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We assume that all varieties are defined over the field C. Let V be a normal irre-

ducible projective variety of dimension n � 1, and let �V be an effective Q-divisor
on V . Write

�V =
r∑

i=1

ai�i ,

where each �i is a prime divisor, and each ai is a positive rational number. Suppose
that the log pair (V,�V ) has at most Kawamata log terminal singularities. Then, in
particular, each ai is less than 1. Suppose also that the divisor −(KV +�V ) is ample,
so that (V,�V ) is a log Fano variety. Finally, suppose that V is faithfully acted on by
a finite group G such that the divisor �V is G-invariant. Let αG(V,�V ) be the real
number defined by

sup

{
λ ∈ Q

∣∣∣∣∣
the pair (V,�V +λDV ) has Kawamata log terminal singularities

for every G-invariant and effective Q-divisor DV ∼Q −(KV +�V )

}
.

This number is known as the α-invariant of the log Fano variety (V,�V ), or its global
log canonical threshold (see [12, Definition 3.1]). If G is trivial, we put α(V,�V ) =
αG(V,�V ).

Example 1 The divisor −(KP1 + �P1) is ample if and only if
∑r

i=1 ai < 2. One has

α(P1,�P1) = 1 − max(a1, . . . , ar )

2 − ∑r
i=1 ai

.

We put αG(V ) = αG(V,�V ) if �V = 0.

Example 2 A finite group G acting faithfully on P
1 is one of the following finite

groups: the alternating group A5, the symmetric group S4, the alternating group A4,
the dihedral groupD2m of order 2m, or the cyclic group µm of order m (including the
case m = 1, that is, the trivial group). The number αG(P1)/2 is equal to the length of
the smallest G-orbit in P1, which gives

αG(P1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6 if G ∼= A5,

3 if G ∼= S4,

2 if G ∼= A4,

1 if G ∼= D2m,

1/2 if G ∼= µm .
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If both�V = 0 and G is trivial, we put α(V ) = αG(V,�V ). This is the most classical
case. Namely, if V is a smooth Fano variety, then by [11, Theorem A.3] the number
α(V ) coincides with the α-invariant of V defined by Tian in [45]. Its values were found
or estimated inmany cases. For example, in the toric case the explicit formula for α(V )

is given by Cheltsov and Shramov in [11, Lemma 5.1]. It gives α(Pn) = 1/(n + 1),
which can also be verified by an easy explicit computation.

The α-invariants of all del Pezzo surfaces with at worst Du Val singularities were
computed in [2,4,7,37,38,43]. Furthermore, the α-invariants of many non-Gorenstein
singular del Pezzo surfaces that are quasi-smooth well-formed complete intersections
in weighted projective spaces were computed in [9,15,24]. The α-invariants of many
smooth and singular Fano threefolds were computed or estimated in [3,5,6,11,23,25].
The α-invariants of smooth Fano hypersurfaces were estimated in [1,8,10,40].

The α-invariant plays an important role in Kähler geometry. If V is a smooth Fano
variety, then V admits a G-invariant Kähler–Einstein metric provided that

αG(V ) >
dim(V )

dim(V ) + 1
.

This was proved by Tian in [45]. In [21], this result was improved by Fujita. He proved
that V admits a Kähler–Einstein metric if it is smooth and

α(V ) � dim(V )

dim(V ) + 1
.

In particular, all smooth hypersurfaces in Pd of degree d are Kähler–Einstein, because
their α-invariants are at least (d − 1)/d by [1,8].

The K-stability of the log Fano variety (V,�V ) crucially depends on α(V,�V ).
For instance, if

α(V,�V ) <
1

dim(V ) + 1
,

then the log Fano variety (V,�V ) is K-unstable by [22, Theorem 3.5] and [19,
Lemma 5.5]. This bound is sharp, since Pn is K-semistable and α(Pn) = 1/(n + 1).
Vice versa, if α(V,�V ) � dim(V )/(dim(V ) + 1), then the log Fano variety (V,�V )

is K-semistable by [34, Theorem 1.4] and [20, Proposition 2.1].
The α-invariant also plays an important role in birational geometry. It was first

observed by Park in [35], where he proved a theorem that evolved into the following:

Theorem 3 ([4, Theorem 1.5]) Let X be a variety with at most terminal Q-factorial
singularities. Suppose that there is a proper morphism φ : X → Z such that Z is a
smooth curve, and −KX is φ-ample. Let P be a point in Z, and let EX be the scheme
fiber of φ over P. Suppose that EX is irreducible, reduced, normal, and has at most
Kawamata log terminal singularities, so that EX is a Fano variety by the adjunction
formula. Suppose also that there is a commutative diagram
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I. Cheltsov et al.

X

φ

ρ
Y

ψ

Z

such that Y is a variety with at most terminal Q-factorial singularities, ψ is a proper
morphism, the divisor −KY is ψ-ample, and ρ is a birational map that induces an
isomorphism

X \Supp(EX ) ∼= Y \Supp(EY ),

where EY is the scheme fiber ofψ over P. Suppose, in addition, that EY is irreducible.
Then ρ is an isomorphism provided that α(EX ) � 1. Moreover, if EY is reduced,
normal and has atmostKawamata log terminal singularities, thenρ is an isomorphism
provided that α(EX ) + α(EY ) > 1.

Theorem 3 gives a necessary condition in terms of α-invariants for the existence of a
non-biregular fiberwise birational transformation of a Mori fibre space over a curve.
It follows from [29, Theorem 1.1] that this condition is not a sufficient condition.
Nevertheless, the bound is sharp (one can find many examples in [35,36]).

Example 4 Let S be a P
1-bundle over a curve. Then we have an elementary trans-

formation to another P1-bundle over the same curve. Note that the α(P1) = 1/2 by
Example 2.

Example 5 ([18, Example 5.8]) Let S be a smooth cubic surface in P3 with an Eckardt
point O . Denote by L1, L2, L3 the lines in S passing through O . Put X = S×A

1, and
let φ be the natural projection X → A

1. Let us identify S with a fiber of φ. Then there
is a commutative diagram

U
α

ψ
U

β

X

φ

ρ
Y

ψ

A
1

where α is the blow-up of the point O , the map ψ is the anti-flip along the proper
transforms of the curves L1, L2, L3, and β is the contraction of the proper transform
of the surface S. The scheme fiber of ψ over the point φ(S) is a cubic surface in P

3

that has one singular point of type D4. Its α-invariant is 1/3 (see [4, Theorem 1.4]).
On the other hand, we have α(S) = 2/3 (see [2, Theorem 1.7]).

Example 6 ([35, Example 5.3]) Let X and Y be subvarieties in A
1×P

3 given by
equations

x3 + y2z + z2w + t12w3 = 0 and x3 + y2z + z2w + w3 = 0,
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respectively, where t is a coordinate on A
1, and (x : y :z :w) are homogeneous coordi-

nates on P
3. Then the projections φ : X → A

1 and ψ : Y → A
1 are fibrations into

cubic surfaces, and the map

(t, x, y, z, w) �→ (t, t2x, t3y, z, t6w)

gives a non-biregular birational fiberwise map ρ : X ��� Y . The fiber of φ over the
point t = 0 is a cubic surface that has one Du Val singular point of type E6, so that
its α-invariant is 1/6 (see [4, Theorem 1.4]), and the fiber of ψ over the point t = 0
is a smooth cubic surface with an Eckardt point, so that its α-invariant is 2/3 (see [2,
Theorem 1.7]).

The α-invariant also plays an important role in singularity theory. Let U � P be a
germ of a Kawamata log terminal singularity. Then it follows from [47, Lemma 1]
(cf. [39, Proposition 2.12]) that there is a birational morphism φ : X → U such that
its exceptional locus consists of a single prime divisor EX such that φ(EX ) = P , the
log pair (X, EX ) has purely log terminal singularities, and the divisor −(KX + EX )

is φ-ample. Then

−(KX + EX ) ∼Q −δX EX

for some positive rational number δX . Recall from [39, Definition 2.1] that the bira-
tionalmorphismφ : X → U is a purely log terminal blow-up of the singularityU � P .

By [27, Theorem 7.5], the divisor EX is a normal variety that has rational singular-
ities. Moreover, it can be naturally equipped with a structure of a log Fano variety. Let
R1, . . . , Rs be all the irreducible components of the locus Sing(X) of codimension 2
that are contained in EX . Put

DiffEX (0) =
s∑

i=1

mi − 1

mi
Ri ,

where mi is the smallest positive integer such that the divisor mi EX is Cartier in a
general point of Ri . Then DiffEX (0) is usually called the different of the pair (X, EX ).
One has

−δX EX |EX ∼Q −(KX + EX )|EX ∼Q −(
KEX + DiffEX (0)

)
.

Furthermore, the singularities of the log pair (EX ,DiffEX (0)) are Kawamata log ter-
minal by Adjunction (see [44, 3.2] or [26, 17.6]). This means that (EX ,DiffEX (0)) is a
log Fano variety with Kawamata log terminal singularities, because −EX is φ-ample.

Definition 7 (cf. [31, Definition 1.1]) The log Fano variety (EX ,DiffEX (0)) is a
Kollár component of U � P .

Let us show how to compute α(EX ,DiffEX (0)) in three simple cases.
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Example 8 (cf. [39, Example 2.4]) Let U � P be a germ of a Du Val singularity,
and f : W → U be the minimal resolution of this singularity. Then the exceptional
curves of f are smooth rational curves whose self-intersections are−2, and their dual
graph is of type Am,Dm,E6,E7, or E8. Let EW be one of the exceptional curves that
is chosen as follows. If U � P is not a singularity of type Am , let EW be the only
f -exceptional curve that intersects three other f -exceptional curves, i.e., EW is the
“fork” of the dual graph. If U � P is a singularity of type Am , choose EW to be the
k-th curve in the dual graph. In this case, we may assume that k � (m + 1)/2. In all
the cases, there exists a commutative diagram

W

f

h
Y

g

U

where h is the contraction of all f -exceptional curves except EW , and g is the contrac-
tion of the proper transform of EW on the surface Y . Denote the g-exceptional curve
by EY . Then Y has at most Du Val singularities of typeA, the curve EY is smooth, and
it contains all the singular points of the surface Y , if any. One can check that the log
pair (Y, EY ) has purely log terminal singularities (see [28, Theorem 4.15 (3)]). Also,
the divisor −(KY + EY ) is g-ample. Thus, the curve EY is a Kollár component of the
singularity U � P . Moreover,

DiffEY (0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 in the case of A1,
m − 1

m
Pm−1 in the case of Am and k = 1,

k − 1

k
Pk−1 + m − k

m − k + 1
Qm−k

in the case of Am

and 2 � k � (m + 1)/2,
1

2
P1 + 1

2
Q1 + m − 3

m − 2
Rm−3 in the case of Dm,

1

2
P1 + 2

3
Q2 + m − 4

m − 3
Rm−4 in the case of Em,

where Pi , Qj , and R
 are singular points of Y that lie on EY . The singular point Pi
(resp. Qj and R
) is a Du Val singular point of type Ai (resp. A j and A
). Since
EY ∼= P

1, it follows from Example 1 that

α(EY ,DiffEY (0)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k

m + 1
� 1

2
in the case of Am,

1 in the case of Dm,

2 in the case of E6,

3 in the case of E7,

6 in the case of E8.
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Example 9 LetU � P be a germ of a Du Val singularity of typeAm , and let f : W →
U be the minimal resolution of this singularity.

Let Q be a point on one of the f -exceptional curves. We consider two cases,
one is the case where the point Q belongs to one of the two exceptional curves that
correspond to “tails” of the dual graph but it is not contained in any other exceptional
curve, the other is the case where Q is the intersection point of the k-th and (k+1)-th
f -exceptional curves, 1 � k � m/2.
Let ξ : Ŵ → W be the blow-up at Q, and ζ be the contraction of the proper

transforms of all the f -exceptional curves. Thus, there exists a commutative diagram

Ŵ

f ◦ξ

ζ
Y

g

U.

Denote the g-exceptional curve by EY . It is a smooth rational curve. The dual graphs
of the exceptional curves of the minimal resolution of singularities ζ : Ŵ → Y are
chains such that the self-intersection numbers of the exceptional curves are −3,−2,
. . . ,−2, and the proper transform of EY intersects only the “tail” components of these
chains. In the former case, Y has a unique singular point O , which is a quotient of C2

by the cyclic group µ2m+1. In the latter case, it contains two singular points P1 and
P2, which are quotients ofC2 by the cyclic groupsµ2k+1 andµ2(m−k)+1, respectively.

By [28, Theorem 4.15 (3)] the log pair (Y, EY ) has purely log terminal singularities.
Also, the divisor −(KY + EY ) is g-ample. Thus, the curve EY is a Kollár component
of the singularity U � P . Moreover,

DiffEY (0) =

⎧
⎪⎪⎨

⎪⎪⎩

2m

2m + 1
O in the former case,

2k

2k + 1
P1 + 2(m − k)

2(m − k) + 1
P2 in the latter case.

Therefore,

α(EY ,DiffEY (0)) =

⎧
⎪⎪⎨

⎪⎪⎩

1

2m + 2
<

1

2
in the former case,

2k + 1

2m + 2
� 1

2
in the latter case.

In particular, in the latter case we see that α(EY ,DiffEY (0)) = 1/2 if and only if m is
even, and Q is the “central point” of the configuration of the f -exceptional curves.

It is easy to see from [28, Theorem 4.15] that if U � P is a Du Val singularity of
type D or E, and the exceptional curve EW in Example 8 is not the one corresponding
to the “fork” of the dual graph, then the curve EY is not a Kollár component (see
[39, Example 4.7]). We will see later that in these cases the singularity U � P has a
unique Kollár component, which is described in Example 8. This is not true in general,
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i.e., a Kollár component of a singularity U � P may not be unique, as one can see
from Examples 8 and 9. Nevertheless, Li and Xu established in [31, Theorem B] the
following:

Theorem 10 A K-semistable Kollár component of U � P is unique if it exists.

The K-semistable Kollár components of two-dimensional Du Val singularities are
described in our Examples 8 and 9. They are precisely the Kollár components whose
α-invariants are at least 1/2 (cf. [32, Example 4.7]).

Note that Du Val singularities are two-dimensional rational quasi-homogeneous
isolated hypersurface singularities. The K-semistable Kollár components of many
three-dimensional rational quasi-homogeneous isolated hypersurface singularities
have been described in [9,15]. Similarly, the K-semistable Kollár components of many
four-dimensional rational quasi-homogeneous isolated hypersurface singularities have
been described in [23].

The purpose of this paper is to prove the following analogue of Theorem 3.

Theorem 11 Let U � P be a germ of a Kawamata log terminal singularity. Suppose
that there is a commutative diagram

X

φ

ρ
Y

ψ

U

whereφ : (X ⊃ EX ) → (U � P) andψ : (Y ⊃ EY ) → (U �P) are purely log terminal
blow-ups of the germ U � P. If

α(EX ,DiffEX (0)) + α(EY ,DiffEY (0)) � 1,

then ρ is an isomorphism.

Before proving this result, let us consider its applications. Suppose that

α(EX ,DiffEX (0)) � dim(U ) − 1

dim(U )
. (1)

By Theorem 11, this inequality implies that the α-invariant of another Kollár compo-
nent of the singularity U � P , if any, must be less than 1/dim(U ), so that it should
be K-unstable. Of course, this also follows from Theorem 10, because inequality (1)
implies that the log Fano variety (EX ,DiffEX (0)) is K-semistable.

Theorem 11 also implies

Corollary 12 If α(EX ,DiffEX(0)) � 1, then the Kollár component of U � P is
unique.
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This corollary is well known: it follows from [39, Theorem 4.3] and [30, Theorem 2.1].
Recall from [39, Definition 4.1] that the singularity U � P is said to be weakly
exceptional if it has a unique purely log terminal blow-up. This is equivalent to the
condition that there is aKollár component EX ofU � P such thatα(EX ,DiffEX (0)) �
1 (see [39, Theorem 4.3], [30, Theorem 2.1], and [12]). It follows from Example 8
that Du Val singularities of types D and E are weakly exceptional. On the other hand,
Du Val singularities of type A are not weakly exceptional, since each of them admits
several Kollár components (see Examples 8 and 9), and thus has several purely log
terminal blow ups.

Remark 13 Du Val singularities are special examples of two-dimensional quotient
singularities. Note that quotient singularities are always Kawamata log terminal. For
each of them, it is easy to describe one Kollár component. Let Ĝ be a finite subgroup in
GLn+1(C). Suppose thatU � P is a quotient singularity Cn+1/Ĝ. By the Chevalley–
Shephard–Todd theorem, we may assume that the group Ĝ does not contain any
quasi-reflections (cf. [13, Remark 1.16]). Let η : Cn+1 → U be the quotient map.
Then there is a commutative diagram

W

π

ω
Y

ψ

C
n+1

η
U

where π is the blow-up at the origin, the morphism ω is the quotient map that is
induced by the action of Ĝ lifted to the variety W , and ψ is a birational morphism.
Denote by Ẽ the exceptional divisor of π , and denote by EY the exceptional divisor
of ψ . Then Ẽ ∼= P

n, and EY is naturally isomorphic to the quotient Pn/G, where G
is the image of the group Ĝ in PGLn+1(C). Moreover, the log pair (Y, EY ) has purely
log terminal singularities, and the divisor −(KY + EY ) is ψ-ample. Thus, the log
Fano variety (EY ,DiffEY (0)) is a Kollár component of the singularity U � P . Also,
it follows from [31, Example 7.1 (1)] and [31, Theorem 1.2] that (EY ,DiffEY (0)) is
K-semistable. Furthermore, one has

α(EY ,DiffEY (0)) = αG(Pn)

(see [12, Proof of Theorem 3.16]). Thus, if αG(Pn) � 1, then this Kollár compo-
nent is unique by Corollary 12. One can find many subgroups G ⊂ PGLn+1(C)

with αG(Pn) � 1 in [12–14,16,33,41,42]. Note also that one always has αG(Pn) �
1184036 by [46].

In the remaining part of the paper, we prove Theorem 11. Let us use its assumptions
and notations. We have to show that ρ is an isomorphism. Suppose that this is not the
case. Let us seek for a contradiction.
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We may assume that U is affine. There exists a commutative diagram

W
gf

X

φ

ρ
Y

ψ

U

such that W is a smooth variety, and f and g are birational morphisms. Denote by
EW
X and EW

Y the proper transforms of the divisors EX and EY on the variety W ,
respectively. Then EW

X is g-exceptional, and EW
Y is f -exceptional. We may assume

that EW
X , EW

Y and the remaining exceptional divisors of f and g form a divisor with
simple normal crossings.

Observe that EW
X 
= EW

Y . Indeed, if EW
X = EW

Y , then ρ is small, which is impossi-
ble, because −EX is φ-ample, and −EY is ψ-ample (see [17, Proposition 2.7]). Let
F1, . . . , Fm be the prime divisors on W that are contracted by both f and g. Then

KW + EW
X + aEW

Y +
m∑

i=1

ai Fi ∼Q f ∗(KX + EX )

for some rational numbers a, a1, . . . , am . Since the log pair (X, EX ) has purely log
terminal singularities, all numbers a, a1, . . . , am are strictly less than 1. Also, we have

EW
X ∼Q f ∗(EX ) − bEW

Y −
m∑

i=1

bi Fi ,

where b, b1, . . . , bm are non-negative rational numbers. Then b > 0, since f (EW
Y ) ⊂

EX .
Fix an integer n � 0. PutMX = |−nEX |. ThenMX does not have any base points.

Denote its proper transforms on Y and W byMY
X and MW

X , respectively. Then

MW
X ∼Q − f ∗(nEX ) ∼Q −nEW

X − nbEW
Y −

m∑

i=1

nbi Fi ,

which implies that MY
X ∼Q −nbEY . On the other hand, we have −(KY + EY ) ∼Q

−δY EY for some positive rational number δY . Put εX = δY /(nb). Then εXM
Y
X ∼Q

−(KY + EY ), so that

KW + EW
Y + εXM

W
X + αEW

X +
m∑

i=1

αi Fi ∼Q g∗(KY + EY + εXM
Y
X

) ∼Q 0
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for some rational numbers α, α1, . . . , αm . Similarly, let MY be the base point free
linear system |−nEY |. Denote by MX

Y and MW
Y its proper transforms on X and W ,

respectively. Then there is a positive rational number εY such that εYMX
Y ∼Q −(KX+

EX ), so that

KW + EW
X + εYM

W
Y + βEW

Y +
m∑

i=1

βi Fi ∼Q f ∗(KX + EX + εYM
X
Y

) ∼Q 0

for some rational numbers β, β1, . . . , βm .

Lemma 14 One has α > 1 and β > 1. In particular, the singularities of the log pairs(
Y, EY + εXM

Y
X

)
and

(
X, EX + εYM

X
Y

)
are not log canonical.

Proof It is enough to show that α > 1. We have

EW
Y + εXM

W
X + αEW

X +
m∑

i=1

αi Fi ∼Q −KW

∼Q EW
X + aEW

Y +
m∑

i=1

ai Fi − f ∗(KX + EX ).

This gives

εXM
W
X ∼Q (1 − α)EW

X + (a − 1)EW
Y +

m∑

i=1

(ai − αi )Fi − f ∗(KX + EX ). (2)

It implies that

εXMX ∼Q − (KX + EX ) − (α − 1)EX .

Recall that − (KX + EX ) ∼Q −δX EX . We then obtain

εXMX ∼Q − (KX + EX ) − (α − 1)EX ∼Q − tX (KX + EX ),

where tX = 1 + (α − 1)/δX . On the other hand, from (2) we obtain

(1 − α)EW
X +

m∑

i=1

(ai − αi )Fi ∼Q (1 − a)EW
Y + (1 − tX ) f ∗(KX + EX ).

Now we let

B = (1 − α)EW
X +

m∑

i=1

(ai − αi )Fi + (a − 1)EW
Y ,
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so that −B is f -nef. Then B is effective if and only if f∗(B) = (1−α)EX is effective
by Negativity Lemma (see [28, Lemma 3.39]). Since a < 1, the divisor B is not
effective, which implies that α > 1. �
As in the proof of Lemma 14, put tY = 1 + (β − 1)/δY . Then

εYMY ∼Q − tY (KY + EY ).

Now take any positive rational numbers λ and μ such that λ + μ � 1. One has

KX + EX + λεYM
X
Y + μεXMX ∼Q − (λ + μtX − 1)(KX + EX ),

so that KX + EX + λεYM
X
Y + μεXMX is φ-ample. Similarly, we see that

KY + EY + λεYMY + μεXM
Y
X ∼Q − (λtY + μ − 1)(KY + EY ),

so that KY + EY + λεYMY + μεXM
Y
X is ψ-ample.

Lemma 15 At least one of the log pairs
(
X, EX+λεYM

X
Y

)
and

(
Y, EY +μεXM

Y
X

)

is not log canonical.

Proof Suppose that
(
X, EX+λεYM

X
Y

)
and

(
Y, EY +μεXM

Y
X

)
are log canonical.

Then the log pairs
(
X, EX+λεYM

X
Y +μεXMX

)
and

(
Y, EY +λεYMY +μεXM

Y
X

)
are

also log canonical. On the other hand, we have

KW + EW
X + λεYM

W
Y + μεXM

W
X + cEW

Y +
m∑

i=1

ci Fi

∼Q f ∗(KX + EX + λεYM
X
Y + μεXMX

)

for some rational numbers c, c1, . . . , cm that do not exceed 1. Similarly, we have

KW + EW
Y + λεYM

W
Y + μεXM

W
X + dEW

X +
m∑

i=1

di Fi

∼Q g∗(KY + EY + λεYMY + μεXM
Y
X

)
,

where d, d1, . . . , dm are rational numbers that do not exceed 1. Denote by DW the
boundary λεYM

W
Y + μεXM

W
X + EW

X + EW
Y + ∑m

i=1 Fi . Then

KW + DW ∼Q f ∗(KX + EX + λεYM
X
Y + μεXMX

)

+ (1 − c)EW
Y +

m∑

i=1

(1 − ci )Fi

∼Q g∗(KY + EY + λεYMY + μεXM
Y
X

)

+ (1 − d)EW
X +

m∑

i=1

(1 − di )Fi .
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Moreover, the log pair (W, DW ) is log canonical, sinceW is smooth, the linear systems
MW

Y and MW
X are free from base points, and the divisors EW

X , EW
Y , F1, . . . , Fm form

a simple normal crossing divisor. Since KX + EX + λεYM
X
Y + μεXMX is φ-ample,

it follows from [28, Corollary 3.53] that the log pair
(
X, EX + λεYM

X
Y + μεXMX

)

is the canonical model of the log pair (W, DW ). Similarly, the log pair
(
Y, EY +

λεYMY + μεXM
Y
X

)
is also the canonical model of the log pair (W, DW ), because

KY + EY + λεYMY + μεXM
Y
X is ψ-ample. Since the canonical model is unique by

[28, Theorem 3.52], we see that ρ is an isomorphism. Since ρ is not an isomorphism
by assumption, we obtain a contradiction. �
Let λ = α(EX ,DiffEX (0)) and μ = α(EY ,DiffEY (0)). We may assume that the log
pair

(
X, EX+λεYM

X
Y

)
is not log canonical. Then

(
EX ,DiffEX (0)+λεYM

X
Y |EX

)
is

not log canonical by Inversion of Adjunction, see [26, 17.6]. On the other hand, we
have

εYM
X
Y

∣∣
EX

∼Q − (KX + EX )|EX ∼Q − (KEX + DiffEX (0)).

This is impossible by the definition of the α-invariant α(EX ,DiffEX (0)).
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