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Abstract

Abstract meaning representations (AMRSs)
are broad-coverage sentence-level seman-
tic representations. AMRSs represent sen-
tences as rooted labeled directed acyclic
graphs. AMR parsing is challenging partly
due to the lack of annotated alignments be-
tween nodes in the graphs and words in
the corresponding sentences. We intro-
duce a neural parser which treats align-
ments as latent variables within a joint
probabilistic model of concepts, relations
and alignments. As exact inference re-
quires marginalizing over alignments and
is infeasible, we use the variational auto-
encoding framework and a continuous re-
laxation of the discrete alignments. We
show that joint modeling is preferable to
using a pipeline of align and parse. The
parser achieves the best reported results
on the standard benchmark (73.6% on
LDC2016E25).

1 Introduction

Abstract meaning representations (AMRs) (Ba-
narescu et al., 2013) are broad-coverage sentence-
level semantic representations. AMR encodes,
among others, information about semantic rela-
tions, named entities, co-reference, negation and
modality. AMR can be represented as a rooted la-
beled directed acyclic graph (see Figure 1). As
AMR abstracts away from details of surface real-
ization, it is potentially beneficial in many seman-
tic related NLP tasks, including text summariza-
tion (Liu et al., 2015; Dohare and Karnick, 2017),
machine translation (Jones et al., 2012) and ques-
tion answering (Mitra and Baral, 2016).

AMR parsing has recently received a lot of at-
tention (e.g., (Flanigan et al., 2014; Artzi et al.,
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Figure 1: An example of AMR, the dashed lines
denote latent alignments, obligate-01 is the root.
Numbers indicate depth-first traversal order.

2015; Konstas et al., 2017)). One distinctive
aspect of AMR annotation is the lack of ex-
plicit alignments between nodes in the graph (con-
cepts) and words in the sentences. Though this
arguably simplified the annotation process (Ba-
narescu et al., 2013), it is not straightforward to
produce an effective parser without relying on an
alignment. Most AMR parsers (Damonte et al.,
2017; Flanigan et al., 2016; Werling et al., 2015;
Wang and Xue, 2017; Foland and Martin, 2017)
use a pipeline where the aligner training stage pre-
cedes training a parser. The aligners are not di-
rectly informed by the AMR parsing objective and
may produce alignments suboptimal for this task.

In this work, we demonstrate that the align-
ments can be treated as latent variables in a joint
probabilistic model and induced in such a way as
to be beneficial for AMR parsing. Intuitively, in
our probabilistic model, every node in a graph is
assumed to be aligned to a word in a sentence: the
corresponding concept is predicted based on the
corresponding RNN state. Similarly, graph edges
(i.e. relations) are predicted based on representa-
tions of concepts and aligned words (see Figure 2).
As alignments are latent, exact inference requires
marginalizing over latent alignments, which is in-
feasible. Instead we use variational inference,
specifically the variational autoencoding frame-



work of Kingma and Welling (2014). Using dis-
crete latent variables in deep learning has proven
to be challenging (Mnih and Gregor, 2014; Born-
schein and Bengio, 2015). We use a continu-
ous relaxation of the alignment problem, rely-
ing on the recently introduced Gumbel-Sinkhorn
construction (Mena et al., 2018). This yields a
computationally-efficient approximate method for
estimating our joint probabilistic model of con-
cepts, relations and alignments.

We assume injective alignments from concepts
to words: every node in the graph is aligned to
a single word in the sentence and every word is
aligned to at most one node in the graph. This is
necessary for two reasons. First, it lets us treat
concept identification as sequence tagging at test
time. For every word we would simply predict the
corresponding concept or predict NULL to signify
that no concept should be generated at this posi-
tion. Secondly, Gumbel-Sinkhorn can only work
under this assumption. This constraint, though of-
ten appropriate, is problematic for certain AMR
constructions (e.g., named entities). In order to
deal with these cases, we re-categorized AMR
concepts. Similar strategies have been adopted
in previous work (Foland and Martin, 2017; Peng
etal., 2017).

The resulting parser achieves 73.6% + 0.3%
Smatch score on the standard test set when us-
ing LDC2016E25 training set, an improvement of
2.6% over the previous best result (van Noord and
Bos, 2017). We also demonstrate that inducing
alignments within the joint model is indeed ben-
eficial. When, instead of inducing alignments,
we rely on predictions of JAMR aligner (Flani-
gan et al., 2016), the performance drops by 1.6%
Smatch. Our main contributions can be summa-
rized as follows:

e we introduce a joint probabilistic model for
alignment, concept and relation identifica-
tion;

e we demonstrate how a continuous relaxation
can be used to effectively estimate the model;

e the model achieves the best reported results. !

2 Probabilistic Model

In this section we describe our probabilistic model
and the estimation technique. In section 3, we de-

!The code will be made publicly available, should the pa-
per get accepted.

scribe preprocessing and post-processing (includ-
ing concept re-categorization, sense disambigua-
tion, wikification and root selection).

2.1 Notation and setting

We will use the following notation throughout the
paper. We refer to words in the sentences as w =
(w1, ...,wy), where n is sentence length, wy, € V
for k € {1...,n}. The concepts (i.e. labeled
nodes) are ¢ = (cq, . .., ¢py,), Where m is the num-
ber of concepts and ¢; € C fori € {1...,m}. For
example, in Figure 1, ¢ = (obligate, go, boy, -).2
Note that senses are predicted at post-processing,
as discussed in Section 3.2 (i.e. go is labeled as
go-02).

A relation between ‘predicate concept’ ¢ and
‘argument concept’ j is denoted by r;; € R; it
is set to NULL if j is not an argument of 7. In our
example, 723 = ARGO and 11 3 = NULL. We will
use R to denote all relations in the graph.

To represent alignments, we will use a =

{a1,...,am}, where a; € {1,...,n} returns the
index of a word aligned to concept ¢. In our exam-
ple, a; = 3.

All three model components rely on bi-
directional LSTM encoders (Schuster and Paliwal,
1997). We denote states of BiLSTM (i.e. con-
catenation of forward and backward LSTM states)
as h, € R (k € {1,...,n}). The sentence
encoder takes pre-trained fixed word embeddings,
randomly initialized lemmas, suffix (last two char-
acters) and named-entity tag embeddings.

2.2 Method overview

We believe that using discrete alignments, rather
than attention-based models (Bahdanau et al.,
2014) is crucial for AMR parsing. AMR banks
are a lot smaller than parallel corpora used in ma-
chine translation (MT) and hence it is important
to inject a useful inductive bias. We constrain our
alignments from concepts to words to be injective.
First, it encodes the observation that concepts are
mostly triggered by single words (especially, after
re-categorization, Section 3.1). Second, it implies
that each word corresponds to at most one con-
cept (if any). This encourages competition: align-
ments are mutually-repulsive. In our example, 0b-
ligate is not lexically similar to the word must and

>The probabilistic model is invariant to the ordering of
concepts, though the order affects the inference algorithm
(see Section 2.5). We use depth-first traversal of the graph
to generate the ordering.
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Figure 2: Relation identification: predicting a re-
lation between boy and go-02 relying on the two
concepts and corresponding RNN states.

may be hard to align. However, given that other
concepts are easy to predict, alignment candidates
other than must and the will be immediately ruled
out. We believe that these are the key reasons for
why attention-based neural models do not achieve
competitive results on AMR (Konstas et al., 2017)
and why state-of-the-art models rely on aligners.
Our goal is to combine best of two worlds: to
use alignments (as in state-of-the-art AMR meth-
ods) and to induce them while optimizing for the
end goal (similarly to the attention component of
encoder-decoder models).

Our model consists of three parts: (1) the
concept identification model Py(c|a, w); (2) the
relation identification model P4(R|a, w,c) and
(3) the alignment model qu(a|c,R,w).3 For-
mally, (1) and (2) together with the uniform
prior over alignments P(a) form the generative
model of AMR graphs. In contrast, the align-
ment model @y (alc, R, w), as will be explained
below, is approximating the intractable posterior
Py 4(alc, R, w) within that probabilistic model.

In other words, we assume the following model
for generating the AMR graph:

Py s(c, Rlw)= ZP(a)Pg(c\a, w)Py(R|a,w,c)

:ZP(a) HP(Ci|hai)H P(rij|hg;,cihg;,c )

i=1 ij=1

AMR concepts are assumed to be generated condi-
tional independently relying on the BiLSTM states
and surface forms of the aligned words. Similarly,

30, ¢ and 1) denote all parameters of the models.

relations are predicted based only on AMR con-
cept embeddings and LSTM states corresponding
to words aligned to the involved concepts. Their
combined representations are fed into a bi-affine
classifier (Dozat and Manning, 2017) (see Fig-
ure 2).

The expression involves intractable marginal-
ization over all valid alignments. As stan-
dard in variational autoencoders, VAEs (Kingma
and Welling, 2014), we lower-bound the log-
likelihood as

log Py 4(c, R|w)
> Egllog Py(cla, w)Py(R|a,w, c)]
Dir(@Qulale, Rw)|P@), ()

where Qy(alc, R, w) is the variational posterior
(aka the inference network), Eq]. . .] refers to the
expectation under @y (a|c, R, w) and D, is the
Kullback-Liebler divergence. In VAEs, the lower
bound is maximized both with respect to model
parameters (f and ¢ in our case) and the parame-
ters of the inference network (/). Unfortunately,
gradient-based optimization with discrete latent
variables is challenging. We use a continuous re-
laxation of our optimization problem, where real-
valued vectors a; € R"™ (for every concept ¢) ap-
proximate discrete alignment variables a;. This
relaxation results in low-variance estimates of the
gradient using the parameterization trick (Kingma
and Welling, 2014), and ensures fast and stable
training. We will describe the model components
and the relaxed inference procedure in detail in
sections 2.6 and 2.7.

Though the estimation procedure requires the
use of the relaxation, the learned parser is straight-
forward to use. Given our assumptions about the
alignments, we can independently choose for each
word wy, (k = 1,...,m) the most probably con-
cept according to Py(clhy). If the highest scor-
ing option is NULL, no concept is introduced.
The relations could then be predicted relying on
P,(R|a, w,c). This would have led to generating
inconsistent AMR graphs, so instead we search for
the highest scoring valid graph (see Section 3.2).
Note that the alignment model () is not used at
test time and only necessary to train accurate con-
cept and relation identification models.

2.3 Concept identification model

The concept identification model chooses a con-
cept ¢ (i.e. a labeled node) conditioned on the



aligned word k or decides that no concept should
be introduced (i.e. returns NULL). Though it can
be modeled with a softmax classifier, it would
not be effective in handling rare or unseen words.
First, we split the decision into estimating the
probability of concept category 7(c) € T (e.g.
‘number’, ’frame’) and estimating the probabil-
ity of the specific concept within the chosen cat-
egory. Secondly, based on a lemmatizer and train-
ing data* we prepare one candidate concept e;, for
each word £ in vocabulary (e.g., it would propose
want if the word is wants). Similar to Luong et al.
(2015), our model can then either copy the candi-
date ey, or rely on the softmax over potential con-
cepts of category 7. Formally, the concept predic-
tion model is defined as

Po(clhg, wg) = P(7(c)[hg, wg)x
[ler = d]] x exp(viy,,hi) + exp(vEhy)

Z(hy,0) ’

where the first multiplicative term is a soft-
max classifier over categories (including NULL);
Veopys Ve € R? (for ¢ € C) are model parameters;
[[...]] denotes the indicator function and equals 1
if its argument is true and 0, otherwise; Z(h, ) is
the partition function ensuring that the scores sum
to 1.

2.4 Relation identification model

Most predicates have at most one argument for
each relation type (e.g., there is typically at most
one agent / ARGO0), hence we would like to en-
courage competition for each role among argu-
ments. For non-NULL relations, we have

P(rij|ha¢76i7haj>cj):P(Sﬂ':j|haiaci>ha]‘7cj)

X P(T’[:j|haijc’ijh(lj7cj78i7‘ = ]),

where the first term corresponds to picking a can-
didate argument (i.e. predicting that concept c; is
a candidate for being argument of type r for the
predicate c;), whereas the second to deciding that
it is indeed an argument. The remaining probabil-
ity mass 1 — ZW#NULL P(rij|hg,,ciha;,cq;)) is
reserved for r;; = NULL.

Each term is modeled in exactly the same way:
(1) for both endpoints, embedding of the con-
cept c is concatenated with the RNN state h; (2)
they are linearly projected to a lower dimension

*See supplementary materials.

f(h,c) € RY; (3) a log-linear model with bilin-
ear scores f(h;, ¢;)TC,f(hj, ¢;), Cr € RU*45 is
used to compute the probabilities.

2.5 Alignment model

Recall that the alignment models is only used at
training, and hence it can rely both on input (states
hy,...,h,)and on the list of concepts cy, . . ., Cpp,.

Formally, we add (m—mn) NULL concepts to the
list.> Aligning a word to any NULL, would corre-
spond to saying that the word is not aligned to any
‘real’ concept. Note that each one-to-one align-
ment (i.e. permutation) between n such concepts
and n words implies a valid injective alignment
of n words to m ‘real’ concepts. This reduction
to permutations will come handy when we turn to
the Gumbel-Sinkhorn relaxation in the next sec-
tion. From now on, we will assume that m = n.

As with sentences, we use a BiLSTM model
to encode concepts c, where g; € R%, i €
{1,...,n}. We use a globally-normalized align-
ment model:

exp(D iy (8 ha;))
Zw(C, W) ’

Qu(ale, R, w) =

where Z,(c, w) is the intractable partition func-
tion and the terms ¢(g;, h,, ) score each alignment
link according to a bilinear form

¢(gi,ha,) = g/ Bhg,, 2
where B € R%*4 is a parameter matrix.

2.6 Estimating model with Gumbel-Sinkhorn

Recall that our learning objective (1) involves ex-
pectation under the alignment model. The parti-
tion function of the alignment model is intractable,
and it is tricky even to draw samples. Luckily, the
recently proposed relaxation (Mena et al., 2018)
lets us circumvent this issue. First, note that ex-
act samples from a categorical distribution can be
obtain using the perturb-and-max technique (Pa-
pandreou and Yuille, 2011). For our alignment
model, it would correspond to adding independent
noise to the score for every possible alignment and
choosing the highest scoring one:

n
a* = argmax » _¢(gi,hg,) +€a,  (3)

3 After re-categorization (Section 3.1), m > n holds for
most cases. For exceptions, we append NULL to the sentence.



where P is the set of all permutations of n
elements, €, is a noise drawn independently
for each a from the fixed Gumbel distribution
(G(0,1)). Unfortunately, this is also intractable,
as there are n! permutations. Instead, in perturb-
and-max an approximate schema is used where
noise is assumed factorizable. In other words,
first noisy scores are computed as ¢(g;, h,,) =
o(gi,hg,) + €4, Where €4, ~ G(0,1) and
an approximate sample is obtained by a* =
argmax, Y/, ¢(8:. ba,).

Such sampling procedure is still intractable in
our case and also non-differentiable. The main
contribution of Mena et al. (2018) is approximat-
ing this argmax with a simple differentiable com-
putation A = S,(®,¥) which yields an approxi-
mate (i.e. relaxed) permutation. We use ® and >
to denote the n X n matrices of alignment scores
©(gi, hy) and noise variables ¢;;, respectively. In-
stead of returning index a; for every concept i,
it would return a (peaky) distribution over words
a;. The peakiness is controlled by the temperature
parameter ¢ of Gumbel-Sinkhorn which balances
smoothness (‘differentiability’) vs. bias of the es-
timator. For further details and the derivation, we
refer the reader to the original paper (Mena et al.,
2018).

Note that @ is a function of the alignment model
Qy, so we will write ®,, in what follows. The
variational bound (1) can now be approximated as

EENG(O,l) [log Pp(c|St(Py, X), W)
+ log Py(R|S;(Py, X), W, c)]

[0} DD
Dy (2 1) @)

t

Following Mena et al. (2018), the original KL
term from equation (1) is approximated by the KL
term between two n X n matrices of i.i.d. Gumbel
distributions with different temperature and mean.
The parameter ¢ is the ‘prior temperature’.

At test time we will use the model in a pipeline
fashion, first predicting concepts and the relations
between these concepts. Consequently, being ac-
curate at predicting concepts is more important.
In contrast, the concept prediction term in expres-
sion (4) would have minor influence on the loss, as
there are n concepts to predict, whereas there are
n X n relations. Consequently, we down-weight
the relation identification term by the factor of
1/n.

Our new objective is fully differentiable with re-

spect to all parameters (i.e. 6, ¢ and 1) and has
low variance as sampling is performed from the
fixed non-parameterized distribution, as in stan-
dard VAEs.

2.7 Relaxing concept and relation
identification

One remaining question is how to use the soft
input A = Sy(®,, %) in the concept and re-
lation identification models in equation (4). In
other words, we need to define how we compute
Py(c|Se(Py, ), w) and Py(R|Si(Py, X), W, c).

The standard technique would be to pass to the
models expectations under the relaxed variables
> p—1 airhy, instead of the vectors h,, (Maddi-
son et al., 2017; Jang et al., 2017). This is exactly
what we do for the relation identification model.

However, the concept prediction model
log Py(c|S¢(®y,X),w) relies on the pointing
mechanism, i.e. directly exploits the words w
rather than relies only on biLSTM states hg. So
instead we treat a; as a prior in a hierarchical
model:

logPy(c;|a;, w)

~log Y agPycila; = k,w)  (5)
k=1

As we will show in our experiments, a softer ver-
sion of the loss is even more effective:

long(ci\éi, W)
n
~ A g — (1-a)
~ ) agb(cila; = k,w)t
k=1

where we set the parameter o« = 0.5. We believe
that using this loss encourages the model to more
actively explore the alignment space.

3 Pre- and post-pocessing

3.1 Re-Categorization

AMR parsers often rely on a pre-processing stage,
where specific subgraphs of AMR are grouped to-
gether and assigned to a single node with a new
compound category (e.g., Werling et al. (2015);
Foland and Martin (2017); Peng et al. (2017)); this
transformation is reversed at the post-processing
stage. Our approach is very similar to the Factored
Concept Label system of Wang and Xue (2017),
with one important difference that we unpack our
concepts before the relation identification stage, so
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Figure 3: An example of re-categorized AMR.
AMR graph at the top, re-categorized concepts in
the middle, and the sentence is at the bottom.

the relations are predicted between original con-
cepts (all nodes in each group share the same
alignment distributions to the RNN states). Intu-
itively, the goal is to ensure that concepts rarely
lexically triggered (e.g., thing in Figure 3) get
grouped together with lexically triggered nodes.
Such ‘primary’ concepts get encoded in the cat-
egory of the concept (the set of categories is T, see
also section 2.3). In Figure 3, the re-categorized
concept thing(opinion) is produced from thing and
opine-01. We use category as the dummy cate-
gory type. There are 8 templates in our system
which extract re-categorization for fixed phrases
(e.g. thing(opinion)), and deterministic system for
grouping lexically flexible, but structurally stable
sub-graph (e.g., named entities, have-rel-role-91
and have-org-role-91 concepts).

Details of the re-categorization procedure and
other pre-processing are provided in appendix.

3.2 Post-processing

For post-processing, we handle sense-
disambiguation, wikification and ensure le-
gitimacy of the produced AMR graph. For sense
disambiguation we pick the most frequent sense
for that particular concept (°-01°, if unseen). For
wikification we again look-up in the training set
and default to ”-”.

Our probability model predicts edges condi-
tional independently and thus cannot guarantee the
connectivity of AMR graph, also there are addi-
tional constraints which are useful to impose. We
enforce three constraints: (1) specific concepts
can have only one neighbor (e.g., ‘number’ and
‘string’; see appendix for details); (2) each pred-
icate concept can have at most one argument for
each relation r € R; (3) the graph should be
connected. Constraint (1) is addressed simply by
keeping only the highest scoring neighbor. In or-
der to satisfy the last two constraints we use a

simple greedy procedure. First, for each edge,
we pick-up the highest scoring relation and edge
(possibly NULL). If the constraint (2) is violated,
we simply keep the highest scoring edge among
the duplicates and drop the rest. If the graph is
not connected (i.e. constraint (3) is violated), we
greedily choose edges linking the connected com-
ponents until the graph gets connected (MSCG in
Flanigan et al. (2014)).

Finally, we need to select a root node. Simi-
larly to relation identification, for each candidate
concept ¢;, we concatenate its embedding with
the corresponding LSTM state (h,,) and use these
scores in a softmax classifier over all the concepts.

4 Experiments and Discussion

4.1 Data and setting

We primarily focus on the most recent
LDC2016E25 (R2) dataset, which consists
of 36521, 1368 and 1371 sentences in training,
development and testing sets, respectively. The
earlier LDC2015E86 (R1) dataset has been
used by much of the previous work. It contains
16833 training sentences, and same sentences for
development and testing as R2.

We used the development set to perform model
selection and hyperparameter tuning. The hyper-
parameters, as well as information about embed-
dings and pre-processing, are presented in the sup-
plementary materials.

We used Adam (Kingma and Ba, 2014) to opti-
mize the loss (4) and to train the root classifier.

In order to make sure the model pays more at-
tention to concept prediction, we split our train-
ing into two stages. We start by jointly train-
ing the alignment model and the concept identi-
fication model. Then we continue optimizing the
entire objective but fix the concept identification
model. We do early stopping on the development
set scores, for both stages.

4.2 Experiments and discussion

We start by comparing our parser to previous work
(see Table 1). Our model substantially outper-
forms all the previous models on both datasets.
Specifically, it achieves 73.6% Smatch score on
LDC2016E25 (R2), which is an improvement of
2.6% over character seq2seq model relying on
silver data (van Noord and Bos, 2017). For
LDC2015E86 (R1), we obtain 72.7% Smatch

® Annotation in R2 has also been slightly revised.



Model Data Smatch
JAMR (Flanigan et al., 2016) R1 67.0
AMREager mamone etal., 2017) R1 64.0
CAMR  Wang et at., 2016) R1 66.5
SEQ2SEQ + 20M xonstasetar. 2017 R1 62.1
Mul-BiLSTM (Foland and Martin, 2017) R1 70.7
Ours R1 72.7
Neural-Pointer guys and Blunsom, 20177 R2 61.9
ChSeq (van Noord and Bos, 2017) R2 64.0
ChSeq + 100K (van Noord and Bos, 2017y~ R2 71.0
Ours R2 73.6 + o026
Table 1: Smatch scores on the test set. R2 is

LDC2016E25 dataset, and R1 is LDC2015E86
dataset. Statistics on R2 are over 6 runs.

Models A C JF |Ch Ours
17 16 16 | 17
Dataset Rl R1 R1|R2 R2
Smatch 64 63 67 |71 73.6+0.26
Unlabeled 69 69 69 | 74 76.2+0.32
No WSD 65 64 68 | 72 74.6+0.30
Reentrancy 41 41 42 |52  51.5+0.32
Concepts 83 80 83 |82 84.9+0.14
NER 83 75 79|79 82.3+0.56
Wiki 64 0 75 |65 75.6+0.49
Negations 48 18 45 | 62 56.1+0.82
SRL 56 60 60 | 66 68.5+0.29
Table 2: F1 scores on individual phenom-

ena. A’17 is AMREager, C'16 is CAMR, J’16 is
JAMR, Ch’17 is ChSeq+100K.

score, which is an improvement of 2.0% over
the previous best model, multi-BiLSTM parser
of Foland and Martin (2017).

In order to disentangle individual phenomena,
we use the AMR-evaluation tools (Damonte et al.,
2017) and compare to systems which reported
these scores (Table 2). We obtain the highest
scores on most subtasks. The exceptions are NER
(named entity recognition) and negations. For
NER, the best parser is AMREager by Damonte
et al. (2017) which relies on an external NER sys-
tem and a gazetteer. This may suggest that the
AMR bank on its own is not large enough for a
system to learn an accurate NER model. For nega-
tion detection, it is also not surprising as many
negations are encoded with morphology, and char-
acter models, unlike our word-level model, are
able to capture predictive morphological features
(e.g., detect prefixes such as “un-" or “im-").

Metric Fixed- RI1 Fixed- R2
Align Align  mean

Smatch 70.9 72.7 | 72.0 73.6
Unlabeled  73.9 75.6 | 74.6 76.2
No WSD 71.8 73.7 | 73.0 74.6
Reentrancy 48.4 50.0 | 50.9 51.5
Concepts 83.7 84.8 | 84.2 84.9
NER 82.7 82.5 | 81.7 82.3
Wiki 67.1 74.7 | 67.6 75.6
Negations  48.4 52.3 | 50.6 56.1
SRL 66.4 67.5 | 67.8 68.5

Table 3: F1 scores of on subtasks. The left side
results are from LDC2015E86 and right results are
from LDC2016E25.

Now, we turn to ablation tests (see Table 3).
First, we would like to see if our latent alignment
framework is beneficial. In order to test this, we
create a baseline version of our system (‘fixed-
align’) which relies on the JAMR aligner (Flani-
gan et al., 2014), rather than induces alignments as
latent variables. Recall that in our model we used
training data and a lemmatizer to produce candi-
dates for the concept prediction model (see Sec-
tion 2.3, the copy function). In order to have a
fair comparison, if a concept is not aligned after
JAMR, we try to use our copy function to align
it. If an alignment is not found, we make the
alignment uniform across the unaligned words. In
preliminary experiments, we considered alterna-
tives versions (e.g., dropping concepts unaligned
by JAMR or dropping concepts unaligned after
both JAMR and the matching heuristic), but the
chosen strategy was the most effective. We ob-
serve that using fixed alignments gives us 70.9%
Smatch score on R1, a substantial drop in perfor-
mance (1.8%). Interestingly, these scores of fixed-
align are on par with Foland and Martin (2017).
The fixed-align version is indeed similar to Foland
and Martin (2017): both rely on fixed JAMR align-
ments and use BiLSTM encoders. These results
confirm that we used a strong baseline, and that
the gains in performance are primarily due to us-
ing our variational alignment framework.

We present further ablations in Table 4. We
would like to confirm that our 2-stage training
procedure (described in section 4.1) is necessary.
When compared to using one-stage training (‘full
joint’), we observe that using the schedule was
beneficial (+1.5%). Now, it is a natural question to
ask whether alignments need to be updated at all



Figure 4: When modeling concepts alone, the pos-
terior probability of the correct (green) and wrong
(red) alignment links will be the same.

Ablation Concepts SRL  Smatch
H-relax 84.1 669 723
Full joint 83.9 66.5 723
Relation simple  85.1 679 73.6
No fine-tune 85.1 68.2 735
Our model 85.1 68.8 73.8

Table 4: Ablation studies (all on R2). The bottom
three models load the same concept and alignment
model before the second stage.

based on relations (i.e. on the second stage). This
‘no fine-tune’ version also appears weaker over-
all than the best approach (-0.3%). The drop is
more substantial for relations (‘SRL"): -0.6%. In
order to see why relations are potentially useful
in learning alignments, consider Figure 4. The
example contains duplicate concepts long. The
concept prediction model factorizes over concepts
and does not care which way these duplicates are
aligned: correctly (green edges) or not (red edges).
Formally, the true posterior under the relation-only
model in ‘no fine-tune’ assigns exactly the same
probability to both configurations, and the align-
ment model @y, will be forced to mimic it (even
though it relies on a LSTM model of the graph).
The spurious ambiguity will have a detrimental ef-
fect on the relation identification stage. These ob-
servations and the ablations suggest that our train-
ing regime provides a good middle ground be-
tween full-joint optimization (which fails to em-
phasize the importance of the concept prediction
stage) and ‘no fine-tune’ (which makes the align-
ments sub-optimal for relation identification).

We perform two additional ablation tests. First,
we compare our relation identification compo-
nent to simply using a bilinear scoring function
(i.e. not encouraging competition, Section 2.4)
and observe a drop in performance (-0.2% overall
Smatch, and -0.9 % in SRL). Secondly, we show
that using the simple hierarchical relaxation (‘h-
relax’, see equation (5))) results in a large drop

in performance when compared to our softer re-
laxation (-1.5% Smatch). We hypothesize that the
softer relaxation favors exploration of alignments
and helps to discover better configurations.

5 Additional Related Work

Alignment performance has been previously iden-
tified as a potential bottleneck affecting AMR
parsing (Damonte et al., 2017; Foland and Mar-
tin, 2017). Some recent work has focused on
building aligners specifically for training their
parsers (Werling et al., 2015; Wang and Xue,
2017). However, those aligners are trained in-
dependently of concept and relation identification
and only used at pre-processing.

Treating alignment as discrete variables has
been successful in some sequence transduction
tasks (Yu et al., 2017, 2016). Our work is simi-
lar in that we also train discrete alignments jointly
but the tasks, the inference framework and the de-
coders are very different.

For AMR parsing, another way to avoid us-
ing pre-trained aligners is to use seq2seq models
(Konstas et al., 2017; van Noord and Bos, 2017).
In particular, van Noord and Bos (2017) used char-
acter level seq2seq model and achieved the previ-
ous state-of-the-art result. However, their model is
very data demanding as they needed to train it on
additional 100K sentences parsed by other parsers.
This may be due to two reasons. First, seq2seq
models are often not as strong on smaller datasets.
Second, recurrent decoders may struggle with pre-
dicting the linearized AMRs, as many statistical
dependencies are highly non-local.

6 Conclusions

We introduced a neural AMR parser trained by
jointly modeling alignments, concepts and rela-
tions. We make such joint modeling computa-
tionally feasible by using the variational auto-
encoding framework and continuous relaxations.
The parser achieves state-of-the-art results and ab-
lation tests show that joint modeling is indeed
beneficial.  We believe that the proposed ap-
proach may be extended to other parsing tasks
where alignments are latent (e.g., parsing to logi-
cal form (Liang, 2016)). Another promising direc-
tion is integrating character seq2seq to substitute
the copy function. This should also improve the
handling of negation and rare words.
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