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Summary/Abstract: 

In vitro histone modification (HM) assays are used to characterize the activity of chromatin-

modifying enzymes. These assays provide information regarding the modification sites on 

histones, the product specificity, and the impact of other histone or nucleotide modifications on 

enzyme activity. In particular, histone methyltransferase (HMT) assays have been instrumental in 

elucidating the activity and site specificity of many plant HMT enzymes. In this chapter, we 

describe a general protocol that can be used to perform HMT assays using different chromatin 

substrates, detection methods, and enzymes directly purified from plant material or heterologous 

sources. 
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1. Introduction 

The study of epigenetics is largely focused on understanding how different chemical modifications 

on DNA and histones affect chromatin-based biological processes. Identifying the specific activity 

of a chromatin-modifying enzyme is often the first step in elucidating the molecular function of a 

particular epigenetic mark. In vitro histone modification (HM) assays have long been the method 

of choice to precisely identify the substrate of histone methyltransferases, acetyltransferases, and 



 

 

kinases, as well as their antagonizing counterparts, the “erasers” of histone modifications [1]. 

These assays have significantly facilitated the study of plant chromatin since the discovery and 

characterization of the first plant histone methyltransferase (HMT) enzymes [2,3]. Even though 

many chromatin-modifying enzymes have now been functionally characterized in terms of their 

substrate preferences, HM assays still remain a very useful method in chromatin biology. For 

example, HM assays can be used to determine product specificity (e.g. mono, di-, or tri-

methylation) and the impact of histone variants and neighboring histone/DNA modifications on 

the enzymatic activity of histone-modifying enzymes (Fig. 1). Recent work in plant epigenetics on 

the histone H3 lysine 27 (H3K27) methyltransferases ATXR5 and ATXR6 underscores the 

usefulness of in vitro HM assays for understanding the functions of chromatin-modifying enzymes. 

HMT assays were used to show 1) that ATXR5 and ATXR6 do not methylate H3K4 (as predicted 

by sequence comparison) but rather H3K27 and 2) that the enzymatic activity of ATXR5 and 

ATX6 is specific for replication-dependent H3.1 variants [4,5].        

 

In vitro HM assays rely on setting up a chemical reaction between a histone-modifying enzyme 

and a chromatin substrate. The chromatin substrate used in these assays can be peptides, histone 

monomers, histone dimers/tetramers/octamers, or even complete nucleosomes. Many of these 

substrates are now commercially available.  In addition, new techniques have made it possible to 

design and synthesize complex nucleosome substrates (e.g. including different histone/DNA 

modifications and/or histone variants) to answer precise questions about the interplay between 

different epigenetic marks [6,7]. In this chapter, we describe a general protocol that can be used to 

perform HMT assays using different chromatin substrates. The addition of methyl groups can 

either be detected with radioactive assays, or by using antibodies against a specific histone mark. 



 

 

All these detection methods are described here in different sections of the protocol (Fig. 2). We 

seek to provide sufficient experimental details to help scientists adapt this assay to their specific 

scientific needs.             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Materials 



 

 

 

2.1 HMT reactions 

1. 5x methylation buffer: 250 mM Tris-HCl pH 8.5 (pH measured at 21°C), 25 mM MgCl2 

(see Note 1). 

2. 3H-labeled S-adenosylmethionine (3H-SAM, available from Perkin Elmer, e.g. 

NET155H250UC, or in Europe also from Hartmann Analytic, e.g. ART0288), with the 

3H label present in the methyl group. Aliquot and store at -20°C, avoid repeated freeze-

thaw cycles (Radioactive assay only, see Note 2).  

3. 0.2 M DTT (dithiothreitol) stock solution. Aliquot and freeze at -20°C.  

4. Non-radioactive SAM stock as a 32 mM stock solution. Alternatively, a 2.5 mM SAM 

stock solution can be created by dissolving 1 mg of SAM in 788 µl of 5 mM sulfuric 

acid, pH 2, 10% ethanol. Aliquot and freeze at -20°C.    

5. TE buffer: 10 mM Tris-HCl pH 8.0, 1 mM EDTA.  

6. BC100 buffer: 20 mM Tris-HCl pH 8.0, 100 mM KCl, 0.2 mM EDTA, 20% glycerol, 1 

mM DTT. Add DTT fresh before using. 

7. 4X SDS-PAGE loading buffer: 200 mM Tris-HCl (pH 6.8), 400 mM DTT, 8% SDS, 

0.4% bromophenol blue and 40% glycerol. Aliquot and store at -20°C. 

8. Histone methyltransferase preparation in suitable buffer: enzymes for these assays are 

typically obtained from recombinant expression in E. coli or Sf9 insect cells followed by 

purification using affinity tags grafted onto the methyltransferase (see Note 3). 

9. Methylation substrate: suitable substrates include histone peptides (see Note 4), 

recombinant or native histones (see Note 5), and mono- or oligonucleosomes (see Note 

6). The choice of substrate depends on the specificity of the enzyme and experimental 



 

 

needs, however, the unavailability of more complex substrates may impose limitations in 

selecting the optimal substrate.  

10. Heat block (with heated lid to prevent evaporation) or incubator set to 30°C or reaction 

temperature of choice (see Note 7).  

11. Laboratory space equipped and certified for the use of 3H radioactive material 

(Radioactive assay only, see Note 8). 

 

 

2.2 Detection of methylated histones by SDS-PAGE and radioactivity 

1. SDS-PAGE reagents and equipment for standard mini gels. Use of prestained protein 

marker is recommended to monitor transfer. 

2. Equipment and reagents for wet or semi-dry transfer. 

3. PVDF membrane. 

4. Laboratory platform rocker. 

5. Coomassie stain solution: 45% (v/v) methanol, 10% (v/v) acetic acid, 0.25% (w/v) 

coomassie brilliant blue R. For 500 ml, dissolve 1.25 g of coomassie brilliant blue R in 

225 ml of methanol. Add distilled water up to a final volume of 450 ml. Add 50 ml 

glacial acetic acid. Filter to remove residual undissolved coomassie dye.  

6. Destain solution: 45% (v/v) methanol, 10% (v/v) acetic acid. 

7. Camera or imaging system capable of taking white-light monochrome or color images. 

Alternatively, a scanner can be used. 

8. Autoradiography enhancer (e.g. EN3HANCE spray, Perkin Elmer). 

9. Autoradiography film with high sensitivity for 3H.  



 

 

10. Autoradiography cassette and bag. 

11. -80 °C freezer. 

12. Darkroom with red safelight. 

13. Automated X-ray developer or manual film development setup. 

14. Hair dryer or laboratory heat gun capable of running in cool mode (recommended but not 

essential; see Notes 12 and 13). 

If performing scintillation counting (Subheading 3.2, steps 11–13): 

15. Scalpel or razorblade. 

16. Liquid scintillation cocktail suitable for 3H 

17. Scintillation vials. 

18. Scintillation counter suitable for 3H detection. 

 

2.3 Detection of methylated peptides by SDS-PAGE and radioactivity 

1. Same materials as under 2.2 with the exception of blotting reagents and equipment, 

coomassie stain solution, EN3HANCE spray, and items for scintillation counting. 

2. Autoradiography Enhancer (e.g. ENLIGHTNING Rapid, Perkin Elmer, or Amplify 

Fluorographic Reagent, Amersham). 

3. Filter paper (e.g. Whatman 3MM Chr).  

4. Thin clear wrap such as saran wrap. 

5. Gel drying apparatus. 

 

 

2.4 Detection of methylated histones or peptides by SDS-PAGE and antibodies 



 

 

1. SDS-PAGE reagents and equipment for standard mini gels. Use of prestained protein 

ladder is recommended. 

2. Equipment and reagents for semi-dry transfer. 

3. Nitrocellulose or PVDF membrane. 

4. Laboratory platform rocker. 

5. Primary antibody against a specific histone mark. Follow the manufacturer’s 

recommendation regarding the dilution to be used in a Western Blot. 

6. Secondary antibody coupled to horseradish peroxidase. Make sure that the secondary 

antibody used has specificity for the antibody species and isotype of the primary 

antibody. Refer to manufacturer’s protocol for determining which dilution to use.   

7. TBS: 20 mM Tris pH 7.5, 100 mM NaCl. 

8. TBS-T: 20 mM Tris pH 7.5, 100 mM NaCl, 0.1 % (v/v) Tween.  

9. Blocking solution: 5 % Nonfat Dry Milk in TBS-T solution. 

10. Antibody solution: 2 % Nonfat Dry Milk in TBS-T solution or follow the antibody 

manufacturer’s recommendation. 

11. ECL Western Blotting Detection Reagents. 

12. X-ray film for Western blot. 

13. Standard film cassette. 

14. Automated X-ray developer or manual film development setup. 

 

 

 

2.5 Detection of methylated peptides and histones by using radioactivity and filter assays 



 

 

1. Whatman P-81 filter papers (cellulose phosphate paper which is also a strong cation 

exchanger). 

2. BD solution: 50 mM NaHCO3 at pH 9.0. Prepare a fresh solution before use. 

3. 1 L beaker. 

4. Rocking shaker. 

5. Liquid scintillation cocktail suitable for 3H (e.g. Gold Star by Meridian) and scintillation 

vials. 

6. Liquid scintillation counter suitable for 3H detection. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

3. Methods 



 

 

3.1 HMT reaction 

This protocol can be adapted to a broad range of methyltransferases and substrates. Depending on 

the choice of substrate and detection method, subsequent steps differ and are outlined separately 

in the following sections (see Subheadings 3.2-3.5 and Fig. 2). If no activity is detectable, pointers 

for troubleshooting are provided at the end (see Subheading 3.6). If performing multiple assays 

with different substrates or enzyme preparations, it is advisable to prepare a master mix containing 

all common components. 

    

1. On ice, combine distilled water (to make up a total reaction volume of 25 µl including 

substrate), 5 µl 5x methylation buffer, 0.5 µl 0.2 M DTT (4 mM final), 10 µM unlabeled 

SAM (e.g. 0.25 µl of a 1 mM pre-dilution in water of the stock solution) or 25–75 kBq of 

3H-SAM (if relying on radioactivity-based detection methods), and methyltransferase 

preparation (in BC100, see Note 3). 0.5-1 pmol (25–50 ng for a 50 kDa protein) of purified 

enzyme is usually sufficient to detect activity, but higher amounts might be necessary for 

some methyltransferases. If higher reaction volumes are required, for instance due to 

diluted enzyme or substrate preparations, scale up 5x methylation buffer, DTT, and SAM 

accordingly to maintain their final concentrations.  

2. Add substrate to start the reaction. If using peptides (see Note 4), add peptide to a final 

concentration of 0.1–1 mM (2.5–25 nmol). If using core histones (see Note 5), add 0.5–4 

µg of histones (0.18–1.47 µM or 4.6–36.7 pmol for recombinant Xenopus laevis histones). 

If using nucleosomal substrates (see Note 6), use the same amounts as indicated for core 

histones.    

3. Mix well by pipetting up and down. Centrifuge briefly if needed (see Note 8).  



 

 

4. Incubate at 30°C (see Note 7) for 1 h if doing end-point assays or for shorter time points if 

analyzing reaction kinetics to obtain enzymatic parameters (see Note 9).  

5. Stop reactions by adding 8.3 µl of 4x SDS sample buffer (to reach 1x final) and boiling at 

95°C for 5 min. Centrifuge for 10 sec at full speed. Different detection procedures can be 

followed after this step. For detection of methylated histones or methylated peptides using 

SDS-PAGE and 3H fluorography, go to subheading 3.2 or 3.3, respectively. For detection 

of methylated histones or peptides using antibodies, go to subheading 3.4.  If using filter 

assays to detect incorporation of radioactivity into histones or peptides, it is not necessary 

to stop the reaction here. Skip this step entirely and go directly to Subheading 3.5. Please 

refer to Fig. 2 for an overview of the different detection methods available and the sections 

of this protocol covering each method. 

 

3.2 Detection of methylated histones by SDS-PAGE and 3H fluorography  

This protocol outlines the steps required to detect methylation of histone proteins if radioactive 

3H-SAM has been used for the HMT reaction described in Subheading 3.1. It is applicable to all 

reactions performed on histone proteins, irrespective of the nature of the methyltransferase studied. 

3H-SAM incorporation is visualized by exposing an autoradiography film (steps 1–10). 

Quantitative data can be obtained subsequent to film exposure by liquid scintillation counting 

(optional steps 11–13).  

1. Resolve samples on a 15% SDS polyacrylamide gel (see Note 10). Dispose of radioactive 

waste from this and subsequent steps following the relevant regulations in your jurisdiction 

(see Note 8).  



 

 

2. Transfer polypeptides from the gel onto a PVDF membrane (see Note 11). Most standard 

semi-dry or tank blot setups and protocols will be suitable (e.g. perform semi-dry transfer 

for 75 min at 100 V in SDS running buffer containing 20 % methanol). 

3. Stain PVDF membrane with coomassie stain solution for 2–5 min with agitation on a 

platform rocker. Remove the coomassie stain solution.  

4. Wash the membrane with destain solution 2–3 times for 5 min each with agitation. 

5. Air-dry membrane until completely dry (see Note 12). 

6. Document membrane with a camera, imaging system, or scanner. The image of the 

membrane obtained at this step should be similar to the bottom panel of Fig. 1, clearly 

showing the characteristic four core histone bands around 15 kDa (three in the case of 

Xenopus histones due to virtually identical size of H2A and H2B). 

7. In a fume cabinet, spray the membrane with EN3HANCE spray (Perkin Elmer). Make sure 

to coat the membrane evenly with the solution. Let sit for 5 min, and then repeat two times.  

8. Air-dry membrane until completely dry (see Note 13). 

9. Expose to autoradiography film for 12–96 h in an autoradiography cassette in a -80°C 

freezer (see Note 14). Bend one corner of the film to mark its orientation relative to the 

membrane.      

10. Develop film in an X-ray developer.  

11. Optional: To obtain quantitative information, cut out the coomassie-stained bands of 

interest from the membrane with a scalpel or razorblade. 

12. Place each individual band into a scintillation vial and add liquid scintillation cocktail. 

13. Perform scintillation counting of all samples as well as vials containing only scintillation 

cocktail (for background count determination) in a scintillation counter suitable for 3H. 



 

 

  

3.3 Detection of methylated peptides by SDS-PAGE and 3H fluorography 

This protocol outlines the steps required to detect methylation of histone peptides if radioactive 

3H-SAM has been used for the HMT reaction described in Subheading 3.1. It is applicable to all 

reactions performed using peptide substrates. To avoid loss of peptide in blotting, the SDS 

polyacrylamide gel used to resolve samples, rather than a membrane, is treated with 

autoradiography enhancer solution and exposed to an autoradiography film for detection of 3H-

SAM incorporation.  

  

1. Resolve samples on a 10 % SDS polyacrylamide gel. Run the gel until the dye front 

migrated about halfway into the resolving gel. This should result in a sharp band for the 

peptides migrating close to the dye front. Dispose of radioactive waste from this and 

subsequent steps following the relevant regulations in your jurisdiction (see Note 8).  

2. Stain the gel in coomassie staining solution for 30–60 min with agitation.  

3. Destain gel with several washes of destain solution (15–30 min each) until the bands of 

interest are clearly visible and background is nearly clear.  

4. Document the gel with a camera, imaging system or scanner.  

5. Incubate the gel in ENLIGHTNING solution for 30 min. It is sufficient to use just enough 

to cover the gel.  

6. Lift gel onto Whatman paper that has been presoaked in water. 

7. Cover with clear wrap. 

8. Dry on a gel dryer set to 50-55 °C until dry (1-1.5 h). Higher temperatures may increase 

the risk of cracks in the gel. 



 

 

9. Remove clear wrap for optimal sensitivity. 

10. Expose to autoradiography film for 12–96 h in an autoradiography cassette in a -80 °C 

freezer (see Note 14). Bend one corner of the film to mark its orientation relative to the 

membrane.      

11. Develop film in an X-ray developer.  

 

3.4 Detection of methylated peptides or histones using antibodies 

Using antibodies as a detection method is advantageous over radioactivity for a few reasons. First, 

albeit not as sensitive as radioactive detection, it is safer and easier to perform than radioactive 

HMT assays. Secondly, antibodies can be used to reveal the product specificity (mono-, di- or 

trimethylation) of a methyltransferase [8,5]. A few caveats of using antibodies for HMT assays is 

that they are costly and there is a need to know which lysine of the histone is modified by a specific 

methyltransferase (otherwise, many antibodies would have to be used to “screen” for the modified 

lysine). Also, antibodies are less suitable when using native histones as substrates, as many 

modifications are already present and can mask the signal generated in the HMT assay.   

 

1. Resolve samples by SDS-PAGE as described in subheading 3.2 Step 1 (for histones) or 

Subheading 3.3 Step 1 (for peptides). 

2. Transfer to nitrocellulose or PVDF membrane by wet or semi-dry transfer (see Note 15).  

3. Quickly wash membrane by covering it in TBS-T solution. Let it sit for a few minutes. 

Remove the TBS-T. 



 

 

4. Proceed to soak the membrane into the blocking solution. Gently shake the membrane in 

the blocking solution (add enough to cover the membrane) for 30-60 min at room 

temperature using a laboratory platform rocker. Wash briefly with TBS-T solution. 

5. Dilute the primary antibody to a working concentration using the antibody solution. The 

minimum volume needed of antibody solution (containing the primary antibody at the 

appropriate concentration) is just enough to cover the membrane. Gently shake the 

membrane for 1 hour at room temperature or at 4 °C overnight using a laboratory platform 

rocker. Remove the solution. 

6. Perform three washes of the membrane in TBS-T solution (10 min each) using the platform 

rocker. 

7. Dilute the secondary antibody to its working concentration in antibody solution and add to 

the membrane. Gently shake the membrane for 1 hour at room temperature using a 

laboratory platform rocker. Remove the solution. 

8. Perform two washes of the membrane in TBS-T solution (10 min each) using the        

platform rocker. Perform a third and final wash of the membrane in TBS solution (10 min). 

Remove the TBS solution at the end of the third wash. 

9. Prepare the ECL substrate as recommended by the manufacturer. Add the ECL substrate 

directly to the membrane making sure the substrate is present on the whole membrane.   Let 

it sit for 1–5 minutes. 

10. Cover the membrane with clear wrap. 

11. Expose to X-ray film (see Note 16).  

12. Develop the film in an X-ray developer.   

 



 

 

3.5 Detection of methylated peptides and histones by using radioactivity and filter assays 

This section describes the use of a rapid detection method for measuring the enzymatic activity 

based on incorporation of radioactive 3H-SAM. Contrary to other detection methods described in 

this chapter, this method does not rely of separating the product(s) of the HMT reaction on a gel. 

However, it cannot resolve whether multiple histones or other proteins are being methylated in the 

same HMT reaction, as all 3H-SAM incorporated into peptides or proteins will be detected.  

1. The reactions are stopped by spotting the reactions onto Whatman P-81 filter papers (~1.5 

cm2 each). The filter papers are dried for ~15min at room temperature before proceeding 

to the next step. Each filter paper should be labeled, as they will be combined in the next 

step.   

2. Unincorporated 3H-SAM is removed from the filters by washing them in 250 ml (using a 

1 L beaker) of BD solution in a 1 L beaker. A maximum of 20 filter papers per 250 ml of 

BD solution should be used. Wash three times for 30 min each. Gently rock the beaker 

using a rocking shaker. Do not use a magnetic bar when washing, as the filters will get 

damaged. 

3. Dry the filter papers at room temperature.   

4. Each filter paper is quantified separately by liquid scintillation counting.  

 

3.6 Troubleshooting 

Fig. 1 shows an example of a successful HMT assay using radioactive detection. If no 

methyltransferase activity is detectable with the protocol described in Subheading 3.1 followed by 

any of the appropriate detection methods, several options for optimization are available. 

Radioactivity-based detection methods are usually most sensitive and may be required to detect 



 

 

activity of certain methyltransferases. Although the amounts stated should be sufficient in most 

cases, the amount of 3H-SAM can be increased to enhance the signal. Exposure times for 

fluorography on autoradiography film can be extended to several days or even weeks.  

The methylation reaction itself can be enhanced by 1) increasing incubation times up to overnight, 

2) altering the reaction temperature (both above and below 30°C), 3) increasing reaction pH, and/or 

by 4) increasing concentration of SAM (both unlabeled and 3H labeled). If the SAM stocks have 

been stored for prolonged times, consider replacing them with fresh ones. In addition, as the final 

molar concentration of 3H-SAM is often in the submicromolar range especially for 3H-SAM 

preparations with high labeling density, supplementing the reactions with additional 10–20 µM 

unlabeled SAM may increase sensitivity in cases where the increase in enzymatic activity due to 

elevation of SAM concentrations closer to its Km for the enzyme is greater than the competition 

effect observed by adding an excess of unlabeled SAM. 

The amount of methyltransferase can be increased as well, however, care should be taken to 

prevent introduction of significant amounts of salt, which might decrease activity especially on 

nucleosomes [9]. Moreover, potential inhibitory factors from bacteria or cell lysates may be 

introduced with increasing amounts of methyltransferase preparations as well. It is also possible 

that further factors might be required for activity; for instance the catalytic subunits of PRC2 do 

not exhibit activity without the other complex members [10,1]. Furthermore, while increasing the 

amount of substrate might enhance activity, assaying different types of substrates should also be 

considered since the activity of a methyltransferase can vary depending on the substrate [11,10]. 

Also, enzymatic activity might only be detected with specific histone isoforms or in the presence 

of other modifications [4]. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Notes 

1. Both lysine and arginine methyltransferases have been shown to be optimally active in 

alkaline buffers, with pH optima often around 9-10 [12,13].  We therefore recommend 



 

 

slightly alkaline buffer conditions with pH 8.5 usually providing a good starting point for 

optimization.  

2. For optimum sensitivity of the assay, 3H-SAM with a high specific activity should be 

used (~3 TBq/mmol, if available). Both radiolabeled and unlabeled SAM are relatively 

prone to decay and stock solutions may lose significant activity within 6 months or less 

of storage. Stock solutions of SAM must be kept in a strongly acidic buffer (e.g. 5 mM 

sulfuric acid pH 2, 10 % ethanol), as it is unstable at neutral or alkaline pH. Storage at -

80 °C is not recommended, as this accelerates decay compared to storage at -20 °C.  

3. Providing detailed instructions for the purification of specific enzymes is beyond the 

scope of this protocol. However, the protocol described here should allow for the 

detection of methyltransferase activity from a variety of sources, ranging from highly 

purified recombinant or native enzymes and enzyme complexes to crude or fractionated 

cellular extracts. Both E. coli and insect cell (Sf9) expression hosts have been 

successfully used to prepare active methyltransferases using protein affinity tags such as 

His, GST, or FLAG. As a general recommendation, it is likely easier to use purified 

recombinant proteins expressed in E.coli (or insect cells if there are issues with 

expression/folding in E.coli) than native enzymes extracted from plant tissues. Insect cell 

systems also allow for the expression of individual subunits and purification of 

reconstituted protein complexes.  Regardless of source, it is usually advisable to keep the 

volume of enzyme preparation per reaction to a minimum in order to minimize carry-over 

of potential inhibitors of activity. Activity of many methyltransferases, especially when 

using nucleosomes as substrates, is also inhibited by salt [9]. Enzyme preparations should 

therefore ideally be provided in a low-salt buffer, for instance by dialyzing the final 



 

 

purification product into BC100 buffer (see Subheading 2.1). Dialysis will also remove 

elution agents such as FLAG peptide, even though the latter commonly does not interfere 

with activity. Enzyme preparations should be aliquotted and stored at -80 °C to preserve 

activity.   

4. Although not always representative of the native conformation of histones in chromatin, 

peptides derived from histone sequences such as the N-terminal tail of histone H3 are 

commonly used as substrates in HMT assays. Histone peptides containing several well-

characterized modifications are readily available from several commercial sources or can 

be custom-made by peptide synthesis services. Peptides should be centered around the 

residue to be methylated and of sufficient length (>20 residues) to include neighboring 

residues that might be required for substrate recognition. Unless containing native N- or 

C- termini, cap the peptides with acetyl (N terminus) and amide (C terminus) groups to 

maintain electrostatic properties of peptides. As the mass of lyophilized material is a poor 

measure for peptide amounts due to varying amounts of residual salts, it is highly 

advisable to add a C-terminal tyrosine residue to allow for quantification by UV 

spectroscopy. Alternatively, a biotin moiety can be introduced in the form of a C-terminal 

biotinylated lysine residue to enable quantification by western blotting with anti-biotin 

antibodies. When comparing activities between differentially modified peptides, accurate 

quantification and matching of peptide amounts is crucial to obtain meaningful results. 

Peptides should be resuspended to a final concentration of 10 mM in water (minimal 

amounts of TFA or ammonium hydroxide can be added to help solubilize the peptides if 

needed). Aliquot and store at -20°C. Use protein low-bind tubes to avoid loss of peptide 

due to adhesion to tube walls. Consider filtering through a 0.22 µm low protein binding 



 

 

filter to prevent degradation due to potential bacterial contamination. If TFA or 

ammonium hydroxide is present in peptide stock solutions, ensure that the pH of the 

HMT reaction is unchanged by spotting 0.5–1 µl of the reaction onto each field of a 

suitable pH strip and determine pH based on color change.  

5. Histone preparations from various sources can also be used as substrates. Recombinant, 

unmodified histones are available from commercial sources or can be expressed and 

purified from E. coli using well established protocols [14,15]. Recombinant histones 

containing lysine/arginine-to-alanine point mutations are commonly used to elucidate the 

site specificity of methyltransferases with unknown substrate specificity. Recombinant 

histones with defined, site-specific modifications can further be generated by cysteine 

alkylation approaches or by native chemical ligation [16]. A growing selection of 

modified histones is also available commercially. They can also be isolated from native 

sources such as chicken erythrocytes [17] or HeLa cells (also available from vendors). 

Histones can either be provided as histone monomers or as complexes, such as H3-H4 

tetramers or complete histone octamers. Histones are often provided in buffers containing 

2 M NaCl or KCl, which is required to maintain solubility and integrity of the highly 

charged histones in absence of DNA. Histone preparations can therefore be a significant 

source of salt in HMT reactions, potentially inhibiting activity of the enzyme to be tested 

[9]. It is important to keep in mind that, when using histone octamers, the low 

concentration of salt in HMT reactions promotes dissociation into H2A–H2B dimers and 

H3–H4 tetramers [18], which will therefore represent the major histone species in the 

reaction.   



 

 

6. Histones from recombinant or native sources can be assembled into nucleosomal 

substrates using well-established salt dialysis-based protocols [15]. DNA templates for 

assembly are commonly plasmids containing repeats of the 601 nucleosome position 

sequence [19] interspaced with linkers of varying lengths. These plasmids can be used 

directly for assembly. If exact positioning is crucial, the stretch of repeats can be excised 

and separated from the plasmid backbone, for which uneven spacing is expected due to 

the absence of positioning sequences. For mononucleosome particles, 601 DNA can 

either be amplified by PCR or excised from plasmids. The degree of saturation of DNA 

templates with histones should be monitored and oversaturation avoided. When simply 

seeking to detect activity, undersaturation is usually acceptable as methyltransferases 

often do not require complete occupancy of DNA with histone octamers to display 

activity, although specific modes of regulation might be missed [20]. Reconstituted 

chromatin is usually stored in TE buffer, which is ideally suited for use in HMT assays 

due to its low salt content. Of the options presented here for substrates in these assays, 

reconstituted chromatin most accurately reflects the native substrate of most 

methyltransferases that act on chromatin, however, others may not be active on such 

reconstituted templates at all.   

7. The optimal reaction temperature depends on the methyltransferase and needs to be 

determined experimentally. For example, Neurospora crassa Dim-5 is optimally active at 

10 °C, remains 50 % active at 30 °C, but is essentially inactive at 37 °C [13]. 30 °C 

should yield activity for a wide range of enzymes, however, the growth temperature of 

plants may provide a useful starting point for plant-derived histone methyltransferases or 

other plant enzymes.   



 

 

8. When using radioactive detection methods, it is advisable to collect samples at the bottom 

of tubes by brief centrifugation in a table-top centrifuge (10 sec at full speed) before 

opening the tubes after all mixing and incubation steps in order to minimize the risk of 

radioactive contamination. Moreover, be cautious to properly handle and dispose of all 

tubes, pipette tips, blotting paper, and other consumables that have been in contact with 

3H-SAM. Buffers from SDS-PAGE and blotting transfer likewise need to be handled 

with appropriate care and disposed of properly. Equipment such as gel tanks and blotting 

setups should be checked for contamination. All procedures need to be carried out in 

accordance with local rules for the use of 3H in laboratories.   

9. If the goal of the assay is primarily to detect activity, incubation times as long as 

overnight can be employed. Usually, 30 min – 4 h should be sufficient to observe 

activity. However, when aiming to determine kinetic parameters of the enzyme, shorter 

time points within the linear range of the reaction are required to accurately determine 

initial velocities. 

10. 15 % gels are recommended as they provide good resolution of all four core histones 

while still allowing adequate transfer of higher molecular weight methyltransferases in 

subsequent blotting steps. Both 18 % and 12.5 % gels may be used as well. 

11. It is imperative to use PVDF membranes as nitrocellulose membranes are incompatible 

with the subsequent staining and scintillation cocktail spraying steps. Remember to pre-

soak PVDF in methanol before use. Methanol for this purpose can be stored and reused. 

12. Importantly, letting the PVDF membrane dry completely increases the signal-to-

background ratio of the coomassie-stained bands and should be done before taking a 

picture. To air dry takes ~30 min, but the process can be sped up with a hair dryer or 



 

 

laboratory heat gun, as long as these can be run at low temperature or cool mode to not 

heat up the membrane. Carefully hold the membrane with forceps and use a low fan 

speed to keep the membrane from flying away and becoming damaged.  

13. A hair dryer can be used to speed up the drying process.  

14. Exposing the film at -80 °C increases the sensitivity of detection, but it can be performed 

at ambient temperature as well. 

15. For peptides, make sure to use a 0.2 µm or similar pore size membrane along with shorter 

transfer times to prevent transfer of peptides through the membrane. Staining the 

membrane by Ponceau can be helpful to ensure successful transfer of the peptide. This step 

may need to be optimized depending on the peptides used.  

16. The strength of the signal obtained can vary based on a few parameters (e.g. efficiency of 

the HMT reaction, primary antibody concentration used). For these reasons, the time of 

exposure should be extended if no signal is observed on the film after a 1-2 min exposition.    
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Figure legends 

 



 

 

Fig. 1. HMT assay using the Arabidopsis histone H3 lysine 27 (H3K27) methyltransferase 

ATXR5. The enzyme with an N-terminal GST tag was expressed in E.coli and purified by 

affinity chromatography. The substrates used in the assay were plasmid-based nucleosomes 

containing different histone H3 variants: plant H3.1, mammalian H3.3, or plant H3.3. 3H-labeled 

SAM was used to detect the methylated histones. The result of the assay demonstrates the 

specific role of threonine 31 (T31) of plant H3.3 variants in inhibiting the activity of ATXR5.     

 

 

Fig. 2. Schematic overview of the different methods described in this Chapter to perform 

HMT assays. LSC = Liquid scintillation counter. 
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