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Abstract We prove that every 0-shifted symplectic structure on a derived Artin
n-stack admits a curved A∞ deformation quantisation. The classical method of quan-
tising smooth varieties via quantisations of affine space does not apply in this setting,
so we develop a new approach. We construct a map from DQ algebroid quantisations
of unshifted symplectic structures on a derived Artin n-stack to power series in de
Rham cohomology, depending only on a choice of Drinfeld associator. This gives
an equivalence between even power series and certain involutive quantisations, which
yield anti-involutive curved A∞ deformations of the dg category of perfect complexes.
In particular, there is a canonical quantisation associated to every symplectic structure
on such a stack, which agrees for smooth varieties with the Kontsevich–Tamarkin
quantisation for even associators.
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Introduction

For n > 0, existence of quantisations of n-shifted Poisson structures is a formality,
following from the equivalence En+1 � Pn+1 of operads. Quantisations of positively
shifted symplectic structures thus follow immediately from the equivalence in [6,27]
between symplectic and non-degenerate Poisson structures. In [25], quantisation for
non-degenerate (−1)-shifted Poisson structures was established, and we now consider
the n = 0 case, fleshing out the details sketched in [25, §4.3].

Beyond the setting of smooth Deligne–Mumford stacks, unshifted symplectic
structures only arise on objects incorporating both stacky and derived structures, as
non-degeneracy of the symplectic form implies that the cotangent complex must have
both positive and negative terms. Examples of such symplectic derived stacks include
the derived moduli stack of perfect complexes on an algebraic K3 surface, or the
derived moduli stack of locally constant G-torsors on a compact oriented topological
surface, for an algebraic group G equipped with a Killing form on its Lie algebra. In
the latter example, the symplectic structure on the smooth locus is that of [11].

The common feature in the construction of deformation quantisations for manifolds
[7,9,10,18,29] and for smooth algebraic varieties [1,17,31,34] is the reduction (étale)
locally to affine space. For derived Artin stacks, this is not an option, so we develop
a new approach to show that all non-degenerate Poisson structures can be quantised
even if the Hochschild complex is not formal. This works by a similar mechanism to
the quantisation of non-degenerate (−1)-shifted Poisson structures in [25], combined
with formality of the E2 operad.

The proof in [27] of the correspondence between n-shifted symplectic and non-
degenerate Poisson structures relied on the existence, for all Poisson structures π , of
a CDGA morphism μ(−, π) from the de Rham algebra to the algebra Tπ

̂Pol(X, n) of
shifted polyvectors with differential twisted by π . In [25], this idea was extended to
establish the existence of quantisations for (−1)-shifted symplectic structures, with μ

being an A∞-morphism from the de Rham algebra to the ring of differential operators.
In order to adapt these constructions to 0-shifted symplectic structures, we replace

polyvectors or differential operators with the Hochschild complex CC•
R(X) of a

derived Artin stack X , defined in terms of a resolution by stacky CDGAs (com-
mutative bidifferential bigraded algebras). Since this has an E2-algebra structure, a
choice w of Levi decomposition for the Grothendieck–Teichmüller group gives it a
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P2-algebra structure. Quantisations � are defined as certain Maurer–Cartan elements
� ∈ CC•

R(X)�h̄�; these give rise to curved deformations of the dg category of perfect
complexes.

Each quantisation� then defines amorphismμw(−,�) from the deRhamcomplex
DR(X) to CC•

R(X)�h̄� twisted by �. In more detail, since [�,−] defines a derivation
from OX to CC•

R(X)�h̄�, it determines a map �1
X → CC•

R(X)�h̄�[1] and μw(−,�)

is the resulting morphism of CDGAs. This gives rise to a notion of compatibility
between E1 quantisations � and generalised pre-symplectic structures (power series
ω of elements of the de Rham complex): we say that ω and � are w-compatible if

μw(ω,�) � h̄2
∂�

∂ h̄
.

Proposition 2.16 shows that every non-degenerate quantisation� of a stackyCDGA
A has a unique w-compatible generalised pre-symplectic structure, thus giving us a
map

QP(A, 0)nondeg → H2(F2DR(A)) × h̄H2(F1DR(A)) × h̄2H1(DR(A))�h̄�

on the space of non-degenerate 0-shifted E1 quantisations of A.
Moreover, we have spaces QP(A, 0)/Gk+1 consisting of E1 quantisations of order

k, by which we mean Maurer–Cartan elements in
∏

j≥2(FjCC•
R(A)/Fj−k−1)h̄ j−1,

for F the good truncation filtration in the Hochschild direction. Via induction on
levels of the filtration, and an analysis of the associated DGLA obstruction theory,
Proposition 2.17 then shows that the resulting map

QP(A, 0)nondeg → (QP(A, 0)nondeg/G2) × h̄2H2(DR(A))�h̄�

underlies an equivalence. Thus quantisation reduces to a first order problem.
This first order problem is resolved by introducing a notion of self-duality. In [25],

self-dual quantisations were defined for line bundlesL with an involutionL � L ∨
to the Grothendieck–Verdier dual. The analogous notion in our setting is given by
considering anti-involutive associative algebras and categories. Explicitly, when X is
a smooth variety, a self-dual quantisation of OX is an associative deformation

(OX �h̄�, �h̄)

of OX with a �−h̄ b = b �h̄ a; the explicit quantisation formula of [18] satisfies this
property. More generally, a self-dual quantisation of X over R leads to a curved A∞-
category with R�h̄�-semilinear anti-involution, deforming the dg category of perfect
complexes on X .

Restricting to self-dual quantisations ensures that the first-order obstruction van-
ishes, leading to Theorem 2.20, which shows that the equivalence class of self-dual
quantisations of a given non-degenerate Poisson structure is parametrised by

h̄2H2(DR(A))�h̄2�,
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and in particular such quantisations always exist. Global versions of these results for
derived Artin N -stacks are summarised in Theorem 3.13.

The structure of the paper is as follows.
In Sect. 1 we recall the description from [27] of commutative bidifferential bigraded

algebras as formal completions of derived N -stacks along derived affines, together
with the complex of polyvectors ̂Pol(A, 0) on such objects, and the space P(A, 0)
of Poisson structures. We then introduce a quantisation Q̂Pol(A, 0) of the complex
of polyvectors, defined in terms of the Hochschild complex, and introduce an anti-
involution of this complex whose fixed points give rise to self-dual quantisations.

Section 2 contains the technical heart of the paper. After introducing generalised
pre-symplectic structures as de Rham power series, and after recalling formality
quasi-isomorphisms for the E2 operad associated to Levi decompositions w of the
Grothendieck–Teichmüller group, we introduce the notion (Definition 2.12) of w-
compatibility between quantisations and generalised pre-symplectic structures. The
main results (Propositions 2.16, 2.17 and Theorem 2.20) then follow, establishing
the existence of quantisations of non-degenerate unshifted Poisson (and hence sym-
plectic) structures on stacky derived affines. Proposition 2.25 shows that for Levi
decompositions corresponding to even associators, constant power series correspond
to Kontsevich–Tamarkin quantisations.

In Sect. 3, these results are translated into the fully global setting of derived Artin
N -stacks (Theorem 3.13). The approach preciselymimics that of [27, §§2,3], by estab-
lishing étale functoriality in an ∞-category setting and applying descent arguments.
Proposition 3.11 shows how E1 quantisations in our sense give rise to curved A∞
deformations of the dg category of perfect complexes on a derived Artin N -stack.

I would like to thank the anonymous referee for many helpful comments.

1 Quantisation for stacky thickenings of derived affine schemes

1.1 Stacky thickenings of derived affines

We now recall some definitions and lemmas from [27, §3], as summarised in [25,
§3.1]. By default, we will regard the CDGAs in derived algebraic geometry as chain

complexes . . .
δ−→ A1

δ−→ A0
δ−→ . . . rather than cochain complexes — this will enable

us to distinguish easily between derived (chain) and stacky (cochain) structures.

Definition 1.1 A stacky CDGA is a chain cochain complex A•• equipped with a com-
mutative product A ⊗ A → A and unit Q → A. Given a chain CDGA R, a stacky
CDGAover R is then amorphism R → A of stackyCDGAs.Wewrite DGdgCAlg(R)

for the category of stacky CDGAs over R, and DG+dgCAlg(R) for the full subcate-
gory consisting of objects A concentrated in non-negative cochain degrees.

As explained in [27, Remark 3.32], these correspond to the “graded mixed cdgas” of
[6] (but beware that the latter do not have mixed differentials).

When working with chain cochain complexes V •• , we will usually denote the chain
differential by δ : V i

j → V i
j−1, and the cochain differential by ∂ : V i

j → V i+1
j .
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Readers interested only in DM (as opposed to Artin) stacks may ignore the stacky part
of the structure and consider only chain CDGAs A• = A0• throughout this section.
Example 1.2 We now recall an important example of a class of stacky CDGAs from
[27, Example 3.6]. Given aLie algebra g of finite rank acting as derivations on a derived
affine scheme Y , we write O([Y/g]) for the stacky CDGA given by the Chevalley–
Eilenberg double complex

O(Y )
∂−→ O(Y ) ⊗ g∨ ∂−→ O(Y ) ⊗ 	2g∨ ∂−→ . . .

of g with coefficients in the chain g-module O(Y ).
When the action of g on Y is induced by the action of an affine group scheme G

with Lie algebra g, the stacky CDGA can recover the relative de Rham stack [Y/g]
of Y over [Y/G]; explicitly, the stack [Y/g] is the quotient of Y by the action of the
group sheaf B 	→ exp(g⊗ ker(B → Bred)). Then [27, Example 3.6] gives a formally
étale simplicial resolution of [Y/G] in terms of the functors [Y × Gn/gn+1].
Definition 1.3 Say that a morphism U → V of chain cochain complexes is a lev-
elwise quasi-isomorphism if Ui → V i is a quasi-isomorphism for all i ∈ Z. Say
that a morphism of stacky CDGAs is a levelwise quasi-isomorphism if the underlying
morphism of chain cochain complexes is so.

The following is [27, Lemma 3.4]:

Lemma 1.4 There is a cofibrantly generated model structure on stacky CDGAs over
R in which fibrations are surjections and weak equivalences are levelwise quasi-
isomorphisms.

There is a denormalisation functor D fromnon-negatively gradedCDGAs to cosim-
plicial algebras, with left adjoint D∗ as in [22, Definition 4.20]. Given a cosimplicial
chain CDGA A, D∗A is then a stacky CDGA in non-negative cochain degrees. By
[27, Lemma 3.5], D∗ is a left Quillen functor from the Reedy model structure on
cosimplicial chain CDGAs to the model structure of Lemma 1.4.

Since DA is a pro-nilpotent extension of A0, when H<0(A) = 0 we think of the
simplicial hypersheaf RSpec DA as a stacky derived thickening of the derived affine
scheme RSpec A0.

Definition 1.5 Given a chain cochain complexV , define the cochain complex ˆTot V ⊂
Tot 
V by

( ˆTot V )m :=
(

⊕

i<0

V i
i−m

)

⊕
⎛

⎝

∏

i≥0

V i
i−m

⎞

⎠

with differential ∂ ± δ.

The key property of the semi-infinite total complex ˆTot is that it sends levelwise quasi-
isomorphisms in the chain direction to quasi-isomorphisms; the same is not true in
general of the sum and product total complexes Tot ,Tot 
, cf. [33, §5.6]. The functor
ˆTot is referred to as Tate realisation in [6].
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Definition 1.6 Given a stacky CDGA A and A-modules M, N in chain cochain com-
plexes, we define internal Homs HomA(M, N ) by

HomA(M, N )ij = HomA#
#
(M#

# , N #[i]
#[ j]),

with differentials ∂ f := ∂N ◦ f ± f ◦ ∂M and δ f := δN ◦ f ± f ◦ δM , where V #
#

denotes the bigraded vector space underlying a chain cochain complex V .
We then define the Hom complex ˆHomA(M, N ) by

ˆHomA(M, N ) := ˆTotHomA(M, N ).

Note that there is a multiplication ˆHomA(M, N ) ⊗ ˆHomA(N , P) → ˆHomA(M, P)

(the same is not true for Tot 
HomA(M, N ) in general).
Writing �1

A := �1
A/R , we have:

Definition 1.7 A morphism A → B in DG+dgCAlg(R) is said to be homotopy
formally étale when the map

{Tot σ≤q(L�1
A ⊗L

A B0)}q → {Tot σ≤q(L�1
B ⊗L

B B0)}q
is a pro-quasi-isomorphism (i.e. an essentially levelwise quasi-isomorphism in the
sense of [15, §2.1]), where σ≤q denotes the brutal cotruncation

(σ≤qM)i :=
{

Mi i ≥ q,

0 i < q.

Combining [27, Proposition 3.13] with [24, Theorem 4.15 and Corollary 6.35],
every strongly quasi-compact derived Artin N -stack over R can be resolved by a
derived DM hypergroupoid (a form of homotopy formally étale cosimplicial diagram)
in DG+dgCAlg(R).

1.2 Polyvectors

We now fix a chain CDGA R over Q.

Assumption 1.8 As in [27, §3.3], we now assume that A ∈ DG+dgCAlg(R) has the
following properties:

(1) for any cofibrant replacement Ã → A in the model structure of Lemma 1.4, the
morphism �1

Ã
→ �1

A is a levelwise quasi-isomorphism,

(2) the A#-module (�1
A)# in graded chain complexes is cofibrant (i.e. it has the left

lifting property with respect to all surjections of A#-modules in graded chain
complexes),

(3) there exists N for which the chain complexes (�1
A ⊗A A0)i are acyclic for all

i > N .
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Of particular interest for us is that these conditions are satisfiedwhen A = D∗O(X)

for derived Artin N -hypergroupoids X . The following is adapted from [27, Definition
3.20] along the lines of [25, Definition 1.3], with the introduction of a dummy variable
h̄ of cohomological degree 0 to assist comparison with quantisation constructions.

Definition 1.9 Define the complex of 0-shifted polyvector fields (or strictly speaking,
multiderivations) on A by

̂Pol(A, 0) :=
∏

p≥0

ˆHomA(�
p
A, A)h̄ p−1[−p].

with graded-commutative multiplication (a, b) 	→ ab on h̄̂Pol(A, 0) following the
usual conventions for symmetric powers.

The Lie bracket on ˆHomA(�1
A, A) then extends to give a bracket (the Schouten–

Nijenhuis bracket)

[−,−]: ̂Pol(A, 0) × ̂Pol(A, 0) → ̂Pol(A, 0)[−1],

determined by the property that it is a bi-derivation with respect to the multiplication
operation.

Thus h̄̂Pol(A, 0) has the natural structure of a P2-algebra (i.e. a Gerstenhaber alge-
bra), and ̂Pol(A, 0)[1] is a differential graded Lie algebra (DGLA) over R.

Definition 1.10 Define a decreasing filtration F on ̂Pol(A, 0) by

Fi
̂Pol(A, 0) :=

∏

j≥i

ˆHomA(�
j
A, A)h̄ j−1[− j];

this has the properties that ̂Pol(A, 0) = lim←−i
̂Pol(A, 0)/Fi , with [Fi , F j ] ⊂ Fi+ j−1,

(∂ ± δ)Fi ⊂ Fi , and (h̄Fi )(h̄F j ) ⊂ h̄Fi+ j .

Observe that this filtration makes F2
̂Pol(A, n)[1] into a pro-nilpotent DGLA.

Definition 1.11 Define the tangent space of polyvectors by

T ̂Pol(A, 0) := ̂Pol(A, 0) ⊕ ̂Pol(A, 0)h̄ε,

for ε of degree 0 with ε2 = 0. Then T ̂Pol(A, 0)[1] is a DGLA with Lie bracket given
by [u + vε, x + yε] = [u, x] + [u, y]ε + [v, x]ε.
Definition 1.12 Given a Maurer–Cartan element π ∈ MC(F2

̂Pol(A, 0)[1]), define

Tπ
̂Pol(A, 0) :=

∏

p≥0

ˆHomA(�
p
A, A)h̄ p[−p],

with derivation (∂ ± δ) + [π,−] (necessarily square-zero by the Maurer–Cartan con-
ditions).
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The product on polyvectors makes this a CDGA, and it inherits the filtration F
from ̂Pol (so, ignoring the differentials, we have Fi Tπ

̂Pol(A, 0) ∼= h̄Fi
̂Pol(A, 0)).

Given π ∈ MC(F2
̂Pol(A, 0)[1]/F p), we define Tπ

̂Pol(A, 0)/F p similarly. This
is a CDGA because Fi · F j ⊂ Fi+ j .

Regarding Tπ
̂Pol(A, 0)[1] as an abelian DGLA, observe that MC(Tπ

̂Pol(A, 0)[1])
is just the fibre of MC(T ̂Pol(A, 0)[1]) → MC(̂Pol(A, 0)[1]) over π .

1.3 The Hochschild complex of a stacky CDGA

Definition 1.13 For an A-module M in chain cochain complexes, we define the coho-
mological Hochschild complex CC•

R(A, M) over R as we would for dg algebras, but
using the Hom-complexes ˆHom. Thus CC•

R(A, M) is the product total complex of a
double complex CC•

R(A, M) given by

CCn
R(A, M) = ˆHomR(A⊗Rn, M),

with Hochschild differential b : CCn−1 → CCn given by

(b f )(a1, . . . , an) = a1 f (a2, . . . , an)

+
n−1
∑

i=1

(−1)i f (a1, . . . , ai−1, aiai+1, ai+2, . . . , an)

+ (−1)n f (a1, . . . , an−1)an .

There is also a quasi-isomorphic normalised version NcCC•
R(A, M), given by the

subspaces of functions f with f (a1, . . . , ai−1, 1, ai , . . . , an) = 0 for all i .
We define increasing filtrations F on CC•

R(A, M) and CC•
R(A, M) by good trun-

cation in the Hochschild direction, so FpCC•
R(A, M) ⊂ CC•

R(A, M) is the subspace

p−1
∏

i=0

CCi
R(A, M)[−i] × ker(b : CCp

R(A, M) → CCp+1
R (A, M))[−p].

We simply write CC•
R(A) and CC•

R(A) for CC•
R(A, A) and CC•

R(A, A).

Lemma 1.14 There is a natural brace algebra structure on CC•
R(A) over R, com-

patible with the filtration F. In particular, CC•
R(A)[1] is a filtered DGLA over R. On

the associated graded brace algebra grFCC•
R(A), the Lie bracket and higher braces

vanish, and there is a surjective quasi-isomorphism

grFCC•
R(A) → ˆTot (HH∗

R#
(A#

#), ∂ ± δ)

of brace algebras, where we set all the braces to be 0 on HH∗.
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Proof As in [32, §3], there is a brace algebra structure on CC•
R(A), with cup product

· of cohomological degree 0 and brace operations ( f, g1, . . . , gn) 	→ { f }{g1, . . . , gn}
of cohomological degree−n.Writing [ f, g] := { f }{g}−(−1)deg f deg g{g}{ f } defines
a Lie bracket of degree −1, making CCn

R(A)[1] into a DGLA.
Compatibility of b with the bracket then implies that [Fp, Fq ] ⊂ Fp+q−1, and

degree considerations also give

Fp · Fq ⊂ Fp+q , {Fp}{Fr1, . . . , Frn } ⊂ Fp+r+1−n,

where r = ∑

ri . Since Fp+r+1−n ⊂ Fp+r , this ensures that (CC•
R(A), F) is a filtered

brace algebra; the bracket vanishes on grF , as do the braces for n ≥ 2.
Since F is defined as good truncation in the Hochschild direction, Hochschild

cohomology HH∗ is automatically a quasi-isomorphic quotient of grF . Any operation
of negative degree necessarily vanishes on this quotient, so the quotient map is a brace
algebra morphism. ��
Lemma 1.15 There is an involutive map i : CC•

R(A)[1] → CC•
R(A)[1] of DGLAs

given by

i( f )(a1, . . . , am) = −(−1)
∑

i< j deg ai deg a j (−1)m(m+1)/2 f (am, . . . , a1).

This involution corresponds under the HKR isomorphism to the involution of
̂Pol(A, 0) which acts on ˆHomA(�

p
A, A) as scalar multiplication by (−1)p−1.

Proof The first statement is proved in [4, §2.1], taking the trivial involution on A.
For the second statement, given φ ∈ ˆHomA(�

p
A, A), the corresponding element f of

CCp(A) is given by f (a1, . . . , ap) := φ(da1 ∧ . . . ∧ dap), and then

i( f )(a1, . . . , ap) = −(−1)
∑

i< j deg ai deg a j (−1)p(p+1)/2φ(dap ∧ . . . ∧ da1)

= −(−1)p(p+1)/2(−1)p(p−1)/2φ(da1 ∧ . . . ∧ dap)

= −(−1)p f (a1, . . . , ap).

��

1.4 Quantised 0-shifted polyvectors and quantisations

Definition 1.16 Define the complex of quantised 0-shifted polyvector fields on A by

Q̂Pol(A, 0) :=
∏

p≥0

FpCC
•
R(A)h̄ p−1.

Properties of the filtration F from Lemma 1.14 ensure that Q̂Pol(A, 0)[1] is a
DGLA.
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Definition 1.17 Define a decreasing filtration F̃ on Q̂Pol(A, 0) by the subcomplexes

F̃ i Q̂Pol(A, 0) :=
∏

j≥i

FjCC
•
R(A)h̄ j−1.

This filtration is complete and Hausdorff, with [F̃ i , F̃ j ] ⊂ F̃ i+ j−1. In particular, this
makes F̃2Q̂Pol(A, 0)[1] into a pro-nilpotent filtered DGLA.

Definition 1.18 Define an E1 quantisation of A over R to be aMaurer–Cartan element

� ∈ MC(F̃2Q̂Pol(A, 0)).

When A = A0• is just a CDGA, this gives a curved A∞-algebra structure A′ on
A�h̄� with A′/h̄ = A, because h̄ | �. For more general stacky CDGAs, the stacky
and derived structures interact in a non-trivial way for quantisations, and indeed for
Poisson structures.

Remark 1.19 To strengthen the analogy between this construction and [25], we could
replace NcCC•(A) with its quasi-isomorphic subcomplex of polydifferential opera-
tors. The filtration F is then quasi-isomorphic to the order filtration for polydifferential
operators, but the latter does not interact so well with the Lie bracket.

If we wished to consider uncurved A∞-algebra deformations without inner auto-
morphisms, we would have to replace CC•(A) with its sub-DGLA ker(CC•

R(A) →
ˆTot A). The analogue for [25] is the kernel of the map DA → A given by evaluating

at 1. As in [25, Remark 1.13], this means that the E0 analogue of a strict quantisation
is a BV algebra deformation.

Example 1.20 When the stacky CDGA A is bounded in the stacky (cochain) direc-
tion, we may identify CC•

R(A) with the Hochschild complex of the CDGA Tot A,
as Hom(A⊗n, A) is then also bounded in the cochain direction, and the functors
Tot , ˆTot ,Tot 
 agree for such double complexes. In particular, this applies to stacky
CDGAs of the form O([Y/g]) in the notation of Example 1.2.

Given a finite rank Lie algebra g acting on a smooth affine Y over R, the derived
cotangent stack T ∗[Y/g] carries a non-degenerate Poisson structure. Explicitly, if
Y = Spec B, this derived formal stack is represented by the stacky CDGA given
by the Chevalley–Eilenberg complex O(T ∗[Y/g]) := O([Spec SymmB(cone(g ⊗R

B → TB))/g]), and we then have Tot O(T ∗[Y/g]) = SymmO([Y/g])TO([Y/g]) with its
natural Poisson structure as a complex of polyvectors.

A quantisation of this Poisson structure is given by the Rees algebra
∏

i h̄
i FiDTot O([Y/g]) of the order filtration F on the ring of differential operators,

i.e. the h̄-adically complete sub-DGA of DTot O([Y/g])�h̄� generated by O([Y/g]) and
first order differential operators divisible by h̄. This quantisation satisfies b �h̄ a =
(−1)deg a deg ba �−h̄ b, so will be included in the parametrisation of Theorem 2.20.

Definition 1.21 Given a DGLA L , define the the Maurer–Cartan set by

MC(L) :=
{

ω ∈ L1 | dω + 1

2
[ω,ω] = 0 ∈ L2

}

.
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Following [12], define the Maurer–Cartan space MC(L) (a simplicial set) of a
nilpotent DGLA L by

MC(L)n := MC(L ⊗Q �•(�n)),

where

�•(�n) = Q[t0, t1, . . . , tn, δt0, δt1, . . . , δtn]/
(
∑

ti − 1,
∑

δti
)

is the commutative dg algebra of de Rham polynomial forms on the n-simplex, with
the ti of degree 0.

Definition 1.22 We now define another decreasing filtration G on Q̂Pol(A, 0) by
setting

Gi Q̂Pol(A, 0) := h̄i Q̂Pol(A, 0).

We then set Gi F̃ p := Gi ∩ F̃ p.

Definition 1.23 Define the space QP(A, 0) of E1 quantisations of A over R to be
given by the simplicial set

QP(A, 0) := lim←−
i

MC(F̃2Q̂Pol(A, 0)[1]/F̃ i+2).

Also write

QP(A, 0)/Gk := lim←−
i

MC(F̃2Q̂Pol(A, 0)[1]/(F̃ i+2 + Gk)),

so QP(A, 0) = lim←−k
QP(A, 0)/Gk .

When R and A = A0 are concentrated in non-negative homological degrees, we
can interpret QP(A, 0) as a space of deformations of A as an R-linear dg category
up to quasi-equivalence, and in general when A = A0 and has bounded cohomology,
[2,19] interpret QP(A, 0) as a space of deformations of A as an R-linear dg category
up to derived Morita equivalence.

Since the functor ˆTot is lax monoidal with respect to tensor products, for stacky
CDGAs we have a natural map CC•

R(A) → CC•
R( ˆTot A) (rarely an equivalence), so

E1 quantisations give rise to curved A∞ deformations of the CDGA ˆTot A. We now
give a stronger statement.

Definition 1.24 If A ∈ DG+dgCAlg(R), define the bi-dg category Per(A) as
follows. Objects are A-modules M in chain cochain complexes for which M# is
cofibrant as a graded chain complex over A#, M0 is perfect over A0, and the map
M0 ⊗A0 A# → M# is a levelwise quasi-isomorphism. Morphisms are given by the
chain cochain complexes HomA(M, N ).
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We then define perdg(A) to have the same objects as Per(A), and morphisms
ˆHomA(M, N ).

Note that the ∞-category underlying perdg(A) is the category of perfect modules
featuring in [6, Proposition 2.2.8].

For every M ∈ perdg(A), we have a ˆTot A-module ˆTot M , but this need not be
cofibrant or perfect. For instance, given b ∈ Z0Z1A, we may set Ab to be the chain
cochain complex A#• with cochain differential ∂A+b. Since A#

b = A#, it lies inPer(A),
but ˆTot Ab is seldom cofibrant.

Proposition 1.25 For A ∈ DG+dgCAlg(R), there is a natural map in the ∞-
category of simplicial sets from QP(A, 0) to the space of curved A∞ deformations
(perdg(A)�h̄�, {m(i)}i≥0) of the dg category perdg(A), with h̄i−1 | m(i) for i ≥ 3.

Proof For any R-linear bi-dg category B, we have a Hochschild complex built from
the spaces

CCn
R(B) =

∏

x0,...xn∈B
ˆHomR(B(x0, x1) ⊗R . . . ⊗R B(xn−1, xn),B(x0, xn)),

with QP(B, 0) defined analogously. Properties of ˆTot then give us a natural map
from QP(B, 0) to QP( ˆTot B, 0), which is the space of curved A∞ deformations
(( ˆTot B)�h̄�, {m(i)}i≥0) of the dg category ˆTot B with h̄i−1 | m(i) for i ≥ 3; the
Maurer–Cartan conditions ensure that h̄i | bm(i), so every such m does lie in the
appropriate piece of the good truncation filtration.

It therefore suffices to show that the map QP(Per(A), 0) → QP(A, 0) given
by restriction to the object A ∈ Per(A) is a weak equivalence. By the theory of
pro-nilpotent DGLAs, this will follow if CCn

R(Per(A)) → CCn
R(A) is a filtered quasi-

isomorphism.
We now observe that for any A-linear bi-dg category B with cofibrant Hom-

bicomplexes, there is a spectral sequence

HHi
R#

(A#
#,HH

j
A#
#
(B#

#)) �⇒ HHi+ j
R#

(B#
#).

WhenB is homotopyCartesian in the sense that themapB0⊗A0 A# → B# is a levelwise
quasi-isomorphism, we have a quasi-isomorphism (HH j

A0
#
(B0

#, (B0 ⊗L
A0 A#)#), δ) �

(HH j
A#
#
(B#

#), δ). We then note that when B0
# is Morita equivalent to A0

# as a graded

category, themapM → HH∗
A0
#
(B0

#, (B0
#⊗L

A0
#
M)) is an isomorphismof gradedmodules

for all A0
#-modules M .

Putting these together gives quasi-isomorphisms

grFj CC
•
R(A) � grFj CC

•
R(Per(A)) :
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thebi-dg categoryPer(A) is homotopyCartesian because its objects are; sincePer(A)0#
is equivalent to the category of graded projective A0

#-modules, it is Morita equivalent
to A0

#. Thus QP(Per(A), 0) → QP(A, 0) is indeed a weak equivalence. ��

Remark 1.26 In [25], we were able to consider E0 quantisations not just of the struc-
ture sheaf OX , but also of line bundles, by constructing a Gm-action on quantised
polyvectors.

Similarly, the methods of this paper can be adapted to study E1 quantisations of
any A-linear bi-dg category B for which the map ˆTot A → grFCC•

A(B) is a quasi-
isomorphism — by analogy, line bundles are A-modules for which the map ˆTot A →
R ˆHomA(M, M) is a quasi-isomorphism. In particular, we can study étale Gm-gerbes
by establishing BGm-equivariance. One way to do this is to consider QP(Per(A), 0)
as in the proof of Proposition 1.25, sincePer(A) admits an action of the Picard 2-group
and hence a BGm-action.

The resulting action is necessarily trivial modulo G1, so comes from pro-unipotent
L∞-automorphisms of Q̂Pol(A, 0). Since pro-unipotent L∞-automorphisms are
exponentials of pro-nilpotent L∞-derivations, we will in fact have an action of
BGm ⊗Z Q, so a notion of quantisation for (Gm ⊗Z Q)-gerbes.

1.5 The centre of a quantisation

Definition 1.27 Define the filtered tangent space to quantised polyvectors by

T Q̂Pol(A, 0) := Q̂Pol(A, 0) ⊕
∏

p≥0

FpCC
•
R(A)h̄ pε,

F̃ j T Q̂Pol(A, 0) := F̃ j Q̂Pol(A, 0) ⊕
∏

p≥ j

FpCC
•
R(A)h̄ pε,

for ε of degree 0 with ε2 = 0. Then T Q̂Pol(A, 0)[1] is a DGLA, with Lie bracket
given by [u + vε, x + yε] = [u, x] + [u, y]ε + [v, x]ε.

Definition 1.28 Given aMaurer–Cartan element� ∈ MC(F̃2Q̂Pol(A, 0)[1]), define
the centre of (A,�) by

T�Q̂Pol(A, 0) :=
∏

p≥0

FpCC
•
R(A)h̄ p,

with derivation ∂ ± δ ± b + [�,−] (necessarily square-zero by the Maurer–Cartan
conditions).

This has a filtration

F̃ i T�Q̂Pol(A, 0) :=
∏

p≥i

FpCC
•
R(A)h̄ p,
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making T�Q̂Pol(A, 0) a filtered brace algebra by Lemma 1.14. Given � ∈
MC(F2Q̂Pol(A, 0)/F̃ p), we define T�Q̂Pol(A, 0)/F̃ p similarly — this is also a
brace algebra as F̃ p is a brace ideal.

Observe that T�QP(A, 0) := MC(F̃2T�Q̂Pol(A, 0)[1]) is just the fibre of
MC(F̃2T Q̂Pol(A, 0)[1]) → MC(F̃2Q̂Pol(A, 0)[1]) over �.

Similarly toDefinition 1.22, there are filtrationsG on T Q̂Pol(A, 0), T�Q̂Pol(A, 0)
given by powers of h̄. Since griG F̃

p−i Q̂Pol = ∏

j≥p−i gr
F
j−iCC

•
R(A)h̄ j−1, the HKR

isomorphism gives maps

griG F̃
pQ̂Pol(A, 0) →

∏

j≥p

ˆHomA(�
j−i
A , A)h̄ j−1[i − j]

griG F̃
pT�Q̂Pol(A, 0) →

∏

j≥p

ˆHomA(�
j−i
A , A)h̄ j [i − j],

which are quasi-isomorphisms by our hypotheses on A (see Assumption 1.8).
For the filtration F of Definition 1.10, we may rewrite these maps as

griG F̃
pQ̂Pol(A, 0) → F p−i

̂Pol(A, 0)h̄i ,

griG F̃
pT�Q̂Pol(A, 0) → F p−i Tπ�

̂Pol(A, 0)h̄i ,

where π� ∈ MC(F2
̂Pol(A, 0)[1]) denotes the image of � under the map

gr0G F̃
2Q̂Pol(A, 0) → F2

̂Pol(A, 0).
Since the cohomology groups of Tπ�

̂Pol(A, 0) are Poisson cohomology, we will
refer to the cohomology groups of T�Q̂Pol(A, 0) as quantised Poisson cohomology.

Definition 1.29 Say that an E1 quantisation � = ∑

j≥2 � j h̄ j−1 is non-degenerate if
the map

�
�
2 : Tot 
(�1

A ⊗A A0) → ˆHomA(�1
A, A0)

is a quasi-isomorphism and Tot 
(�1
A ⊗A A0) is a perfect complex over A0.

Definition 1.30 Define the tangent spaces

T QP(A, 0) := lim←−
i

MC(F̃2T Q̂Pol(A, 0)[1]/F̃ i+2),

with T QP(A, 0)/Gk , defined similarly.

These are simplicial sets over QP(A, 0) (resp. QP(A, 0)/Gk), fibred in simplicial
abelian groups.

Definition 1.31 Define the canonical tangent vector

σ = −∂h̄−1 : Q̂Pol(A, 0) → T Q̂Pol(A, 0)
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by α 	→ α + εh̄2 ∂α
∂ h̄ . Note that this is a morphism of filtered DGLAs, so gives a map

σ : QP(A, 0) → T QP(A, 0), with σ(�) ∈ Z2(F̃2T�Q̂Pol(A, 0)).

1.6 Self-dual quantisations

Definition 1.32 Define an involution Q̂Pol(A, 0)
∗−→ Q̂Pol(A, 0) by �∗(h̄) :=

i(�)(−h̄), for the involution i of Lemma 1.15.

Definition 1.33 Lemma 1.15 ensures that ∗ is a morphism of DGLAs, and we define
the space QP(A, 0)sd ⊂ QP(A, 0) of self-dual quantisations to be the fixed points
of the involution ∗. This inherits cofiltrations F̃ and G from QP(A, 0).

In particular, this means that when A = A0 is concentrated in degree zero, elements
of QP(A, 0)sd can be represented by associative algebra deformations (A′, �h̄) of A,
with

a �−h̄ b = b �h̄ a.

More generally, when R and A = A0 are concentrated in non-negative homological
degrees, elements of QP(A, 0)sd are algebroid quantisations of A equipped with an
anti-involution which is semilinear under the transformation h̄ 	→ −h̄.

For general stacky CDGAs A, the trivial anti-involution on A extends to the
anti-involution HomA(−, A) on the dg category perdg(A) of perfect complexes,
and similarly to [4], this allows us to extend the involution of Lemma 1.15 to the
Hochschild complex of perdg(A). Applying this to the constructions of Proposition

1.25, QP(A, 0)sd gives rise to curved A∞-deformations P̃h̄ of perdg(A), equipped

with an anti-involution P̃−h̄ � P̃opp
h̄ lifting the duality functor HomA(−, A).

Remark 1.34 As in Remark 1.26, we may also consider self-duality for Gm-gerbes.
Since the functor sending a gerbe to its opposite is just given by the inversion map on
B2Gm , anti-involutive gerbes are are classified by B2μ2, the homotopy fixed points
of the inversion map.

However, as observed in Remark 1.26, the space of quantisations over B2Gm is
the pullback of a space over B2(Gm ⊗Z Q), so the space of self-dual quantisations
over B2μ2 is constant. This means that to every self-dual quantisation of A there
correspond self-dual quantisations of allμ2-gerbes, and in particular of perdg(A)with
duality functor RHom(−,L ) for any line bundle L . One way to make sense of
this example is that even if L does not have a square root, there is necessarily an
automorphism of the Hochschild complex acting as a square root of L , and thus
intertwining between the respective duality functors.

Lemma 1.35 There are canonical weak equivalences

QP(A, 0)sd/G2i → QP(A, 0)sd/G2i−1

QP(A, 0)sd/G2i+1 → (QP(A, 0)sd/G2i ) ×h
(QP(A,0)/G2i )

(QP(A, 0)/G2i+1).
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Proof This follows in much the same way as [25, Lemma 4.5]. Lemma 1.15
ensures that the involution ∗ acts trivially on ̂Pol(A, 0), since it maps f h̄ p−1 to
(−1)p−1(−h̄)p−1 for f ∈ ˆHomA(�

p
A, A)h̄ p−1. It therefore acts as multiplication

by (−1)k on grkG ̂Pol(A, 0) = h̄kgr0G ̂Pol(A, 0), giving quasi-isomorphisms

grkG F̃
pQ̂Pol(A, 0)sd �

{

grkG F̃
pQ̂Pol(A, 0) k even

0 k odd.

The results then follow from the fibre sequences

QP(A, 0)sd/Gk+1 → QP(A, 0)sd/Gk → MC(grkG F̃
2Q̂Pol(A, 0)sd [2])

coming from obstruction theory for abelian extensions of DGLAs. ��
In particular, Lemma 1.35 gives QP(A, 0)sd/G2 � QP(A, 0)sd/G1 � P(A, 0),

so every unshifted Poisson structure admits an essentially unique first-order self-dual
quantisation.

2 Quantisations and de Rham power series

Recall that we are fixing a chain CDGA R over Q, and a cofibrant stacky CDGA A
over R. We denote the chain differentials on A and R by δ, and the cochain differential
on A by ∂ .

2.1 Generalised pre-symplectic structures

We now adapt some definitions from [25, §1.2] and [27, §3.3.2].

Definition 2.1 Define the de Rham complex DR(A) to be the product total complex
of the bicomplex

Tot 
A
d−→ Tot 
�1

A
d−→ Tot 
�2

A
d−→ . . . ,

so the total differential is d ± ∂ ± δ.
We define the Hodge filtration F on DR(A) by setting F pDR(A) ⊂ DR(A) to

consist of terms Tot 
�i
A with i ≥ p. In particular, F pDR(A) = DR(A) for p ≤ 0.

Definition 2.2 When A is a cofibrant stacky CDGA over R, recall that a 0-shifted
pre-symplectic structure ω on A/R is an element

ω ∈ Z2F2DR(A).

It is called symplectic if ω2 ∈ Z2Tot 
�2
A induces a quasi-isomorphism

ω
�
2 : ˆHomA(�1

A, A0) → Tot 
(�1
A ⊗A A0)
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and Tot 
(�1
A ⊗A A0) is a perfect complex over A0.

Definition 2.3 Define a decreasing filtration F̃ on DR(A)�h̄� by

F̃ pDR(A) :=
∏

i≥0

F p−iDR(A)h̄i .

Define a further filtration G by GkDR(A)�h̄� = h̄kDR(A)�h̄�.

Definition 2.4 Define the space of generalised 0-shifted pre-symplectic structures on
A/R to be the simplicial set

GPreSp(A, 0) := lim←−
i

MC(F̃2DR(A)�h̄�[1]/F̃ i+2),

wherewe regard the cochain complexDR(A)[1] as a DGLAwith trivial bracket.Write
PreSp = GPreSp/G1.

Also write GPreSp(A, 0)/h̄k := lim←−i
MC((F̃2DR(A)[h̄][1]/(Gk + F̃ i+2)), so

GPreSp(A, 0) = lim←−k
GPreSp(A, 0)/h̄k .

Set GSp(A, 0) ⊂ GPreSp(A, 0) to consist of the points whose images in
PreSp(A, 0) are symplectic structures — this is a union of path-components.

Remarks 2.5 Note that Definition 2.4 is not the obvious analogue of the definition of
generalised (−1)-shifted pre-symplectic structures from [25, Definition 1.29], which
used the convolution (G ∗ F̃)2 = F̃2 +G1 in place of F̃2 for reasons specific to nega-
tively shifted structures. The only difference lies in the linear term, which is where the
correspondence between generalised symplectic structures and non-degenerate quan-
tisations breaks down anyway — replacing F̃2 with (G ∗ F̃)2 would not significantly
affect themain results of either paper, nor would eliminating the linear term altogether.

Also note that GPreSp(A, 0) is canonically weakly equivalent to the Dold–Kan
denormalisation of the good truncation complex τ≤0(F̃2DR(A)�h̄�[2]) (and similarly
for the various quotients we consider), but the description in terms ofMCwill simplify
comparisons. In particular, we have

πi GPreSp(A, 0) ∼= H2−i (F2DR(A)) × h̄H2−i (F1DR(A)) × h̄2H2−i (DR(A))�h̄�.

2.2 Formality

Definition 2.6 Write GT for the Grothendieck–Teichmüller group. This is an affine
group scheme over Q, with reductive quotient Gm . Denote the pro-unipotent radical
ker(GT → Gm) by GT1.

Write LeviGT for the space of Levi decompositions of GT, i.e. sections of GT →
Gm . By the general theory of pro-algebraic groups in characteristic 0 (cf. [14], [13,
Theorem 3.2], or for instance [21, Corollary 2.14] in general), the space LeviGT is
an affine scheme over Q equipped with the structure of a trivial GT1-torsor via the
adjoint action, since the Gm-invariant subgroup of GT1 is trivial.
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Drinfeld associators [3,8] form an affine Q-scheme Ass fibred over Gm . It is a
bitorsor for GT (acting on the right) and the graded Grothendieck–Teichmüller group
GRT acting on the left. Since GRT contains a distinguished copy ofGm , each element
� of Ass gives rise to a Levi decomposition σ� : Gm → GT characterised by the
formula λ · � = � · σ�(λ). We thus have an isomorphism σ? : Gm\Ass → LeviGT,
or equivalently Ass1 → LeviGT, of GT1-torsors.

As explained succinctly in [20], formality of the Q-linear E2 operad is a conse-
quence of the observation that the Grothendieck–Teichmüller group is a pro-unipotent
extension ofGm . Since GT acts on E2, any Levi decomposition w : Gm → GT gives
a weight decomposition (i.e. a Gm-action) of E2 which splits the good truncation
filtration, so gives an equivalence between E2 and P2. Since the natural morphism
from the Lie operad to the E2 operad is given in each arity by inclusion of the top
weight term for the decreasing filtration, it follows that such an equivalence E2 � P2
automatically respects the natural maps from the Lie operad on each side.

Definition 2.7 Given a Levi decomposition w ∈ LeviGT(Q), we denote by pw the
resulting∞-functor from E2-algebras to P2-algebras overQ,which respects the under-
lying L∞-algebras.

As in [32], brace algebras are naturally E2-algebras, so CC•
R(A) has an E2-algebra

structure. Moreover, the equivalence between E2 and P2 necessarily respects the
good truncation filtrations, and the filtered complex (CC•

R(A), F) is an algebra with
respect to the brace operad filtered by good truncation. This yields a filtered P2-algebra
(pwCC•

R(A), F) over A with Fp · Fq ⊂ Fp+q and [Fp, Fq ] ⊂ Fp+q−1, with a filtered
L∞-quasi-isomorphism (pwCC•

R(A)[1], F) � (CC•
R(A)[1], F).

Definition 2.8 For any of the definitions from Sect. 1, we add the subscript w to
indicate that we are replacing (CC•

R(A), F)with (pwCC•
R(A), F) in the construction.

Since these DGLAs are quasi-isomorphic and MC preserves weak equivalences, in
particular we have canonical weak equivalences QPw(A, 0) � QP(A, 0). Properties
of the filtration F̃ then ensure that the complexes T�Q̂Polw(A, 0) are filtered P2-
algebras.

Remark 2.9 Rather than just choosingw ∈ LeviGT(Q), amore natural approachmight
be to consider the simplicial set RLeviGT(R) of all Levi decompositions over R. This
would lead to a space QPLevi(A, 0) over RLeviGT(R) with fibre QPw(A, 0) over w

and a canonical weak equivalence QPLevi(A, 0) � RLeviGT(R) × QP(A, 0).

2.3 Compatible quantisations

Wewill now develop the notion of compatibility between a generalised pre-symplectic
structure and an E1 quantisation, generalising the notion of compatibility between 0-
shifted pre-symplectic and Poisson structures from [27]. The following definitions are
adapted from [27, Definition 1.16].
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Definition 2.10 Given a stacky CDGA B over A and a derivation
� ∈ MC( ˆHomB(�1

B, B)), define

μ(−,�) : DR(A) → ˆTot B

to be the morphism of graded A-algebras given on generators �1
A by setting

μ(ad f,�) := a�( f ),

and then applying ˆTot (noting that Tot 
�
p
A = ˆTot�p

A).
The proof of [27, Lemma 1.17] ensures that this becomes a chain map (and hence

an R-CDGA morphism)

μ(−,�) : DR(A) → ( ˆTot B, (∂ ± δ)B + �).

Definition 2.11 Given a choice w ∈ LeviGT(Q) of Levi decomposition for GT and
� ∈ QP(A, 0)w/G j define

μw(−,�) : DR(A)�h̄�/h̄ j → T�Q̂Polw(A, 0)/G j

by applying Definition 2.10 to the stacky CDGAs

T0Q̂Pol(A, 0) := (

k
∏

i=0

Fi pwCC
•
R(A)h̄i )/G j

and the derivation [�,−], then taking the limit over all k. Observe that this map
preserves the filtration F̃ .

Definition 2.12 We say that a generalised pre-symplectic structureω and an E1 quan-
tisation � are w-compatible (or a w-compatible pair) if

[μw(ω,�)] = [−∂h̄−1(�)] ∈ H1(F̃2T�Q̂Polw(A, 0)) ∼= H1(F̃2T�Q̂Pol(A, 0)),

where σ = −∂h̄−1 is the canonical tangent vector of Definition 1.31.

Definition 2.13 Given a simplicial set Z , an abelian group object A in simplicial sets
over Z , a space X over Z and a morphism s : X → A over Z , define the homotopy
vanishing locus of s over Z to be the homotopy limit of the diagram

X
s

0
A Z .

Definition 2.14 Define the space QCompw(A, 0) of w-compatible quantised 0-
shifted pairs to be the homotopy vanishing locus of

(μw − σ) : GPreSp(A, 0) × QPw(A, 0) → T QPw(A, 0)
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over QPw(A, 0)
We define a cofiltration on this space by setting QCompw(A, 0)/G j to be the

homotopy vanishing locus of

(μw − σ) : (GPreSp(A, 0)/G j ) × (QPw(A, 0)/G j ) → T QPw(A, 0)/G j

over QPw(A, 0)/G j .

When j = 1, note that this recovers the notion of compatible 0-shifted pairs from
[27, §3.3.3].

Definition 2.15 Define QCompw(A, 0)nondeg ⊂ QCompw(A, 0) to consist of w-
compatible quantised pairs (ω,�) with � non-degenerate. This is a union of path-
components, and by [27, Lemma 1.22] any pre-symplectic form compatible with a
non-degenerate quantisation is symplectic, so there is a natural projection

QCompw(A, 0)nondeg → GSp(A, 0)

as well as the canonical map

QCompw(A, 0)nondeg → QPw(A, 0)nondeg.

2.4 The equivalences

Proposition 2.16 For any Levi decomposition w of GT, the canonical map

QCompw(A, 0)nondeg → QPw(A, 0)nondeg � QP(A, 0)nondeg

is a weak equivalence. In particular, there is a morphism

QP(A, 0)nondeg → GSp(A, 0)

in the homotopy category of simplicial sets.

Proof We adapt the proof of [27, Proposition 1.26]. For any � ∈ QPw(A, 0), the
homotopy fibre of QCompw(A, 0)nondeg over � is just the homotopy fibre of

μw(−,�) : GPreSp(A, 0) → T�QPw(A, 0)

over −∂h̄−1(�).
The map μw(−,�) : DR(A)�h̄� → T�Q̂Polw(A, 0) is a morphism of complete

F̃-filtered R�h̄�-CDGAs by the proof of [27, Lemma 1.17]. Since the morphism is
R�h̄�-linear, it maps Gk F̃ pDR(A)�h̄� to Gk F̃ pT�Q̂Polw(A, 0). Non-degeneracy of
�2 modulo F1 implies that μw(−,�) induces quasi-isomorphisms

Tot 
�p−k h̄k[k − p] → ˆHomA(�
p−k
A , A)h̄ p−k[k − p]
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on the associated gradeds grkGgr
p

F̃
.We therefore have a quasi-isomorphism of bifiltered

complexes, so we have isomorphisms on homotopy groups:

π j GPreSp(A, 0) → π j T�QP(A, 0)

H2− j (F̃2DR(A)�h̄�) → H2− j (F̃2T�Q̂Pol(A, 0)).

��
Proposition 2.17 For any Levi decomposition w of GT, the maps

QPw(A, 0)nondeg/G j → (QPw(A, 0)nondeg/G2) ×h
(GSp(A,0)/G2)

(GSp(A, 0)/G j )

� (QPw(A, 0)nondeg/G2) ×
∏

2≤i< j

MC(DR(A)h̄i [1])

coming from Proposition 2.16 are weak equivalences for all j ≥ 2.

Proof The proof of [25, Proposition 1.40] generalises to this setting. We have a com-
mutative diagram

(QCompw(A, 0)/G j+1)(ω,π) −−−−−→ (QCompw(A, 0)/G j )(ω,π) −−−−−→ MC(N (ω, π, j)[2])
⏐

⏐

�

⏐

⏐

�

⏐

⏐

�

(GPreSp(A, 0)/G j+1)ω −−−−−→ (GPreSp(A, 0)/G j )ω −−−−−→ MC(F2− j h̄ jDR(A)[2])

of fibre sequences, with N (ω, π, j) the cocone of the map

F2− jDR(A)h̄ j ⊕ (F2− j
̂Pol(A, 0)h̄ j , δπ ) → F2− j Tπ

̂Pol(A, 0)h̄ j

given by combining

μ(−, π) : F2− jDR(A)h̄ j → F2− j Tπ
̂Pol(A, 0)h̄ j

with

ν(ω, π) + ∂h̄−1 : F2− j Tπ
̂Pol(A, 0)h̄ j−1 → F2− j Tπ

̂Pol(A, 0)h̄ j .

Here ν(ω, π) is the tangent map ofμ(ω,−) atπ , given byμ(ω, π +ρε) = μ(ω, π)+
ν(ω, π)(ρ)ε with ε2 = 0.

As in [25, Lemma 1.39], on the associated graded piece

gr pF ̂Pol(A, 0)h̄ j = ˆHomA(�
p
A, A)h̄ p+ j−1,

themap ν(ω, π) is given by p	p(π�◦ω�)h̄, while ∂h̄−1 = (1− j− p)h̄. Sinceπ is non-
degenerate,π�◦ω� is homotopic to 1, so gr pF (ν(ω, π)+∂h̄−1) is homotopic to (1− j)h̄.
As this is an isomorphism for all j ≥ 2, the map N (ω, π, j) → F2− jDR(A)h̄ j is
quasi-isomorphism, which inductively gives the required weak equivalences from the
fibre sequences above. ��
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Remark 2.18 Taking the limit over all j , Proposition 2.17 gives an equivalence

QPw(A, 0)nondeg � (QPw(A, 0)nondeg/G2) ×
∏

i≥2

MC(DR(A)h̄i [1]);

in particular, this means that there is a canonical map

(QP(A, 0)nondeg/G2) → QP(A, 0)nondeg,

dependent on w, corresponding to the distinguished point 0 ∈ MC(h̄2DR(A)�h̄�).
Thus to quantise a non-degenerate 0-shifted Poisson structure π = ∑

j≥2 π j

(or equivalently, by [27, Corollary 1.38], a 0-shifted symplectic structure), it
suffices to lift the power series

∑

j≥2 π j h̄ j−1 to a Maurer–Cartan element of
∏

j≥2(FjCC•
R(A)/Fj+2)h̄ j−1.

Even if π is degenerate, a variant of Proposition 2.17 still holds. Because π� ◦ω� is
homotopy idempotent, themapgr pFν(ω, π)has eigenvalues in the interval [0, p], sowe
just replace (1− j)with an operator having eigenvalues in the interval [1− p− j, 1− j].
Since this is still a quasi-isomorphism for j > 1, we have

QCompw(A, 0) � (QCompw(A, 0)/G2) ×
∏

i≥2

MC(DR(A)h̄i ).

giving a sufficient first-order criterion for degenerate quantisations to exist.

Remark 2.19 As in Remark 2.9, we could consider the spaceRLeviGT(R) of R-linear
Levi decompositions, and the proof of Proposition 2.17 then gives equivalences

RLeviGT(R) × QP(A, 0)nondeg/G j

→ RLeviGT(R) × (QP(A, 0)nondeg/G2) ×h
(GSp(A,0)/G2)

(GSp(A, 0)/G j )

� RLeviGT(R) × (QP(A, 0)nondeg/G2) ×
∏

2≤i< j

MC(DR(A)h̄i [1])

over RLeviGT(R).

2.4.1 Self-duality

Theorem 2.20 For any Levi decompositionw ofGT, there is a canonical weak equiv-
alence

QP(A, 0)nondeg,sd � P(A, 0)nondeg × MC(h̄2DR(A)�h̄2�[1]).

In particular, w gives a canonical choice of self-dual quantisation for any non-
degenerate 0-shifted Poisson structure on A.
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Proof Lemma 1.35 implies that we have weak equivalences

QP(A, 0)sd/G2i → QP(A, 0)sd/G2i−1

QP(A, 0)sd/G2i+1 → (QP(A, 0)sd/G2i ) ×h
(QP(A,0)/G2i )

(QP(A, 0)/G2i+1).

Combined with Proposition 2.17, the latter gives weak equivalences

QP(A, 0)nondeg,sd/G2i+1 → (QP(A, 0)nondeg,sd/G2i ) × MC(h̄2iDR(A)[1])

for all i > 0, so

QP(A, 0)nondeg,sd/G2i+1 � (QP(A, 0)nondeg,sd/G2i ) × MC(h̄2iDR(A)[1])
� QP(A, 0)nondeg/G2i−1 × MC(h̄2iDR(A)[1]),

andwehave seen that∗ acts trivially onQP(A, 0)/G1 = P(A, 0), soQP(A, 0)sd/G1

� P(A, 0). ��
Example 2.21 When applied to the polynomial ring A = R[t1, . . . , td ] concentrated
in degree 0, Theorem 2.20 implies that the map QP(A, 0)nondeg,sd → P(A, 0)nondeg

has simply connected fibres, via vanishing of de Rham cohomology. 2-automorphisms
are given by exp(h̄ R�h̄2�) = {r(h̄) ∈ 1 + h̄ R�h̄� : r(h̄)r(−h̄) = 1}, with
h̄2s(h̄2) ∈ h̄2R�h̄2� ∼= h̄2H0DR(A)�h̄2� corresponding under Theorem 2.20 to the
2-automorphism exp(

∫

s(h̄2)dh̄).
In detail, for a fixed non-degenerate Poisson structure π , self-dual quantisations

(A�h̄�, �h̄) (with involution a(h̄)∗ := a(−h̄)) are unique up to involutive isomorphism
(i.e. θ with θ(a∗) = θ(a)∗). Those isomorphisms are unique up to involutive inner
automorphism (i.e. conjugation by {a(h̄) ∈ 1+ h̄ A�h̄� : a(h̄)�h̄ a(−h̄) = 1}) and the
inner automorphism a(h̄) (regarded as a 2-morphism) is unique up to multiplication
by exp(h̄ R�h̄2�).

Remark 2.22 The proof of Theorem 2.20 shows that for a self-dual quantisation of a
non-degenerate 0-shifted Poisson structure, the w-compatible generalised symplectic
structure is determined by its even coefficients. This raises the question of whether the
odd coefficients must be homotopic to 0, as happens in the (−1)-shifted case by [25,
Remark 4.6]. The answer depends on the choice of w, as follows.

The involution i from Lemma 1.15 is not just a DGLA automorphism. If we
write f t := −i( f ), then ( f · g)t = (−1)deg f deg ggt · f t and { f }{g1, . . . , gm}t �
∓{ f t }{gtm, . . . , gt1}, so (−)t : C•

R(A)opp → C•
R(A) makes C•

R(A) into an anti-
involutive brace algebra. The opposite brace algebra Bopp is most easily understood in
terms of the associated B∞-algebra, which is a bialgebra structure on the tensor coal-
gebra T (B[1]): to form Bopp, we just take the opposite comultiplication on T (B[1]).

We can define an involution of the E2 operad similarly, which takes an embedding
[1, k]× I 2 → I 2 of k little squares in a big square, and reverses the order of the labels
[1, k] with appropriate signs. This involution comes from an element t ∈ GT which
maps to −1 ∈ Gm . It gives a notion of opposite E2-algebra, with (−)t : C•

R(A)opp →
C•
R(A) then giving C•

R(A) the structure of an anti-involutive E2-algebra.
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Levi decompositions w of GT with w(−1) = t form a torsor LevitGT for the
subgroup (GT1)t of t-invariants in GT1. (To see that LevitGT is non-empty, first pick
any Levi decomposition w0, and write w0(−1) = tu for u ∈ GT1. Since t and

w0(−1) are both of order 2, we have u = adt (u−1), so u
1
2 = adt (u− 1

2 ), giving w :=
ad

u− 1
2

◦ w0 ∈ LevitGT.) Under the isomorphism Ass1 ∼= LeviGT between associators

and Levi decompositions, elements of LevitGT correspond to even associators.
For any such w ∈ LevitGT(Q), the ∞-functor pw sends opposite E2-algebras to

opposite P2-algebras, defined by reversing the sign of the Lie bracket. This gives

μw(ω,�)t = μw(ω,−�t ),

so ω(h̄) is compatible with � if and only if ω(−h̄) is compatible with �∗, implying
that the odd coefficients of ω must be homotopic to 0 when � is non-degenerate and
self-dual.

For a more explicit description of the generalised symplectic structure ω corre-
sponding to a non-degenerate self-dual quantisation �, observe that we then have an
isomorphism

μw(−,�) : H∗(F2DR(X) × h̄2DR(X)�h̄2�)

→ {v ∈ H∗(T�(F̃2Q̂Pol(A, 0)) : v(−h̄) = vt (h̄)},

and that [ω] must be the inverse image of [h̄2 ∂�
∂ h̄ ].

Remark 2.23 Similarly to Remarks 2.9 and 2.19, we could consider the space
RLevitGT(R) of R-linear Levi decompositions with w(−1) = t , and the proof of
Theorem 2.20 then combines with Remark 2.22 to give a canonical weak equivalence

RLevitGT(R) ×QP(A, 0)nondeg,sd � RLevitGT(R) × P(A, 0)nondeg

×MC(h̄2DR(X)�h̄2�[1]).

over RLevitGT(R).

2.5 Comparison with Kontsevich–Tamarkin quantisations

In [17], Kontsevich showed that for a smooth algebraic variety X over a field k of
characteristic 0, every Poisson structure π lifts to an algebroid quantisation of X . We
now investigate how this quantisation relates to our quantisations above when π is
non-degenerate and X affine; by descent, this comparison will extend to the global
quantisations of the next section. Unlike [18], the approach of [17] does not start from
a specific local quantisation, instead giving a construction dependent on a choice of
explicit quantisation formula over k, which is stated to depend on a choice of Drinfeld
associator with coefficients in k.

Tamarkin’s approach [29] to quantisation is more suited to comparison with our
constructions; although it is formulated for manifolds, it can also be adapted to alge-
braic varieties compatibly with [17], as indicated in [31, Remark 8.2.1]. It relies on the
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choice of a Drinfeld associator (or equivalently on a Levi decomposition w of GT).
As in [16] or [31, proof of Theorem 9.5.1], the key is the existence of a canonical
quasi-isomorphism

φw :
∏

i≥0

HomA(�i
A, A)[−i] � pwCC

•
k(A)

of filtered P2,∞-algebras, lifting the HKR isomorphism.
The quasi-isomorphism gives a k�h̄�-linear P2,∞-algebra quasi-isomorphism

̂Pol(A, 0)�h̄� � Q̂Polw(A, 0)

sending the filtration {∏i F
p−i h̄i }p on the left to {F̃ p}p, and inclusion of ̂Pol(A, 0)

on the left then gives rise to the quantisation map φw : P(A, 0) → QPw(A, 0) on
Maurer–Cartan spaces.

This allows us to make a comparison with our constructions:

Lemma 2.24 For A smooth over a field k ⊃ Q and w ∈ LeviGT(k), the map
φw : P(A, 0) → QPw(A, 0) from Poisson structures to quantisations, following [31,
Remark 8.2.1 and Theorem 9.5.1], extends to map

Comp(A, 0) → QCompw(A, 0),

(ω, π) 	→ (ω, φw(π))

from compatible pairs to w-compatible pairs.

Proof Functoriality of μ implies that μw(ω, φw(π)) = φw(μ(ω, π)), so φw(π) is
w-compatible with a pre-symplectic form ω whenever π is compatible with ω. ��

When w comes from an even associator, we then have:

Proposition 2.25 For a smooth algebra A over a field k ⊃ Q and forw ∈ LevitGT(k),
the map φw restricts to a map φw : P(A, 0)sd → QPw(A, 0)sd , i.e. the Tamarkin
quantisation φw(π) of any Poisson structure π on A is self-dual. When π is non-
degenerate, the quantisation φw(π) corresponds under Theorem 2.20 to the constant
de Rham power series π−1.

Proof The global formality quasi-isomorphisms of [31] depend only on a choice
of quasi-isomorphism in the formal case, i.e. replacing A with the pro-algebra
k�t1, . . . , td� when A has dimension d. Tamarkin’s approach to quantisation, as
described in [16], relies on showing that the equivalence class of P2-algebra deforma-
tions of Pol(k[t1, . . . , td ], 0) invariant under affine transformations is trivial. The same
is true for the equivalence class of anti-involutive P2-algebra deformations, replacing
the deformation complex of [16, §3.4] with its subspace of odd weight.

When w ∈ LevitGT(k), the involution i of Lemma 1.15 gives an anti-involution
−i on the P2-algebra pwCC•

k(A), and the argument above shows that the map φw is
compatible with the involutions, so we have φw : ̂Pol(A, 0)�h̄2� � Q̂Polw(A, 0)sd ,
giving the restriction claimed.
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The map of Lemma 2.24 then restricts to give a morphism Comp(A, 0) →
QCompw(A, 0)sd , and further restriction to non-degenerate elements gives the corre-
spondence between φw(π) and π−1 via Theorem 2.20. ��
Remark 2.26 Extending Theorem 2.20 to give existence of quantisations for degen-
erate Poisson structures on more general stacky CDGAs A requires an alternative to
[17]. In [26], this is established for finitely presented chain CDGAs (and hence derived
Deligne–Mumford stacks). Instead of looking at quantisations of k�t1, . . . , td�, the
problem is rigidified there by observing that pwCC•

k(A) is an involutive filtered defor-
mation of the P2-algebra ̂Pol(A, 0) whenever w is even. Calculations based on the
method of [27] then show that the∞-groupoid of deformations of ̂Pol(A, 0) as an anti-
involutive filtered P2-algebra is contractible, giving the desired quasi-isomorphism
pwCC•

k(A) � ̂Pol(A, 0).

3 Quantisation for derived stacks

As in [25, §3], in order to pass from stacky CDGAs to derived Artin stacks, we will
exploit étale functoriality using Segal spaces.

3.1 Quantised polyvectors for diagrams

Definition 3.1 Given a small category I , an I -diagram A in DG+dgCAlg(R), and an
A-moduleM in I -diagrams of chain cochain complexes, define the filteredHochschild
cochain complex CC•

R(A, M) to be the equaliser of the obvious diagram

∏

i∈I
CC•

R(A(i), M(i)) �⇒
∏

f : i→ j in I

CC•
R(A(i), M( j)),

with the filtration FkCC•
R(A, M) defined similarly, for the Hochschild complexes of

Definition 1.13.
We then write CC•

R(A) := CC•
R(A, A), which inherits the structure of a brace

algebra from each CC•
R(A(i), A(i)).

For f : i → j a morphism in I , observe that the HKR maps

grFk CC
•
R(A(i), f∗M( j)) → ˆHomA(i)(�

k
A(i), f∗M( j))

are quasi-isomorphisms whenever A(i) is cofibrant in the model structure of Lemma
1.4. Also note that if u : I → J is a morphism of small categories and A is a functor
from J to DG+dgCAlg(R) with B = A ◦ u, then we have a natural map CC•

R(A) →
CC•

R(B).
In order to ensure that CC•

R(A, M) has the correct homological properties, we now
consider categories of the form [m] = (0 → 1 → · · · → m).

Lemma 3.2 If A is an [m]-diagram in DG+dgCAlg(R)which is cofibrant and fibrant
for the injective model structure (i.e. each A(i) is cofibrant in the model structure of
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Lemma 1.4 and the maps A(i) → A(i + 1) are surjective), then grFk CC
•
R(A) is a

model for the derived Hom-complex R ˆHomA(L�k
A, A).

Proof The proof of [27, Lemma 2.2] adapts verbatim to stacky CDGAs to give
ˆHomA(�k

A, A) � R ˆHomA(L�k
A, A), from which this result follows immediately

via the HKR isomorphism. ��
The constructions in Sect. 1 now all carry over verbatim, generalising from cofibrant

stacky CDGAs to [m]-diagrams of stacky CDGAs which are cofibrant and fibrant for
the injective model structure. In order to identify QP/G1 withP , and for notions such
as non-degeneracy to make sense, we have to assume that for our fibrant cofibrant [m]-
diagram A of stacky CDGAs, each A( j) satisfies Assumption 1.8, so there exists N
for which the chain complexes (�1

A( j) ⊗A( j) A( j)0)i are acyclic for all i > N .

Definition 3.3 Given an [m]-diagram A satisfying the conditions of Lemma 3.2,
define

GPreSp(A, 0) := GPreSp(A(0), 0) = lim←−
i∈[m]

GPreSp(A(i), 0),

for the space GPreSp of generalised pre-symplectic structures of Definition 2.4.
Given a choice w ∈ LeviGT(Q) of Levi decomposition for GT, define

μw : GPreSp(A, 0) × QPw(A, 0) → T QPw(A, 0)

by setting μw(ω,�)(i) := μw(ω(i),�(i)) ∈ T QPw(A(i), 0) for i ∈ [m], and let
QCompw(A, 0) be the homotopy vanishing locus of

(μw − σ) : GPreSp(A, 0) × QPw(A, 0) → T QPw(A, 0).

over QPw(A, 0).

The following is [27, Lemma 2.3]:

Lemma 3.4 If D = (A → B) is a fibrant cofibrant [1]-diagram in DG+dgCAlg(R)

which is formally étale in the sense that the map

{Tot σ≤q(�1
A ⊗A B0)}q → {Tot σ≤q(�1

B ⊗B B0)}q
is a pro-quasi-isomorphism, then the map

ˆHomD(�k
D, D) → ˆHomA(�k

A, A),

is a quasi-isomorphism for all k.

As in [27, §3.4.2], for any of the constructions F based on QP , [27, Definition 2.7]
adapts to give an ∞-functor

RF : LDG+dgCAlg(R)ét → LsSet
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with (RF)(A) � F(A) for all cofibrant stacky CDGAs A over R, where
DG+dgCAlg(R)ét ⊂ DG+dgCAlg(R) is the subcategory of homotopy formally
étale morphisms.

Immediate consequences of Propositions 2.16 and 2.17 and Theorem 2.20 are that
for any w ∈ LeviGT(Q), the canonical maps

RQCompw(−, 0)nondeg → RQPw(−, 0)nondeg � RQP(−, 0)nondeg

RQPw(−, 0)nondeg/G j → (RQPw(−, 0)nondeg/G2) ×h
R(GSp(−,0)/G2)

R(GSp(−, 0)/G j )

RQPw(−, 0)nondeg,sd � RP(−, 0)nondeg × MC(h̄2DR(−)�h̄2�[1])

are weak equivalences of ∞-functors on the full subcategory of LDG+dgCAlg(R)ét

consisting of objects satisfying the conditions of Assumption 1.8, for all j ≥ 2.

3.2 Hypergroupoids

We now recall the main constructions from [24], as summarised in [27, §2.2].
We require our chain CDGA R over Q to be concentrated in non-negative chain

degrees, and write dg+CAlg(R) ⊂ dgCAlg(R) for the full subcategory of chain
CDGAs which are concentrated in non-negative chain degrees. We denote the oppo-
site category to dg+CAlg(R) by DG+Aff R . Write sDG+Aff R for the category of
simplicial diagrams in DG+Aff R . A morphism in DG+Aff R is said to be a fibration
if it is given by a cofibration in the opposite category dg+CAlg(R).

Definition 3.5 Given Y ∈ sDG+Aff R , a DG Artin N -hypergroupoid X over Y is a
morphism X → Y in sDG+Aff R for which:

(1) the matching maps

Xm → M∂�m (X) ×M∂�m (Y ) Ym

are fibrations for all m ≥ 0;
(2) the partial matching maps

Xm → M	m
k
(X) ×h

Mh
	m
k

(Y )
Ym

are smooth surjections for all m ≥ 1 and k, and are weak equivalences for all
m > N and all k.

A morphism X → Y in sDG+Aff R is a trivial DG Artin (resp. DM) N -
hypergroupoid if and only if the matching maps

Xm → M∂�m (X) ×M∂�m (Y ) Ym

are surjective smooth fibrations for all m, and are weak equivalences for all m ≥ n.
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The following is [24, Theorem4.15 andCorollary 6.35], as spelt out in [23, Theorem
5.11]:

Theorem 3.6 The ∞-category of strongly quasi-compact N-geometric derived Artin
stacks over R is given by localising the category of DG Artin N-hypergroupoids over
R at the class of trivial relative DG Artin N-hypergroupoids.

Given a DG Artin N -hypergroupoid X , we denote the associated N -geometric
derived Artin stack by X �.

There is a denormalisation functor D fromnon-negatively gradedCDGAs to cosim-
plicial algebras, with left adjoint D∗ as in [22, Definition 4.20]. Given a cosimplicial
chain CDGA A, D∗A is then a stacky CDGA, with (D∗A)ij = 0 for i < 0.

3.3 Global quantisations

The following is [27, Corollary 3.14], showing that a DG Artin N -hypergroupoid X
can be recovered from the stacky CDGAs D∗O(X� j

); this should be thought of as a
resolution by derived Lie algebroids.

Lemma 3.7 For any simplicial presheaf F on DGAff(R) and any Reedy fibrant
simplicial derived affine X, there is a canonical weak equivalence

holim←−
j∈�

map(Spec DD∗O(X� j
), F) → map(X, F).

Lemma 3.7 and [27, Proposition 3.19] ensure that if a morphism X → Y
of DG Artin N -hypergroupoids becomes an equivalence on hypersheafifying, then
D∗O(Y ) → D∗O(X) is formally étale in the sense of Lemma 3.4. In particular this
means that the maps ∂ i : D∗O(X� j

) → D∗O(X� j+1
) and σ i : D∗O(X� j+1

) →
D∗O(X� j

) are formally étale. Thus D∗O(X�•
) can be thought of as a DM hyper-

groupoid in stacky CDGAs, and we may make the following definition:

Definition 3.8 Given a DGArtin N -hypergroupoid X over R and any of the construc-
tions F based on QP , write

F(X) := holim←−
j∈�

RF(D∗O(X� j
)),

for RF as in Sect. 3.1.

The proof of [27, Proposition 3.29] shows that if Y → X is a trivial DG Artin
hypergroupoid, then the morphism F(X) → F(Y ) is an equivalence for any of the
constructions F = P,Comp,PreSp. Thus the following is well-defined:

Definition 3.9 Given a strongly quasi-compact DG Artin N -stack X over R, define
the spaces QP(X, 0), QCompw(X, 0), GSp(X, 0) to be the spaces QP(X, 0),
Compw(X, 0),GSp(X, 0) for any DG Artin N -hypergroupoid X with X � � X.
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Examples 3.10 Examples of derived stacks X with canonical 0-shifted symplectic
structures (elements of GSp(X, 0)/G1) include the derived moduli stack RPerf S
of perfect complexes on an algebraic K3 surface S, or the derived moduli stack
RLocG(�) = map(�, BG) of locally constant G-torsors on a compact oriented
topological surface �, for an algebraic group G equipped with a Killing form on its
Lie algebra. These both follow from [28, §3.1], with the symplectic form in the lat-
ter case coming from the 2-shifted symplectic structure in H4(F2DR(BG)), via the
composition

F2DR(BG) → F2DR(RLocG(�)) ⊗Q R�(�,Q) → F2DR(RLocG(�))[−2]

of pullback along � × RLocG(�) → BG with Poincaré duality.
When � is the 2-sphere, the Killing form gives an equivalence RLocG(�) �

T ∗BG, and for any derived Artin stack Y, [5] gives a 0-shifted symplectic structure
on the derived cotangent stack T ∗Y. Example 1.20 generalises to give canonical
quantisations in QP(T ∗Y, 0), defined in terms of differential operators. For explicit
hypergroupoid resolutions ofT ∗BG, the stackyCDGAsLD∗O((T ∗BG)�

j
) featuring

in our definitionofPoisson structures are just givenbyO(T ∗[G j/g j+1]) in the notation
of Example 1.20.

Proposition 3.11 For any strongly quasi-compact DG Artin N-stack X over R,
there is a natural map from QP(X, 0) to the space of curved A∞ deformations
(perdg(X)�h̄�, {m(i)}i≥0) of the dg category perdg(X) of perfect OX-complexes.

This restricts to a map from QP(X, 0)sd to the space of anti-involutive curved A∞
deformations of perdg(X).

Proof Combining [24, Proposition 5.12] with [27, Lemma 3.9 and Corollary 3.14]
and choosing a derived Artin N -hypergroupoid X representing X, we have

perdg(X) � holim←−
j∈�

perdg(D
∗O(X� j

)).

By definition, QP(X, 0) � holim←− j∈�
QP(D∗O(X� j

, 0), so the existence of the map

follows from Proposition 1.25. The second statement is an immediate consequence. ��
Adapting [25, Definition 2.20] to unshifted structures gives:

Definition 3.12 Given a Poisson structure π ∈ P(X, 0), we say that π is non-
degenerate if the induced map

π� : L�1
X → RHomOX (L�1

X,OX)

is a quasi-isomorphism of sheaves on X, and L�1
X is perfect.

Combined with the results above, an immediate consequence of the generalisation
of Propositions 2.16 and 2.17 and Theorem 2.20 in Sect. 3.1 is:
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Theorem 3.13 For any strongly quasi-compact DG Artin N-stack X over R, and any
w ∈ LeviGT(Q), there are canonical weak equivalences

QCompw(X, 0)nondeg → QPw(X, 0)nondeg � QP(X, 0)nondeg

QPw(X, 0)nondeg/G j → (QPw(X, 0)nondeg/G2) ×h
(GSp(X,0)/G2)

(GSp(X, 0)/G j )

QPw(X, 0)nondeg,sd � P(X, 0)nondeg × MC(h̄2DR(X)�h̄2�[1]).

This establishes the existence of 0-shifted deformation quantisations as conjectured
in [30, §5.3], bypassing [30, Conjecture 5.3] which would also allow quantisation of
degenerate Poisson structures (but see Remark 2.26).

Remarks 3.14 As in Remark 2.19, instead of choosing one Levi decomposition, we
could work with the space RLeviGT(R) of R-linear Levi decompositions, and the
proof of Theorem 3.13 then gives equivalences

RLeviGT(R) × QP(X, 0)nondeg/G j

→ RLeviGT(R) × (QP(X, 0)nondeg/G2) ×h
(GSp(X,0)/G2)

(GSp(X, 0)/G j ),

RLeviGT(R) × QP(X, 0)nondeg,sd

� RLeviGT(R) × P(X, 0)nondeg × MC(h̄2DR(X)�h̄2�[1])

over RLeviGT(R).
As in Remark 2.22, the power series w-compatible with a quantisation, although

determined by its even coefficients, might have odd coefficients unless w(−1) = t .
The reasoning of Remark 2.23 gives a canonical equivalence

RLevitGT(R) ×QP(X, 0)nondeg,sd � RLevitGT(R) × P(X, 0)nondeg

×MC(h̄2DR(X)�h̄2�[1])

overRLevitGT(R)which does send a quantisation to its family of compatible de Rham
power series.

As in Remark 1.34, self-dual quantisations ofOX also give rise to self-dual quanti-
sations of all anti-involutiveGm-gerbes, and in particular of the Picard algebroid with
anti-involution given by RHomOX

(−,L ) for any line bundle L .
Finally, applying étale descent to Proposition 2.25 shows that for a smooth DM

stack X , the Kontsevich–Tamarkin quantisation φw(π) of any Poisson structure π on
X is self-dual whenever w ∈ LevitGT(k). When π is non-degenerate, the quantisation
φw(π) then corresponds under Theorem 3.13 to the constant de Rham power series
π−1.
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