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Abstract—Various notions of privacy preservation have been
proposed for mobile trajectory data sharing/publication. The
privacy guarantees provided by these approaches are theoretically
very different and cannot be directly compared against each
other. They are motivated by different adversary models, making
varying assumptions about adversary’s background knowledge
and intention. A clear comparison between existing mechanisms
is missing, making it difficult when a data aggregator/owner
needs to pick a mechanism for a given application scenario. We
seek to fill this gap by proposing a measure called STRAP that
allows comparison of different trajectory privacy mechanisms on
a common scale. We also study the trade-off between privacy
and utility i.e., how different mechanisms perform when utility
constraints are imposed over them. Using STRAP over two
real mobile trajectory datasets, we compare state of the art
mechanisms for trajectory data privacy and demonstrate the value
of the proposed measure.

I. Introduction
The widespread adoption of smart mobile devices equipped

with a multitude of sensors offers a rich source of data on
user patterns for mobile app and network service providers.
Sharing of mobile app data to third parties (e.g., advertisers)
is attractive for developers to monetize their apps [1]. Equally,
sharing of mobile subscriber data by network providers offers
them revenue generation opportunities and enables a variety of
use cases [2]. Moreover, open publication of such datasets can
be highly valuable for research purposes. Unscrupulous sharing
or publication of such datasets risks violating the privacy of
individual mobile users whose data figures in those datasets.
In this paper, we focus our attention on the issue of privacy
preserving sharing/publication of mobile trajectory data. This
is due to two reasons. First, mobile user location data over
time (i.e., trajectories) is perhaps the most easily obtainable
user contextual data for app/service providers. Second, mobile
trajectory data when aggregated across users and mined offers
rich insight on collective spatio-temporal patterns of mobile
users in a region.

High level of uniqueness inherent to human mobility traces
[3] makes them vulnerable to re-identification and harder to
ensure user privacy. In recent years, a number of privacy
preservation mechanisms have been proposed for trajectory data
sharing. Approaches that rely on some form of anonymization
(e.g., [1], [4], [5]) have been found to be insufficient for this
purpose with or without utility constraints. This in turn has
led to more advanced mechanisms employing approaches like
differential privacy (DP) (e.g., [6]), k-Anonymity (e.g., [2],
[7]) and Plausible Deniability [8], [9]. However, the theoretical
guarantees provided by these different privacy mechanisms
are very different and not directly comparable against each

other. For each mechanism, the notion of privacy is based on
what characteristics of the available data they preserve, and
use this characteristic as the criteria for their privacy definition.
Moreover, different mechanisms differ in their adversary and
attack models, making them very different from each other.
This makes it really difficult for a data aggregator/owner (e.g.,
app/service provider) to choose between different mechanisms
towards privacy preserving trajectory data sharing/publication.

In this paper, we aim to quantify privacy offered by different
trajectory privacy preservation mechanisms (TPPMs) on a
common scale, for the first time, so as to enable comparison
across them. Specifically, we propose STRAP (Scale for
TRAjectory Privacy), a novel metric that can be used to assess
the relative privacy guarantees provided by different TPPMs.
We also use STRAP to study how constraining utility affects
the privacy achieved by different mechanisms. The key idea
underlying STRAP is the observation that even though different
TPPMs have different theoretical privacy models, all of them
perform obfuscation in a way that tries to reduce similarity
between the original trajectories and their replications in the
output database while also keeping in mind the uniqueness of
the users. We use this common ground as a means to compare
different mechanisms by having the STRAP measure consider
both similarity/distance (between input and output trajectory
datasets) and uniqueness of the users in the original dataset.

The contributions of this paper can be summarized as
follows:
• We propose a new privacy metric for assessing tra-

jectory privacy, STRAP, that can be used as a com-
mon measure to evaluate and cross-compare privacy
imparted by different TPPMs. We base STRAP on
distance and uniqueness factors of the database, as well
as incorporate the background knowledge of adversary.

• We develop a novel way of computing trajectory dis-
tance by leveraging the idea of trajectory segmentation.
This is based on the intuition that not all parts of
a user’s trajectory are equally vulnerable to privacy
threats. Hence, we divide a trajectory into different
segments and evaluate the privacy of each segment
separately.

• We also study the privacy-utility tradeoff of different
TPPMs i.e., for a fixed utility level to be achieved, how
the different approaches compare against each other in
terms of privacy.

The rest of the paper is organized as follows. In Section II,
we present relevant background and discuss related work. In
Section III, we present the system model. In Section IV, we



give an overview of the proposed STRAP metric along with
its design rationale. Sections V, VI and VII focus on different
components that make up STRAP. Evaluation results focusing
on using STRAP for privacy comparison between different
representative TPPMs are presented in Section VIII. Section
IX concludes the paper.

II. Background and Related Work
A. Trajectory Privacy Preservation Mechanisms (TPPMs)

Location and trajectory privacy has received a fair amount
of attention in the literature with various different forms of
solution approaches (see [10], for example). From a privacy
preserving trajectory data sharing standpoint, which is the focus
of this paper, the state of the art approaches fall under one of
the three categories outlined below.

1) Differential Privacy (DP) based Mechanisms: DP aims at
hiding the presence/absence of a user in the database. Although
classical DP restricts to only publishing query results and not
database itself, few recent works have used DP for publishing
sanitized database by generating a model of the given data by
asking relevant queries [11]. Chen et al. [12] adopt a prefix tree
approach and fit a noisy Markov model based on DP to generate
synthetic output trajectories. Developing this idea further,
He et al. [6] propose a hierarchical reference system called
DPT to increase the scope of generated synthetic trajectories
incorporating varying user speeds and large spatial domain.

2) K-Anonymity based Mechanisms: This class of ap-
proaches inherently follow the data publishing model. While
optimal solution for k-Anonymity is known to be NP-hard [13],
approximate solutions based on this approach do exist. For
example, Gramaglia et al. [7] propose an approximate solution
called GLOVE for full length user trajectories where the aim is
to modify user location information in such a way that atleast
k people in the database have similar trajectories; however,
this solution is expensive and is based on a heuristic measure
of anonymizability. Follow-on work by the same authors [2]
provides an optimal solution to a constrained variant of k-
Anonymity where they restrict the background knowledge of
the attacker to a fixed time interval.

3) Plausible Deniability (PD) [8]: This is the most recently
proposed approach for privacy preserving data/trajectory sharing.
The idea here is to ensure that the output synthetic trajectory
derived from a given original user trajectory could also have
been derived from at least k − 1 other input trajectories [9],
thus reducing the probability of linking back to the original
user trajectory.

B. Evaluation and Comparison of TPPMs
Shokri et al. [14] propose a framework to quantify location

privacy by mounting different attacks, and applying statistical
inference tools to re-establish the user identity. However
the focus of their work is limited to simple cloaking and
generalization based privacy preservation mechanisms.

Cormode et al. [15] propose the notion of empirical privacy
which they quantify as the fraction of database tuples for
which sensitive information cannot be predicted correctly. Their
privacy is based on the output of a fixed set of queries that
captures the similarity between input and output database
records. Since their privacy is query dependent, its value may
change if different queries are used for evaluating privacy.

Fig. 1: Region divided into cells, some of which are junctions (colored
cells in the figure).

Almasi et al. [16] evaluate the disclosure risk in terms
of uniqueness of the original record, and also study the
privacy-utility tradeoff. They quantify privacy only in terms
of uniqueness of record in the original database, and do not
capture the record’s similarity to records in the output sanitized
database. Note that the work by Shokri et al. [14] focuses on
trajectory data, while the work of Cormode et al. [15] and
Almasi et al. [16] is applicable for any/generic database.

Although existing works try to quantify privacy, none of
them rigorously compare different state of the art TPPMs.
Moreover, for assessing privacy they either make use of
similarity (between input and output databases) or uniqueness.
As we argue in section IV, both these aspects need to be taken
into account and this in turn motivates the design of our STRAP
metric that captures the combined effect of these aspects.

III. System Model

Consider a database Din consisting of m original user
trajectories. This database is passed as input to a TPPM that
obfuscates trajectories and produces an output mobility database
Dout of the same or different number of users. Dout can be
represented as a function of input database, Din, and the privacy
mechanism,M, used with privacy parameter α, i.e.

Dout = F1(Din,Mα) (1)

Each record (row) of input database (ai ∈ Din) or
output database (oi ∈ Dout) represents ith user trajectory
i.e., the path traversed by user i over time. Mathematically,
ai = ((l1, t1), (l2, t2), . . . , (ln, tn)) where lk = (xk, yk) ∈ R2

is the location in two dimensional space, tk ∈ N ∀k ∈ [1 . . . n]
is the time instance when location lk is observed, and n is the
length of the trajectory ai.

A. Division of Region into Cells

We divide entire region, R, into smaller sub-regions called
cells (R = {c1 ∪ c2 ∪ . . .}). We call a subset of these cells as
junctions (J = {j1, j2, . . .} ⊆ R), where multiple trajectories
intersect in space i.e., multiple user paths converge into or
diverge out of these junctions. Fig. 1 shows an example scenario
where three user trajectories are intersecting to form three
junctions. As a special case, we also consider the cells that
contain start and end locations of trajectories as junctions.

Many TPPMs use interchanging or swapping of trajectories
at cells with high user density (i.e., junctions) to impart privacy
as this preserves overall mobility statistics. When such mech-
anisms are included in the comparative assessment, using the



notion of junctions is helpful in properly quantifying trajectory
distance. Use of junctions in our framework has additional
benefits like performance enhancement as the computation is
based on a subset of all cells in the region. Moreover, since
junctions are used for trajectory segmentation (explained in
Section VI-C), the path traversed between two junctions can
also provide the knowledge of direction of user movement.

B. Adversary Model

Adversary’s model is generally quantified by two main
characteristics: a) adversary background knowledge, and b) ad-
versary attack or intentions. We model adversary’s background
knowledge as coming from two different sources. First, partial
knowledge of user trajectories. We assume that adversary knows
a subset of locations of each user trajectory. This knowledge is
represented as the adversary database (Dadv). Second, adversary
also has access to the entire output database, Dout, published
after sanitization. We additionally assume that junctions are
a common knowledge among database users as well as the
adversary and can be obtained by inspecting the region of
interest.

Regarding the adversary attack, we assume that adversary is
interested in reconstructing the trajectory of a user by looking
at the obfuscated set of trajectories in the sanitized (output)
dataset. This is called reconstruction attack [14]. The adversary
makes use of Dadv , and Dout for performing this attack.

C. Characteristics of Privacy Metric

The metric that we propose compares original database
against the database generated by using TPPM and aims to
identify the similarity between their records. We assign a privacy
value to each input record, and then compute the final privacy
measure called STRAP.

To avoid any bias towards a particular TPPM, it is essential
for a truly independent metric to be oblivious to the privacy
mechanism used. Hence, our metric design does not rely on
the knowledge of mechanism used for privacy preservation.
The privacy level, ∆, measured with STRAP is only a function
of the original database, output database and the adversary’s
knowledge, i.e.,

PrivacyLevel, ∆ = F2(Din, Dout, Dadv) (2)

D. Utility Constraint Based Comparison

Different TPPMs can be judged independent of each other
by varying their privacy parameters. However to understand
how they compare against each other, we fix a desired utility
level to be achieved and use this utility level as a constraint to
be satisfied by each mechanism.

We use a workload of range count queries as a measure of
TPPM utility. Let Q be the set of queries. Each range count
query (q ∈ Q) returns the number of footfalls or the number
of timestamped locations found within a specified latitude and
longitude range, over a given time period.

To measure utility, we use the widely adopted method used
in earlier works [17], [18]. We measure utility of each query
(q ∈ Q) as the relative error in its answer when applied to the

sanitized database (Dout) with respect to the original database
(Din), i.e.,

error(q) =
|q(Dout)− q(Din)|

q(Din)
(3)

For the entire query workload (Q), we use average relative error
over all queries in the workload, i.e.,

error(Q) =

∑
q∈Q error(q)

|Q|
(4)

IV. STRAP Design Rationale and Overview

A. Relation between Uniqueness and Privacy

For a given trajectory, its uniqueness is defined as the number
of trajectories in its close vicinity. Uniqueness is a characteristic
of the database that captures how much vulnerable database
records are to a re-identification attack. This idea is strongly
conveyed in [3] in which authors show that human mobility
traces are highly unique that even four different location points
can distinguish an individual’s trajectory from others. The
solution approach of k-Anonymity [19] focuses to reduce this
uniqueness in user attributes via generalization and suppression.
Hence we base our mechanism on the uniqueness of records in
the original database. Note that uniqueness in output database
may not matter as the unique output trajectories may not be
linked back to any of the original trajectories, hence not affecting
database privacy.

To back our argument of using uniqueness as a factor in
STRAP, we examine the scenario of Fig. 2. Considering the
adversary model as presented in Section III-B, let us assume
that adversary knows locations l1, l2, lk−1 and lk of a user u
and wants to find its remaining locations. Let us first take the
case when no privacy preservation is used and the database is
published in its original form. If user u is unique, the adversary
will be able to match its known locations to the exact locations
in the output, thereby re-constructing the entire user trajectory
(Fig. 2(a)), implying that high uniqueness results in reduced
privacy. Now consider the scenario when user u is not unique
(again without any sanitization), and another user u′ in Din

has the same four locations l1, l2, lk−1 and lk (Fig. 2(b)). In
this case, the adversary will be confused between two locations
for lk−2 not being sure which one belongs to user u. Thus,
as uniqueness reduces, the chances of user re-identification
also reduces, implying higher privacy.

B. Relation between Trajectory Distance and Privacy

The desirable property that privacy preserving mechanisms
try to achieve is that an adversary is unable to link a published
sanitized trajectory to an original user trajectory. To achieve
this, TPPMs perform obfuscation by adding noise thereby
changing the true values of database attributes. We capture this
obfuscation by measuring geographical distance between the
actual trajectory of a user and corresponding output trajectories,
thus also base our privacy metric on their distance. This
distance provides an index of similarity [15], [16] and helps in
determining the confidence level with which original attribute
values can be inferred from the output.

We argue for the use of distance in the same way as for
uniqueness. After trajectory obfuscation, output database will



(a) Unique trajectory =⇒ lower privacy (b) Non-unique trajectory =⇒ higher privacy

Fig. 2: Scenario depicting how trajectory uniqueness affects privacy

(a) Shorter distance =⇒ lower privacy (b) Longer distance =⇒ higher privacy

Fig. 3: Scenario depicting how distance between input and output trajectories affects privacy

contain noisy locations which may be different from original lo-
cations. The number of matched locations will depend upon the
level of noise added. For a smaller value of noise being added,
distance from original trajectory will be shorter (Fig. 3(a)). Here,
locations l1, l2 and lk match providing adversary with higher
confidence about user’s remaining locations, implying lower
privacy. On the other hand, a higher distance from original
trajectory will result in a small number of matched locations
(for example in Fig. 3(b) only two locations l1 and lk match),
implying higher privacy.

C. Solution Overview

In view of the above discussion, we base STRAP on
two different factors: (i) expected distance (ED) of an input
trajectory from the output database trajectories – this captures
the similarity of an original record against output records
(Section VI) and (ii) uniqueness (U ) of the input trajectories –
this captures the degree of identifiability of a user in a given
set of original records (Section VII).

Note that higher expected distance of a trajectory means that
it is difficult to reconstruct the input trajectory given the san-
itized output, hence higher privacy. Higher uniqueness, on the
other hand, can lead to easy identifiability of a record, implying
lower privacy. Based on these two factors, STRAP computes
the privacy level (∆u) for each user trajectory, au, as follows:

∆u =
ED(au)

Uu
(5)

Higher the value of STRAP (∆), more private is the data
record. It is also important to emphasize that our method does
not quantify the absolute privacy achieved by a TPPM (i.e.,
whether the adversary has been successful in its attack) but it
quantifies the relative privacy levels of different TPPMs.

Our solution is divided into three main steps as described
below:

1) Develop a common mobility model that encodes the
adversary’s knowledge of user mobility:
1.1 Build a Markov model from adversary’s

knowledge of input trajectories.

1.2 Build a Markov model of output database.
1.3 Combine these two models into one model.

2) Compute segmentation based trajectory distance using
the mobility model developed in the first step:
2.1 Segment each input and output user trajectory

based on junctions.
2.2 Calculate expected distance of all input tra-

jectories by computing segment distances.
3) Compute trajectory uniqueness and the final metric

value:
3.1 Find uniqueness of each user trajectory rela-

tive to other users in the input dataset.
3.2 Use uniqueness as the weight to compute final

privacy metric, STRAP, for the database.
Section V describes the first step i.e., building the ad-

versary’s knowledge model. Trajectory distance measure is
explained in Section VI, while trajectory uniqueness and final
metric computation are presented in Section VII.

V. Adversary Knowledge and User Profile
As mentioned earlier, an adversary has two sources of

knowledge 1) partial user trajectories (Dadv) and 2) complete
published database (Dout). It first builds the input trajectory
based profile (Pu) for each user u from Dadv . Adversary also
develops a common profile of transition probabilities (P out)
for the output database, and then combines these two to build
the final user mobility model.

A. Input Database Based User Profiles
Consider that each user location li is known to adversary

with a probability p. This provides adversary with partial
trajectories of each user (Dadv). Using Dadv, we construct
a matrix of transition probabilities, Pu, for each user u
following the first order Markov model. This matrix contains
the probability of transitioning from one junction to another,
where each junction is a state in our Markov model and the
missing states are determined using Gibbs Sampling [20].

B. Knowledge gain from Output Database
A second order Markov model based transition probability

matrix, P out, is constructed from the output database (Dout).
We use second order Markov model as it better captures the



direction of movement of the user. Using a second order Markov
model for Dadv does not work well, as adversary only knows
a limited number of user locations (each with probability p)
making the second order model very sparse.

Moreover, we compute transitions only against junctions
J (and not all cells) since junctions are the regions where
multiple users meet and a synthetic user trajectory path can be
swapped at junctions to differ from an original trajectory. Also,
transitions across junctions suffice to capture the direction of
user movement using a second order Markov model. The size
of profile matrix for each user, Pu, is (|J |× |J |), and the size
of output database matrix, P out, is (|J |2 × |J |), where (| · |)
represents cardinality of the set.

C. Overall User Transition Probabilities
Since user profile encodes incomplete information of user

movements, an adversary is never completely certain about
actual user trajectory. We capture this uncertainty in the
adversary’s belief of Pu by means of Shannon’s Entropy [21].
Specifically, for each user u, we calculate normalized entropy
(Hu

ji
) of transition probabilities for each junction, ji ∈ J i.e.,

each row of Pu matrix as,

Hu
ji = −

∑
jk∈J P

u
ji,jk

log2(Puji,jk)

log2(|J |)
(6)

where Puji,jk is the transition probability of user u from junction
ji to junction jk, |J | represents the number of transition states.
Dividing by log2(|J |) normalizes the value of entropy between
0 and 1.

Now, we factor in the knowledge obtained from output
database (P out) depending upon the degree of uncertainty of
user profile, Pu. A higher value of Hu

ji
(≈ 1) indicates more

uncertainty in Pu i.e., adversary’s confidence on Pu is lower.
Hence give more weightage to P out transition matrix. We use
entropy to provide appropriate weights to Pu and P out and
compute their weighted average as,

Wu
ji = (1−Hu

ji)P
u
ji + (Hu

ji)P
out
ji ,∀ji ∈ J (7)

where Puji (and P outji
) is ji row of Pu (and P out), Wu is the

final transition probability knowledge matrix of user u that
adversary uses to compute expected trajectory distance.

It is worth mentioning here that since we use second order
Markov model for Dout, this can be an issue when the dataset
is sparse. In that case, the Markov model built will not be based
on a rich set of transitions and hence not very reliable. For such
databases, we can revert back to using first order Markov model
for P out. Though we will have a disadvantage on directionality,
but it can get compensated by using the richer Markov model
with fewer transitions.

VI. Trajectory Distance Measure

In this section, we aim to develop a means to compute
similarity between Din and Dout. To do this, we propose
a novel way of computing trajectory distances by exploiting
trajectory segmentation. First we describe why simple distance
measure between two full trajectories does not work. Then we
describe our method of trajectory segmentation.

A. Geographic Distance Between Trajectories

To capture geographic similarity between two trajectories (or
trajectory segments), we use Dynamic Time Warping (DTW)
[22]. This distance measure is widely used by data mining
community for a variety of time series related tasks [23].
DTW finds a mapping between two series such that total
distance between the points on the mapped path is minimized.
Considering that timestamped location points form a time series,
we use DTW to find distance between them. We chose DTW
over other measures because TPPMs also modify the timestamp
of locations along with modifying the location data, and DTW
captures this time difference very nicely by detecting phase
shifts in time series. Other measures like Euclidean distance
are not able to capture obfuscation along time dimension. For
example, two exactly same paths traversed at different times of
the day can have zero or non-zero distance depending upon the
time lag window chosen by DTW.

Consider two trajectories X and Y consisting of location-
time tuples. The normalized DTW distance between X and Y
is given as,

dist(X,Y ) = DTW (X,Y )/max(|X|, |Y |) (8)

where |X| (and |Y |) is the number of timestamped locations in
trajectory X (and Y ). Note that dist(X,Y ) is non-negative, a
higher value of dist(X,Y ) represents lower similarity between
trajectories X and Y . DTW (X,Y ) between two trajectories,
X and Y , is defined based on [23] as,

DTW =



0, if |X| = |Y | = 0

∞, if |X| = 0 or |Y | = 0

deu(x1, y1)+

min{DTW (Rest(X),

Rest(Y )),

DTW (Rest(X), Y ),

DTW (X,Rest(Y ))}, otherwise

Here deu(xi, yi) is the Euclidean distance between location
points xi and yi. Most modern implementations of DTW have
the time complexity of O(max(|X|, |Y |)).

B. Why Full Trajectory Comparison Does Not Work
Here we argue that the intuitive way of judging trajectory

similarity i.e., by calculating trajectory distance of full lengths is
insufficient. Let us assume that the closest match of a trajectory
au ∈ Din, that has the minimum distance from au, is ou ∈
Dout, i.e.,

ou = arg min
ok∈Dout

dist(au, ok), au ∈ Din (9)

This way of obtaining the closest trajectory will only be
effective when each input trajectory is obfuscated independently.
For the advanced mechanisms involving synthetic trajectory
generation based on common database characteristics, this
will not work. Similarly, this measure will not be effective
for swapping or intersection based techniques. To clarify this
further, consider the scenario of Fig. 4, where two trajectories,
u1 and u2, start from cells (or junctions) j1 and j5 respectively.
After the application of privacy mechanism, their start locations
remain the same however the final locations get interchanged.



Fig. 4: Scenario showing full trajectory comparison is ineffective.

A simple distance calculation of u1 and u2 (using eq. 8),
from either of the output trajectories, u′1 and u′2, returns a non-
zero distance value. However, we can see that each user’s partial
trajectory segment is replicated in the output database thereby
revealing sensitive user locations. Hence, distance metric should
return a zero value in this case. This suggests that full length
distance calculation will not be able to capture such scenarios.

C. Trajectory Segmentation
Use of segments in trajectory distance computation is

beneficial in 1) detecting trajectory overlap based on junctions,
and 2) comparing a long input trajectory with a relatively
shorter output trajectory. Second point is significant because
we observed in our experiments that some privacy mechanisms
produce very small length output trajectories to privatize
original trajectories. Computing full length trajectory distance
in such cases produces misleading results.

We partition each user trajectory into smaller segments
based on junctions J . First we identify the locations in user
trajectories that pass through junctions. Then we partition each
user trajectory au into segments from the locations where they
pass through junctions. Let Su be the set of trajectory segments
of au i.e., Su = {su1 , su2 , . . .}. Fig. 5 shows three trajectories,
each divided into three segments since they pass through two
junctions. Such segmented trajectories are created for all users
in Din and Dout.

Once trajectories in Din and Dout are segmented, we
compute expected distance of each input trajectory segment
(Section VI-D). We then perform normalized addition of the
expected distances of all trajectory segments of a user to obtain
its distance from the closest matched output trajectories.

D. Expected Segment and Trajectory Distance
Selecting each segment from input trajectory and finding its

distance from the closest segment in the output database is not
sufficient. To explain this further, again consider the scenario of
Fig. 4. Distance of trajectory segment s1 = (j1, j2) in the input
database from the segment s′1 = (j′1, j

′
2) in the output database

will be zero. Similarly, distance of input trajectory segment
s2 = (j2, j3) from s′2 = (j′2, j

′
3) will also be zero. This way,

total distance of trajectory u1, which is equal to the sum of
its segment distances, will be zero. This zero distance implies
low or no privacy i.e., adversary can easily find correct user
locations. However, this is not true as the segment s2 of the
input trajectory u1 is clearly being compared with an entirely
different user trajectory’s (i.e., u2) segment.

To address this issue, we use knowledge matrix of at-
tacker (Wu, eq. 7) to find the expected distance of each
input trajectory from the output database in a probabilistic

Fig. 5: Illustration of dividing trajectories into segments at junctions.

manner. Consider a user trajectory au divided into k segments,
Su = {su1 , su2 , . . . suk}. Let the ith segment si of trajectory au
starts from junction x and ends at junction y (i.e., sui = sux,y).
Let G(x) be the set of cells in the immediate vicinity of junction
x including x itself. We call G(x) the neighborhood of x. G(x)
represents a coarser region around the junction x as shown in
Fig. 6. We define expected distance (ED) of input segment sui
starting at junction x as the weighted average distance of sui
from all output segments starting at junctions G(x). Weights
for averaging are derived from adversary knowledge matrix
Wu. Mathematically,

ED(sux,y) =
∑

(x′,z′)∈SG(x),G(z);z∈J

wux,z′ · dist(sux,y, sx′,z′)

where wux,z′ is the transition probability of user u from junction
x to z′. SG(x),G(z) is the set of all user segments that start
from neighborhood of x i.e., G(x) and end at neighborhood
of z i.e., G(z) in the output database. Also, note that sux,y is
the user segment of Din, while sx′,y′ is from Dout.

The reason we use generalized neighborhood G(·) of junc-
tions is that when privacy mechanisms obfuscate trajectories,
junctions may not appear at exactly the same cells but in nearby
cells. Therefore, a user segment in input may not pass through
exactly same junctions in output, but from the cells that are in
the neighborhood of those junctions. By exploring all segments
starting from neighboring cells, we make sure none of those
cases are left unnoticed.

Now we compute the final expected distance for a user’s
full trajectory au as the normalized sum of expected distances

Fig. 6: (a) Segment in Din passing through junctions (x, y), (b)
Segments in Dout passing through neighborhood (G(x), G(y)) of
(x,y) and neighborhood (G(x), G(z)) of (x,z).



of corresponding trajectory segments. Expected distance can
be zero for some of the trajectory segments, either because an
exact sequence of locations in the output segment is found or
because no segment originated from the neighborhood G(x)
in Dout. The latter type of segments imply higher privacy
since no output segment matched with them. We identify such
segments (Suzero) and subtract their count from total number of
segments in the trajectory (|Su|). We use this difference as the
normalization factor for our final distance value computation.
Thus the total expected distance of trajectory au is computed
as follows,

ED(au) =

∑
si∈Su ED(sui )

|Su| − |Suzero|
(10)

VII. Trajectory Uniqueness and The Final Privacy
Metric

A. Trajectory Uniqueness Measure

To illustrate why including uniqueness in privacy design
metric is necessary, consider two trajectories a1 and a2 in
Fig. 7 where each trajectory is represented as a dot in n-
dimensional space. Here a1 has no trajectory in its vicinity
while there are three other trajectories in the neighborhood of
a2, hence a1 is more unique than a2. Consider that both a1
and a2 are obfuscated by adding the equal amount of noise
to their respective locations using the same TPPM. Since a1
is unique, with some background knowledge an adversary can
easily construct the original user trajectory from the obfuscated
one. However, adversary will get confused among multiple
trajectories that are similar to a2 while reconstructing its
trajectory since it is not unique.

To compute each trajectory uniqueness, we find the number
of other trajectory records present within a certain distance
from the given trajectory. Let Cu be the number of neighboring
trajectories of au that are less than dth distance apart from au.
Let Ctotal be the count of neighboring trajectories of all users
in the database, i.e.,

Ctotal =
∑
u∈Din

Cu (11)

We compute uniqueness (U) of user u as reciprocal of the
count of its neighboring trajectories, normalized by total user
count, i.e.,

Uu =
1

Cu/Ctotal

=
Ctotal
Cu

(12)

Fig. 7: User trajectories each represented as a dot in n-dimensional
space.

Note that the uniqueness value will depend upon dth level
chosen. However, as uniqueness is a characteristic of only Din,
dth will affect the final STRAP value for all TPPMs in the same
relative manner. Hence, any sensible value of dth can be chosen.

Also, one can argue that since uniqueness depends upon
Din only and is same across different mechanisms, why is
distance not sufficient for STRAP calculation. While this is
true when the privacy of a single trajectory is being compared,
when multiple trajectories are present in the database, distance
only cannot assess privacy of overall database.

B. Final STRAP Metric

Given the expected trajectory distance and uniqueness
measure, the final value of privacy metric, STRAP, that
represents the relative privacy level of each user u, as given in
equation (5), will be,

∆u =
ED(au)

Uu
=

∑
si∈Su ED(sui )

|Su|−|Su
zero| /

Ctotal
Cu

(13)

STRAP value for the whole database can be computed as,

∆Din
=

∑
u∈Din

∆u (14)

In the same way, we can use the STRAP metric to compute the
relative privacy achieved by top most 5% or 10% vulnerable
trajectories in the database.

If m is the number of trajectories in each of the input and
output databases, n is the average length of each trajectory
and J is the number of junctions in the entire region, then
runtime complexity for creating Markov models will be O(mn)
as this can be obtained by a single parsing of the trajectories.
To compute the DTW distance between an input-output pair of
trajectories, we need to compute all pairwise DTW distances
between each input segment (length n/|J |) and each output
segment (length n/|J |). There are maximum |J |2 such segment
pairs, and computing the distance for each pair takes O(n/|J |)
time, so the runtime for distance between the input-output pair
of trajectories is O(n|J |). There are m such trajectories, so the
total computation time for expected distance of all trajectories
will be O(mn|J |). Finally, runtime complexity to compute
uniqueness of all trajectories is O(m2n).

VIII. Evaluation

For evaluation purpose, we consider mechanisms based on
data publishing model, since it does not restrict the use of
data to limited applications. From each of the privacy notions
discussed in Section II-A, we select the following state-of-
the-art mechanisms. For DP, we use the most recent work that
publishes trajectories derived from a differentially private model
[6]. Although k-Anonymity is a well established concept, there
are not many works that implement k-Anonymity on full location
trajectories. We use GLOVE [7] as it is the latest and complete
implementation of k-Anonymity on trajectory data. For Plausible
Deniability, we use [8] which is an implementation specific to
location trajectories. Privacy parameters for DP, k-Anonymity
and PD are represented as ε, kA and kPD, respectively.
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Fig. 8: Variation of STRAP with change in DP parameter (ε)
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Fig. 9: Variation of STRAP with change in k-Anonymity (kA)

A. Datasets

To study the impact of database characteristics on privacy
and utility, we use two different mobility datasets described
below.

1) Mobile Data Challenge (MDC) Dataset: MDC dataset
[24] consists of walking traces of 185 users over the area of Lake
Geneva in Switzerland. The location information is provided in
the form of GPS coordinates along with timestamp consisting
of around 12 million user locations. Using this dataset has a
challenge that it is very sparse with user trajectories spanning
over a vast region of approximately 512km × 223km. Therefore,
we selected 70 users with highest frequency of occurrence in
the dataset over a duration of 8 hours. We divide total time
into bins of 5 minutes each.

2) EPFL Mobility Dataset: This dataset consists of taxi
mobility traces in San Francisco and is openly available from
CRAWDAD [25]. The average time interval between two
consecutive location updates is less than 10 seconds making
the dataset quite fine-grained. We selected top 400 users for
the duration of 8 hours timestamped every 5 minutes.

B. Results

1) Varying Privacy Parameter: We plot the variation of
STRAP against privacy parameters of DP (ε), k-Anonymity
(kA) and PD (kPD) in Fig. 8, 9 and 10 respectively. These
figures show a monotonic increase in privacy (STRAP) with an
increase in kA and kPD, and a decrease in ε, thus validating our
privacy metric is in coherence with standard privacy definitions.

As seen in Fig. 8, lower ε values provide higher privacy,
indicated by a higher value of STRAP. Similarly, higher ε values
provide lower privacy, however the fall in privacy reduces as
ε increases. In Fig. 9 and 10, similar behavior is observed
for k-Anonymity (kA) and Plausible Deniability (kPD), where
higher k indicates higher privacy and vice-versa.
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Fig. 10: Variation of STRAP with change in PD parameter (kPD)

Moreover, we observe that there is a noticeable affect
on privacy with change in adversary knowledge. We varied
adversary knowledge percentage (p) as 20%, 30% and 40%
of the user trajectory points, and noticed that as adversary
knowledge increases, the privacy reduces.

Also, notice that STRAP values are different across different
datasets even when the same TPPM is applied (e.g. Fig. 8(a) and
8(b)). Here, lesser value of STRAP for EPFL dataset compared
to MDC dataset does not mean that EPFL dataset is less private
than MDC. We cannot draw such a comparison using STRAP be-
cause its values are calculated based on actual values of database
attributes, hence changing the database will return a different
metric value, even if the same privacy parameter is used.

2) Cross-Comparison Under Utility Constraints: To be able
to cross-compare different mechanisms, we fix a desired utility
level to be achieved and find the STRAP value that provided
desired utility. We notice that different TPPMs provide very
different privacy when we put a utility constraint over them.
Fig. 11 shows this privacy-utility trade-off by plotting STRAP
along Y-axis against utility along X-axis. We plot relative error
(eq. (4)) in reverse on X-axis to better visualize the trade-
off (lesser the relative error, higher the utility). Ideally, one
would want privacy mechanisms to fall in the top right corner
exhibiting both high privacy and utility. However, in reality, as
privacy increases, noise in data increases resulting in reduced
utility, hence the resulting curves exhibit different behaviors.

We observe when privacy requirements are not stringent,
these mechanisms achieve almost similar and higher utility
values (bottom right corner in Fig. 11). In other words, if utility
of resulting database is the primary focus, all TPPMs exhibit
similar performance and impart lower privacy, hence any of
these can be chosen. However, as the utility requirements start
relaxing, their performance starts differing from each other in
terms of the privacy levels achieved (as we move towards top
left corner in Fig. 11).
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Fig. 11: Privacy Vs Utility Tradeoff - Range Count Queries



In Fig. 11(a) for MDC dataset, we notice that inspite of
being known as a strong privacy notion, DP performs worse than
k-Anonymity and PD. However, for EPFL dataset, in Fig. 11(b),
DP provides higher privacy compared to both k-Anonymity and
PD at lower utility constraints. This contrast in DPT behavior is
seen because of the difference in characteristics of two datasets
used: MDC dataset is very sparse, while EPFL dataset is highly
dense. The performance of DPT algorithm depends upon the
number of trajectory records, it builds a poor mobility model
thereby giving a reduced utility when the number of users is
lesser [6]. Among k-Anonymity and PD, there is no obvious
winner for MDC dataset, but PD provides slightly higher privacy
for most of the utility values for EPFL dataset. Thus, when
sparsity is not an issue, PD is preferable over k-Anonymity.

3) Effect of Database Characteristics: Although privacy
notions are database oblivious, but the existing algorithms
implementing them are highly dependent on database character-
istics such as number of records (database size), sparsity of the
database (user density), etc. For instance, a trajectory database
with dense user distribution loses little in terms of utility when
k-Anonymity is applied, as observed in graphs with different
datasets. Similarly, as seen in Fig. 11(a), DPT algorithm is
vulnerable to this problem to a great extent.

During our experiments we also noticed that the performance
of these algorithms in terms of their execution time varies
greatly with the database size. We found that DPT algorithm
is highly scalable and its execution time did not slow down
considerably as the number of users increased. PD algorithm,
however, takes a considerable amount of time to build the
model of semantic clusters i.e. proportional to the square of
all locations in the dataset [8]. Moreover, once trajectories
are generated, PD discards most of them as they do not meet
the criteria of having been derived from kPD users. As kPD
increases, it becomes more time consuming to obtain satisfactory
traces leading to prolonged execution time. GLOVE is a greedy
algorithm, has quadratic runtime complexity and designed to
be highly parallelizable [7], it is much faster than PD.

IX. Conclusion
We have developed a measure called STRAP to evaluate

and compare the privacy provided by different TPPMs based
on database uniqueness and obfuscation distance. As part of
STRAP, we have also proposed a novel way of computing
distance between different trajectories. Given a database and
an application scenario, our STRAP metric can be used to
chose among different TPPMs. Our results show that given
the fixed utility constraints, the privacy achieved by different
mechanisms is highly dependent on the database used. No
single mechanism performed consistently better over others for
all types of datasets and applications. Although we developed
STRAP in the context of trajectory data, we believe it is
straightforward to extend to other types of data via suitable
modification of the distance measure used. We leave the
detailed examination of this issue for future work.
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