

univariate corruptions and a permutation. The only exception is

that the linear patches have lower precision, e.g., as low as 0.70

in 2. This is to be expected because our generating procedure can

sometimes sample true corruptions with very small magnitude, e.g.

multiplying a column by 1.01.

False positive rate. In the above experiments, there was always

some true corruption to find in the pair of data sets. Now we evalu-

ate the total false positive rate (tFPR), which is how often datadiff
returns a non-identity patch when the two data sets are in fact

identically distributed. Note that this is not exactly the same as the

FPR measure used in the calibration procedure, as the calibration

FPR is a partial match procedure for each patch type. We evaluate

the tFPR of datadiff for the calibrated parameter values that were

used in the previous set of experiments. For each of the nine UCI

data sets, we sample R = 100 bootstrap samples of identically dis-

tributed pairs, and measure the false positive patches returned by

datadiff. The median tFPR over the nine UCI data sets was 0.03,

which is close to the target value.

6 CASE STUDY
We present a case study to illustrate how the output of datadiff
can be useful in real-world data analysis. The UK’s Office of Com-

munications (Ofcom) publishes data annually on the performance

Patch

Type

Type

Precision

Type

Recall

Column

accuracy

Parameter

RMSE

Parameter

accuracy

Linear 0.941 0.938 0.725 1.559 —

Recode 0.984 0.975 0.924 — 0.289

Insert 1.000 1.000 0.709 — —

Delete 1.000 1.000 0.795 — —

Table 3: Performance of datadiff, when the true corruption
contains two univariate corruptions.

Patch

Type

Type

Precision

Type

Recall

Column

accuracy

Parameter

RMSE

Parameter

accuracy

Linear 0.940 0.801 0.724 2.373 —

Recode 0.972 0.976 0.907 — 0.315

Insert 1.000 1.000 0.789 — —

Delete 1.000 1.000 0.877 — —

Permute 1.000 0.944 — — 0.717

Table 4: Performance of datadiff, when the true corruption
contains two univariate corruptions and a column transpo-
sition.

of residential fixed-line broadband services
4
. These data exhibit

many of the transformation types handled by datadiff. For illus-
tration, Figure 1 shows the first ten attributes from years 2013 to

2015. We see that new columns were introduced in each year, the

original column order is not preserved, column names change over

time, as do the encodings in certain categorical columns. In total,

there are 29 attributes and 1450 rows in the 2013 data, 31 attributes

and 1971 rows in 2014, and 36 attributes and 2802 rows in 2015.

Prior to running datadiff on the broadband data, appropriate

patches to reconcile differences in adjacent years were identified

manually. We call these target patches. We focus on adjacent years

to make the patches easier to read. We choose the penalty weights

λ[t], for each patch type t , to generate patches of small complexity

when executed on the broadband data. A degree of preprocessing

was done to manually strip stray characters from numeric data.

First, in Figure 2, we show the patches that transform the 2014

data tomeet the 2013 format, including both themanually-generated

target patch and the result from datadiff. The first column in Fig-

ure 2 lists the elementary constituents of the true target patch. Two

columns are deleted and the Technology column is recoded before

being transposed with Headline speed. In fact the recoding is not

a valid patch in our transformation language L, since both cate-

gories FTTC and FTTP are mapped onto the single FTTx category.

The second column shows the result returned by datadiff. Ev-
ery element of the target patch is represented in the result, and

the meta-parameters are identified correctly in all cases except for

the recode patch which, as already noted, cannot be captured by

the simplified patch language in the current prototype. The result

additionally contains a pair of linear patches, highlighting an

important point: not all transformations are due to inconsistencies

in the data format. The linear patches do not represent changes in
measurement unit, but are instead consequences of technological

improvements over time (i.e. reduced packet loss) which affect the

4
https://data.gov.uk/dataset/uk-fixed-line-broadband-performance
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ID
Distance

band

Urban/

rural

Market ISP

Headline

speed
Technology

Download

speed (Mbit/s)

24-hour

Download

speed (Mbit/s)

Max

Download

speed (Mbit/s)

8-10pm

weekday

1302 2563-5000 Urban 3 Virgin 60 Cable 58.597 62.673 56.677

1318 1367-1635 Urban 3 TalkTalk 20 ADSL2+ 9.325 11.362 9.162

1319 1992-2563 Urban 3 Sky 20 ADSL2+ 5.369 5.726 5.399

1320 1367-1635 Urban 3 Virgin 60 Cable 60.544 62.675 59.84

(a) 2013

Id
Distance

band

Distance

band used for

weighting

Urban/

rural

Market ISP Technology LLU

Headline

speed

Download

speed (Mbit/s)

24-hour

1302 2563-5000 Urban 3 Virgin Cable Cable 60 46.984

1308 0-385 Urban 3 BT FTTC Non-LLU 80 45.564

1318 1367-1635 1299-1680 Urban 3 TalkTalk ADSL LLU 20 6.950

1319 1992-2563 1680-2274 Urban 3 Sky ADSL LLU 20 5.180

(b) 2014

unit_id WT_national WT_ISP Valid_panel Pack_number Tech Plusnet_upload LLUvsNon MarketClass

URBAN2

3640 0.46 1.1 Valid panelist BT 80 FTTC 76 Y 3 Urban

814409 0 1.09 Valid panelist Sky 80 FTTC 76 Y 3 Urban

662382 0 5.48 Valid panelist Plusnet 40 FTTC 38 20 Y 3 Urban

675946 1.5 1.04 Valid panelist BT 20 ADSL2 Y 3 Urban

(c) 2015

Figure 1: UK home broadband performance data samples

scale but not the shape of the distribution. Transformations of this

sort indicate to the analyst interesting changes in the underlying

distributions.

The transformation required to reconcile differences between

the 2014 and 2015 data is considerably more complex, so we present

only a partial listing of the target and output patches in Figure

3. The permutation is expressed, for brevity, in two-line notation

using column indices and only the reorderings involving the first

ten columns are shown. In total, 24 of the 36 attributes are per-

muted by the target patch. In the presence of such complexity the

accuracy of the datadiff algorithm is degraded. The Valid_panel
column, whose domain contains only two elements, is erroneously

recoded onto the domain of the Urban/rural attribute. Attribute
WT_national is replaced, rather than permuted, although its neigh-

bourWT_ISP is correctly moved from column 3 to 30. The Market-
Class column is successfully recoded and permuted from position

9 to 5, but the other recode patches in the result do not perform

accurately. Even so, the datadiff output is still useful to highlight

to the analyst that a large permutation in columns has occurred.

Also, the datadiff output correctly identifies several columns that

would need to be deleted, such as Plusnet_upload and Pack_number,
as well as several columns whose value has been recoded, such as

LLUvsNon andMarketClass. Finally, there is wide variation between
the permutations in the target and result. In this example we see

that even when the datadiff output is not fully accurate, it still can
serve a red flag to the analyst that there are multiple data quality

issues and provide some strong hints for addressing them.

7 RELATEDWORK
We are not aware of related work specifically on the data diff prob-

lem. Perhaps the closest related work is in the databases, program-

ming languages, and user interfaces literature on improved tools

for data wrangling. Data wrangling is the process of transforming

raw data into a format that is suitable for data analysis, including

tasks such as standardizing the format and data cleaning. In the

research literature, data wrangling tools have been proposed for

defining transformations on columns [9, 16] and for parsing data

from unstructured sources [7, 10]. Additionally data warehouses

provide extract-transform-load tools for data cleaning [2], includ-

ing most of the transformations that we consider in our prototype.

Other work considers interactive data wrangling and exploration

[13, 20]. Another approach to addressing data quality issues is au-

tomatic data cleaning [1, 15], but we are unaware of previous work

that considers the “two-sample cleaning problem” in the way that

datadiff does. The specific problem of finding the best permute

patch is sometimes called table matching; after completing this

work, we learned that Gretton et al. [8] present a demonstration

of the Hungarian algorithm for this problem. As discussed earlier,

detecting changes in distributions has been a long-studied problem

in statistics, including changes between two data samples [4, 8],

changes at unknown points in time [3, 11, 22] and detecting gradual

changes [22, 24]. Data diff goes beyond this work by providing an

interpretable explanation to an analyst of precisely in what way

the data samples differ. Finally, data diff is a problem in the general

area of automating machine learning (AutoML) [12, 14, 23], which
aims to build learning systems that handle all of the steps of ma-

chine learning, including preprocessing data, selecting models, and

building and evaluating models, without human intervention.

8 CONCLUSIONS
We have introduced the data diff problem, which aims to help the

common situation of data analyses over repeated data samples, e.g.,

every month, every quarter, and so on. Although repeated data sam-

ples require repeated data wrangling effort, the idea behind data diff
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delete(Distance band used for weighting) delete(Distance band used for weighting)
delete(LLU) delete(LLU)
recode(Technology, {(ADSL, DSL), (Cable, Cable), recode(Technology, {(ADSL, DSL), (Cable, ADSL2+),

(FTTC, FTTx), (FTTP, FTTx) }) (FTTC, Cable), (FTTP, FTTx) })
permute(Technology, Headline speed) linear(Packet loss 24-hour, 384, 0)

linear(Packet loss 8-10pm weekday, 141, 0)
permute(Technology, Headline speed)

Figure 2: Target “gold standard” patch (left) and datadiff output (right) for broadband 2013/14

delete(Valid_panel) delete(Pack_number)
delete(Plusnet_upload) delete(Plusnet_upload)
recode(Pack_number) replace(WT_national)
recode(Tech) recode(Valid_panel)
recode(LLUvsNon) recode(LLUvsNon)
recode(MarketClass) recode(MarketClass)
recode(URBAN2) recode(URBAN2)
. . . . . .

permute

(
2 3 5 6 9 10 . . .

31 30 6 7 5 4

)
permute

(
3 6 9 11 . . .

30 9 5 3

)
Figure 3: Target “gold standard” patch (left) and datadiff output (right) for broadband 2014/15

is to use this as an opportunity, because the repeated data samples

can be used to detect differences in formatting and in distribution

that can reflect underlying data quality issues. We present an algo-

rithm for data diff that casts the problem as a bipartite matching

problem, and presented a bootstrap-style procedure for calibrating

the parameters of the method. For future work, there is an oppor-

tunity for a rich variety of improved algorithms for the data diff

problem, richer transformation languages of potential patches, and

improved scoring functions for patches that could be trained using

machine learning methods, e.g., that take column names or other

metadata into account.
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