
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Right-sizing Server Capacity Headroom for Global Online
Services

Citation for published version:
Verbowski, C, Costa, P, Leather, H, Franke, B & Thayer, E 2018, Right-sizing Server Capacity Headroom
for Global Online Services. in 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, Vienna, Austria, pp. 645-659, 38th IEEE International Conference on Distributed Computing
Systems, Vienna, Austria, 2/07/18. DOI: 10.1109/ICDCS.2018.00069

Digital Object Identifier (DOI):
10.1109/ICDCS.2018.00069

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/195267512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICDCS.2018.00069
https://www.research.ed.ac.uk/portal/en/publications/rightsizing-server-capacity-headroom-for-global-online-services(f3116af6-3d49-4724-b111-6bd3d5bcfe64).html


Right-sizing Server Capacity Headroom for Global Online Services

Chad Verbowski
University of Edinburgh

c.e.verbowski@sms.ed.ac.uk

Ed Thayer, Paolo Costa
Microsoft

edcthayer@gmail.com, paolo.costa@microsoft.com

Hugh Leather, Bjoern Franke
University of Edinburgh

hleather, bfranke@inf.ed.ac.uk

Abstract—We present a capacity planning case study show-
ing a significant opportunity for improving the utilization of
a large, low-latency, highly available online service containing
100K+ servers spanning 9 geographic regions. Analyzing 30 PB
of traces over 90 days we devised a new iterative black-box
capacity planning model using the discovered relationships
between workload, utilization, and quality. We verified the
model on 1,000s of servers showing capacity reductions between
20% and 40% with effectively no impact on workload latency,
availability, or the capacity required for disaster recovery.
These results are confirmed experimentally by shrinking pro-
duction server pools to cause the remaining servers to run at
higher utilization, and using data from real-world large scale
unplanned failures. Finally, we show examples of using our
model for offline regression analysis to detect critical issues
before their deployment.

I. INTRODUCTION

A growing number of large online services, including
search, social networking, online shopping, media services,
gaming, and email, can require up to 1M servers [1]–[3] in
globally distributed datacenters to provide low latency and
high availability to customers around the world [4]. Since the
cost of such services can exceed US$1 billion annually [5]
there is a significant financial and environmental impact
if they are inefficiently operated [6]. Improving efficiency
through reducing excess capacity by as little as 1% can save
millions of dollars per service.

To gauge the excess capacity common in the industry we
analyzed traces from more than 100K servers in a large
online service. Our analysis confirmed previous observa-
tions [7], [8] indicating a significant opportunity for capacity
savings by showing at least half of all global resources are
idle at any given time. However, we found diurnal global
online service workloads [9] cause individual datacenters to
periodically run out of capacity while datacenters on the
opposite side of the world are underutilized. Although this
available capacity can be used for offline workloads without
latency requirements [10]–[14], it is unsuitable for online
request processing as it would increase response latency, and
changes of even 100ms decrease user engagement [15].

Current capacity planning approaches either forecast
capacity requirements using a queuing theory based
model [16]–[18] of the system (hardware, software, network)
and workload [19], [20], or dynamically modify capacity
allocations based on real-time feedback of resource usage

and quality of service (QoS). In large scale services, the
queuing model is impractical to maintain given the scale
of elements and their change rate. Models must consider
continual changes [21], [22] from 10Ks of engineers chang-
ing software with 10Ms of code lines running on 100Ks
of servers, each with 70K files, 200K settings with 16M to
68M daily reads and 0.6M to 2.9M daily updates [23]. In
practice, models based on simplified assumptions are either
inaccurate, or are quickly invalidated as the system evolves.

Dynamically allocating capacity [24]–[28] avoids the
complexity of building and maintaining models by treating
the system as a black-box and modifying capacity based
on forecast changes in resource usage. This avoids the
modeling approach overhead, and can automatically adapt
to changes in demand or failures. However it is unsuitable
for large online services for three reasons. First, the diurnal
variation in capacity requirements for a given datacenter can
be 1,000s of servers, which is more than is readily available
to dynamically allocate during peak demand.

Second, prior work underestimated the time required to
change the capacity of a system. For example, it does not
account for service start-up times in the minutes caused by
large in-memory stores required to load state into memory,
managed code applications requiring minutes of JIT com-
pilation, or services requiring cache priming. Furthermore
changing capacity by 1,000s of servers happens in weeks or
months rather than seconds because of the logistics involved
along with the cost and service impact of changing it more
frequently. This is sub-optimal because it requires excess
capacity, called headroom, to accommodate any planned
maintenance, unplanned failures, or unexpected workload
increases while large capacity changes are made.

Third, this approach cannot easily predict capacity re-
quirements of a new or modified system without deploying
it to production. For example, it overestimates capacity
when historical trends vary or future workload volume and
processing costs are inaccurate because the business impact
of underestimating can be severe.

In contrast to these approaches, we propose a black-
box capacity planning approach requiring only workload,
resource usage, and QoS measurements. We argue that only
the service’s external response characteristics are necessary
to achieve an accurate forecast, avoiding the costly iterations
required in the dynamic capacity approach, and avoiding



the complexity and difficulty of accurately modeling the
service’s software, configuration, hardware, and network.

Our approach is possible because the industry is moving
towards the micro-service [29] design pattern to exploit data
parallelism. This differs from the traditional approach of
having pools1 of enterprise grade servers running multiple
workloads [30], to a model where services are composed
of simpler micro-services each running in their own pool of
consumer grade servers. A pool per micro-service makes it
easy to measure and optimize resource usage because there
is a single workload on each server. A micro-service instance
per server avoids resource contention across instances. Fur-
thermore, this approach can be used for offline regression
analysis of resource requirements and QoS impact before
deploying micro-service changes.

Despite the apparent simplicity of our approach, there are
three subtle complexities that must be addressed. First, en-
suring sufficient server metric granularity to enable isolation
of the workloads we are capacity planning for. This requires
accurately instrumenting each major server workload to
ensure noise from background workloads (such as system
processes) does not impact the resource usage measurements
for the workload we are planning for. This is difficult as
there is no standard definition for a unit of workload within
a service, and it can be challenging to keep track of resource
usage per unit of workload.

The second challenge is identifying the non-linear re-
lationship between workload and QoS. In practice, there
is no standard QoS metric, each service defines it using
metrics such as latency, availability, and reliability of a
workload response. The impact of resource limiting on
QoS is non-linear, reflecting the software, hardware, and
networking complexity of the service implementation. Since
only the black-box relationship between workload and QoS
is needed, we avoid the complexity and fragility of creating
and maintaining a queuing theory model. Instead we create
an equation for this relationship using simple curve fitting
on historical data, and if needed, conduct a minimal set of
production experiments to obtain additional data points.

Because servers in a pool may behave differently, the
third challenge is to identify groups of servers within each
pool with a similar profile of QoS, limiting resource, and
workload. In practice, we were able to train a decision tree to
identify the optimal server groups in each pool with minimal
complexity and high accuracy.

We validated our approach on a large service and found
31% of servers could be removed without impacting QoS.
Since testing our approach at full scale was impractical,
as the servers belong to different organizations, we verified
our results on a smaller yet representative subset of servers
(1000s). We found the approach coped with the complexity

1A server pool is a set of servers with a network load-balancer dis-
tributing incoming requests evenly across them. All servers have the same
software and hardware.

found in our large service naturally and intuitively, enabling
significant capacity savings. It enabled the development of
tools for managing the capacity implication of all changes
before they are deployed, ensuring efficient ongoing capacity
utilization. We believe our approach is generally applicable
to large scale low-latency services with diurnal workloads
developed using a micro-service design pattern [31], [32].

The main contributions of this paper are:
1) A new capacity allocation methodology providing

significant savings and addressing practical challenges
overlooked by other methods.

2) Show capacity savings of between 20% and 40%,
confirmed on a large production service.

3) Detailed resource usage analysis of a service spanning
100,000s of servers2 spanning 9 datacenters over 90
days showing:

a) Well-managed servers use only 2% downtime,
yet 17% was the observed average.

b) CPU usage averaged 23% for the servers studied,
with 80% using less than 30% CPU.

c) CPU usage spikes are rare, only 15% of servers
had a CPU spike larger than 40%.

II. METHODOLOGY

Our approach forecasts the QoS impact of changing server
allocations for a specified workload volume. For example,
reducing QoS requirements by 5 ms may require 10% less
services. The QoS requirement for each micro-service is
defined as a set of Service Level Objectives (SLOs). Each
SLO is a specific metric and the minimum threshold of
their values. For example, response latency must be less
than 500ms, and reliability must be 99.999%. It is possible
for every micro-service to have a unique combination of
metrics and thresholds for their QoS requirement, however
in practice these are typically defined for the overall service
to capture the intended QoS of the end-to-end service. Ca-
pacity planners use this in conjunction with workload trends,
expected failure rates, and QoS business requirements to
determine how many servers are needed.

Our goal is to be practical and realistic by avoiding the
complexity, fragility, and service specific aspects of the mod-
eling approach, yet retain the deterministic understanding
between QoS, workload, and resource usage it provides. To
enable broad adoption it must be generally applicable to
services in diverse environments and avoid service specific
customization. It needs to enable offline ’what-if’ regression
analysis of changes to determine their capacity and QoS
consequences. It needs to err on over allocating capacity
to avoid the business impact [33]–[35] of low QoS from
running out of capacity. Services typically require between
99.95% [36] and 99.999+% [37] availability with peak

2For confidentiality, we omit certain information, e.g., the absolute
number of servers, focusing instead on a detailed subset of the server fleet.



workload despite portions of the system being offline due
to unexpected failures.

We require the following conditions to be true:
A predictable relationship between workload, resource
usage, and QoS: Large complex services with varied re-
source requirements are created as a set of micro-services
running on their own pools because it enables their resource
requirements to change without impacting the others, and
enables scaling with demand by changing how many servers
are in each pool. Absent this design micro-services would
not be able to use all resources on a single server, and
competition between micro-services for the same resource
must be managed as part of capacity planning.

Service composed of micro-services in server pools:
many small servers are preferable over fewer large servers to
minimize wasted resources and maximize available capacity
when individual servers fail. The minimal size of a server is
determined by the maximum resources required for a micro-
service to cost effectively process a request with the required
QoS. Micro-services are deployed to production on pools of
identical servers (such as cloud VMs [38]), each running
the same code, with a load-balancer evenly distributing
the incoming workload across the pool of servers. The
uniformity of servers in the pool enables the micro-service
to remain available during planned or unplanned outages of
individual servers by amortizing requests over the remaining
servers in the pool. Micro-service capacity is specified at
server granularity by modifying pool allocations.

Our methodology has four steps for identifying the opti-
mal capacity of an existing system, and then for performing
ongoing regression analysis to ensure optimal capacity is
maintained when the configuration, hardware, software, or
network, changes.
Step 1 Measure: Confirm metric accuracy and group servers
with similar workload, resource usage, and QoS.
Step 2 Optimize: Determine the minimal servers for each
pool to operate within its QoS using historical and experi-
mental data to forecast the results.

Next we describe our methodology for enabling ongoing
offline regression analysis of changes to maintain optimal
capacity efficiency.
Step 3 Model: We create a synthetic workload to drive an
offline system with the same response characteristics as a
production workload. For example, the synthetic workload
may need to mock [39] incoming requests or responses
from calls to dependent services with a diversity of requests
and responses matching those observed in production. This
is required when user specific data such as mailboxes
are accessed, incoming requests have user credentials, or
QoS and resource usage is proportional to the diversity of
incoming requests.
Step 4 Validate: Validation of changes using an offline
stress-testing process to measure the workload, resource
usage, QoS profile of the system given a range of synthetic

Micro
Service Description
A In-Memory Storage (similar to MemCached [40])
B Modifies incoming requests such as spelling corrections.
C Orchestrates a workflow of stateless processing modules.
D Converts responses from data to formatted web pages.
E Spit-TCP proxy, CDN, load balancer, and authentication

service (similar to Squid)
F In-Memory storage with custom processing logic.
G High volume, low latency, metrics collection system used

for automated operational decisions.

Table I: Description of micro-services running in server
pools for our analysis.

workloads. The profile is then compared to the system profile
before the change to determine the impact.

Fig. 1 shows an overview of these steps and the remaining
subsections describe each step in detail. Academic work has
assumed things like metrics are in place and workload is
reproducible and re-playable. These are not valid assump-
tions in practice, so our methodology includes step 1 for
validating our metrics for online capacity planning, and step
3 for verifying our synthetic re-playable workload for offline
regression analysis.

A. Measuring Resource Usage

Our approach is based on the ability to accurately measure
changes in workload and the corresponding resource usage
and QoS offered. In practice resource usage metrics are
not partitioned by workloads such as background server
tasks and the primary micro-service workload and are of-
ten measured independently with respect to time such as
the standard CPU, IO, Network metrics exposed by the
server operating system. This lack of accuracy makes the
relationship between workload and resource usage appear
random due to instantaneous variations in workload, vari-
ations in distributing requests across servers in the pool,
and variations in request processing cost. Identifying these
per-workload metrics is the only system dependent aspect
of our approach, and is the only step which may require
modification of the system to expose new metrics.

For the micro-services we analyzed (see Table I) we found
they followed the common design pattern of isolation along
standard operating system boundaries such as processes,
enabling us to measure our primary resource usage by
simply filtering by process names. In other cases we added
new metrics to the systems we investigated. Section II-A1
describes our approach for confirming the right metrics
are in place, by iterating on them until we find a linear
relationship between a constrained resource and workload.

Once we have confidence in our metrics, we identify
groups of servers performing the same task with the same
workload to resource usage response. Capacity planning is
then accomplished by determining the QoS impact of adding
or removing servers in each group. Section II-A2 describes
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Figure 1: Our methodology steps for optimizing existing systems and offline regression analysis for new changes.

our approach for identifying these groups, showing it is
possible to train a decision tree to do this with minimal
complexity and high accuracy.

1) Workload Metric Validation: Our work requires re-
liable measurement of the incoming workload, associated
resource usage, and resulting QoS. To ensure existing met-
rics are sufficiently accurate, or to validate the accuracy
of metrics added to existing service for this purpose, we
developed a pragmatic approach for validation. We assume
proper workload metrics have a tight linear correlation
between units of work and increases in their primary limiting
resource, e.g., CPU increasing linearly with requests volume.
If the metric does not correlate well with the limiting
resource then we likely failed to accurately capture the
resources used to process a request. We use this validation
in a feedback loop, until an accurate result is obtained.
For example, when analyzing a micro-service similar to
MemCached [40], we found the metric was noisy because
the workload was measuring requests to multiple tables.
After splitting workload into two metrics for each table,
both exhibited a linear relationship with CPU. In another
case periodic resource spikes correlated with log uploads
of many GB / hour. Our technique discovered this anomaly
and enabled removing its effect. We found that in practice
there was virtually no need to add new code to collect new
metrics to measure workload or QoS, we simply needed to
identify which instances of the existing ones to use.

To illustrate this approach, we show the workload metrics
versus each resource (Processor, Disk, Memory, Network)
for a micro-service in Fig. 2. We measure requests per
second (RPS) on the x axes and the consumption of various
resources on the y axes. This data was gathered over one
day of usage on micro-service D3 running on separate
pools in 6 data centers, and comprise queue length, rates,
errors, and usage of each resource. We see CPU shows
a linear relationship with little variance across a range
of RPS, indicating for this service, RPS is a sufficiently

3Micro-service D creates consumer web pages from data obtained from
other micro-services

accurate workload metric. We believe a metric is accurately
isolated per workload when it has low variance as seen
for processor utilization. High variance typically indicates
noise from other workloads, or another resource is the
limiting one. For example, networking counters show a
linear relationship characteristic, and we see more variation
of bytes and packets across data centers. Disk bytes read
and memory paging look very similar, indicating most disk
activity is likely due to paging on the system, suggesting
the application is not using much IO. The vertical patterns
indicate a large variation in memory and disk activity for
a given workload rate. Error counters and queues for these
resources are static in the steady-state and are more suitable
for anomaly detection.

The micro-services we analyzed were designed to have
CPU as the limiting resource, which our results confirmed.
We believe this is common for most large online services
because CPU is the most expensive server resource. For
example modern data center networks have much cheaper
costs per server and networks are not typically a bottleneck
at the current 40Gbps server inter-connectivity and are less
likely to be with the upcoming evolution to 100Gbps. The
growth rate of RAM size, SSD size, and network bandwidth
per unit of cost is higher compared to the CPU. CPU demand
by micro-services has grown due to increasing requirements
for encrypt all data stored, transmitted, and held in memory.
Even if the cost dynamics or software requirements change
in the future, we believe in general it is unnecessary to focus
on all resources for capacity planning, and if needed our
approach can be directly applied to discover and use the
new limiting resource.

Once we are confident of our metrics at a per server level
we identify the groups of servers with the same request
inputs having similar workload to resource usage response.
These are the groups we plan capacity for, by determining
the QoS impact of adding or removing servers from the
group. Section II-A2 describes our approach for identifying
these groups, showing it is possible to train a decision tree
to do this with minimal complexity and high accuracy.
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2) Identifying Capacity Planning Server Groups: Capac-
ity is managed by adding or removing servers from pools
dedicated to a micro-service where each server receives an
equal portion of the incoming workload to the pool and
produces an identical response. This makes it natural to plan
capacity for each micro-service’s pool. However, we find
there can be slight differences across servers in the pool such
as minor hardware variations or non-uniform communication
between servers from minor workload processing differences
such as some performing extra tasks as part of being a
primary owner of a replicated data set. For this reason, we
may need to partition pools into smaller groups of servers
exhibiting the same resource usage and QoS response for an
equivalent workload.

To illustrate the similarity of servers within a pool we
use a scatter plot of minimum4 and maximum CPU for
each server in a pool over a period spanning the expected
time range of workload volume (typically a day for diurnal
workloads). To confirm we have considered a full cycle
of normal operations we simply expand the range of data
considered until the resulting scatter plot no longer changes.
Fig. 3 shows tight clusters of servers in each datacenter,
indicating a consistent daily upper and lower bound. In-
terestingly, one of the pools shown has servers operating
in two distinct clusters, one with a lower minimum and
maximum compared to the other. Investigating this we found
all servers in the less utilized range are newer and more
powerful than the other. This suggests the technique can
be useful for quickly evaluating the impact of hardware or
software changes on server utilization.

To automate the analysis for identifying the groups of

4Using the industry best practice of 5th percentile to represent the
minimum and the 95th percentile to represent the maximum eliminates
outliers caused by rare hardware failures or other anomalies.
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Figure 3: Scatter plot of the high and low CPU usage for
each server in pool I. Shapes are datacenters.

servers within pools in addition to the clustering approach
results shown inFig. 3, we used a decision tree based feature
vector approach. Each server’s feature vector contains:

1) The 5th, 25th, 50th, 75th, 95th percentile CPU utiliza-
tion values for each server in the pool.

2) The slope, intercept, and R2 value estimated by a
linear regression on each pool across

(pi,ci) :i ∈ {1,2, ...server count}
pi ∈ {5,25,50,75,95}
ci =CPU utilization f or percentile pi

We trained a decision tree with 5 fold cross validation with
manually labeled pools using a minimum leaf size of 2000
machines. The tree contained 34 splits, achieving an R2 =
0.746. The area under curve (AUC) for the Yes and No
prediction probability is 0.9804.

Using this technique we found 55% of pools with a
typical diurnal workload also exhibited a tightly bound
CPU utilization range, suggesting a predictable relationship
between CPU and workload. Investigation of the remaining



pools found they were running multiple workloads, typically
background administrative tasks, and could fit our analysis
when the resource usage of these workloads was identified
and independently modeled. Based on this, we expect most
pools will exhibit a predictable workload to resource utiliza-
tion relationship.

B. Optimizing Server Pool Capacity

QoS requirements for micro-services limit the minimal
capacity required for a pool. QoS is typically defined in
terms of an acceptable failure rate and request latency
threshold. Through capacity forecasting business owners can
determine these thresholds, by trading off the impact of
lower success or performance with business value.

While identifying the relationship between workload and
resource usage ensures we have accurate metrics for under-
standing the system, we determine the minimal resources
required using our measurement of the relationship between
workload and QoS. Ideally enough historical data exists for
each micro-service to understand the relationship between
workload and QoS. Section II-B1 describes our analysis of
some micro-service server groups where unplanned capacity
events (’natural experiments’) caused higher than normal
workloads, providing us with additional data to perform our
capacity optimization.

In cases where insufficient data exists we conduct exper-
iments removing servers from production pools to increase
workload on the remaining servers while measuring their
QoS response. These experiments are expensive to perform
because of the potential unknown QoS impact to production
requests. For this reason, experiments are manually super-
vised by service operators who can quickly restore capacity
if the QoS is to low. The overhead of business risk and
human cost constrain the size of each reduction experiment
and limits the total number of experiments. Section II-B2
describes our approach to performing these experiments with
minimal business risk and iterations.

1) Capacity Planning using Natural Experiments: One
goal of capacity planning is to identify the additional re-
sources required to maintain QoS during unplanned capacity
loss or increases in workload. To determine if our model of
the relationship between resource usage and workload holds
during such events we analyzed the data from two historical
unplanned capacity impacting events.

The first event spanned two hours causing pools in
multiple datacenters to receive a median 56% increase in
workload volume as shown in Fig. 4, with one datacenter
receiving an increase of 127%. Fig. 5 shows each datacen-
ter’s CPU usage followed the predicted linear relationship
during the previous or subsequent 2 days. During this period
latency remained below 26ms indicating no QoS impact.

The second event (Fig. 6) shows the latency of a pool
during a separate unplanned event with 4 times the normal
traffic volume. The trend line indicates there should be a

predictable relationship between latency and workload. Each
point in the chart represents a sample from each server
within the pool. The shape represents the datacenter location
of the pool. Note, the elevated latency at low workload is
typical, and caused by additional work performed when the
software starts such as priming caches and pre-compiling
managed code.

Our analysis of the first event confirmed the results we
obtained by manually removing servers to increase work-
load. The second enabled us to obtain data at much higher
workloads than we were comfortable obtaining experimen-
tally and discover how the trend line would behave beyond
the workloads we could accurately predict through extrap-
olation. We believe that analyzing the effect of unplanned
events is a useful way to learn more about the characteristics
of the system, and if there is sufficient data from these there
may be no need to experiment to discover this information.

2) Capacity Planning through Experimentation: We use
response surface methodology (RSM) [41] to explore the re-
lationships between several explanatory variables (workload)
and one or more response variables (QoS and resource us-
age), using a sequence of designed experiments to obtain an
optimal response. RSM is ideal because it enables us to use
historical data and natural experiments, and when additional
data is needed we can run experiments to until we reach our
tolerance for QoS impact. We do not conduct experiments to
fully explore the relationship between QoS and further pool
reduction due to the potential impact to customers. Instead
we curve fit across the historical and RSM experimental
data to forecast the overall relationship between QoS and
pool size, and use this to make capacity allocation decisions
meeting business QoS needs. The RSM process starts by
identifying the factors affecting the response variables, and
then iterates over the following steps:

1) Model: Model the experimental data to determine
gradient along which the objective function changes
in the desired direction, and

2) Extrapolate: Extrapolate along the model’s gradient to
identify the next center point for collecting experimen-
tal data and perform the next iteration.

Before applying RSM we applied the analysis described
in Section II-A1 to historical pool data to identify where
negative correlation exists between the number of servers
processing traffic and the CPU utilization after controlling
for total datacenter load. We then examine the relationship
between the average number of servers and average CPU
utilization for a single pool across a long period of his-
torical data, typically months. Since the total workload for
a micro-service is distributed equally across all servers in
the pool, the total workload is used to partition historical
time points when the pool’s servers had comparable loads.
This increases the number of observations included in each
fit while increasing the noise within each partition since a
narrow range of total workload is present in each partition.
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Figure 7: RSM experiment iterations, showing latency in-
creases from successive server reductions until 14ms QoS
limit is reached.

In practice, we could identify partitions such that the first
order fit values are not overwhelmed by this noise.

An iterative RSM approach is used to experimentally
change the number of servers used by a pool while mea-
suring the corresponding QoS, and then using this result to
forecast the QoS impact of further reductions. Production
experiments often have additional natural changes in server
counts resulting from normal service operations (deploy-
ments, traffic load shifts, etc.), as seen in 3rd iteration of
the chart in Fig. 7. Our experimental design controls for
total pool workload since we are modeling how pool QoS
changes as a function of the number of servers processing
a given total workload.

Micro-service pools can exhibit different performance
characteristics in each datacenter so we index both the data-
center (d ∈ {1,2, ...,D}) and the pool (i ∈ {1,2, ..., I}) being
optimized in our collected data. For pool sid , let {rid j : j =
1,2, ...,Jid} be the observed partitions of total pool workload
i in datacenter d. While the range of workload is organic and
hence not controllable, working directly with a pool owner
we identify Jid to ensure sufficient data is available within
each heavily used partition to generate reasonable model
fits for identifying the objective function’s gradient. Once
defined, the total load partition {rid j} partitions the time
points for data collecting, and we denote the set of time

sets for sids total load is in rid j as {tid j : j = 1,2, ...,Jid}.
Specifically, tid j is the set of times when pool i’s total
workload falls into partition j at datacenter d. Note, we use
|tid j| as the cardinality of set tid j. Since the server count
varies with time (naturally) and is our experimental control
variable, we observe the average number of servers used at
each time within tid j and we denote these observed counts as
{nid jk : j = 1,2, ...,Jid ,k = 1,2, ..., |tid j|}. Lastly, we compute
the average observed latency value (percentile determined by
the business) {lid jk : j = 1,2, ...Jid ,k = 1,2, ..., |tid j|} for pool
i in datacenter d when its total workload is in partition rid j
at the kth time in tid j.

In the experiment step of the data collection process, each
pool reduces their server count in a datacenter for a period
of (roughly) one week. Latency data is collected from these
experimental times, added to the historical data for the pool,
and a second order quadratic polynomial is fit for each total
load partition rid j. Specifically,

˜lid j. ≈ aid j,2n2
id j.+aid j,1nid j.+aid j,0nid j. (1)

where the model parameters aid j,2,aid j,1,aid j,0 are estimated
using robust regressions (RANSAC) [42] using observed
data lid jk,nid jk for pool i in datacenter d while total workload
falls into partition j. Fig. 7 shows the results from multiple
iterations for a typical micro-service.

C. Synthetic Workload Modeling

A key benefit of our approach is the ability to validate
changes to QoS and resource usage for a given work-
load. This enables us to avoid allocating excess capacity
to compensate for potential capacity or QoS regressions
accidentally being deployed to production. To enable this
(step 3 in our methodology from Fig. 1) we first verify our
synthetically produced workload causes the same QoS and
resource usage relationship we observe in our measurements
of production server pools. For the same volume of synthetic
workload we see the same QoS and resource usage values.

This is a novel and important step because it ensures
we have an accurate distribution of request variations, and
an appropriate distribution of responses from any remote
call dependencies made outside of the micro-service we are



validating. Without matching the synthetic workloads to the
production workload, it would only be possible to detect a
change in capacity or latency had happened, but it would not
be able to accurately determine the magnitude. Once this is
complete, we have established our baseline for comparing
any changes we make to the system.

D. Offline Capacity Validation

As described in Fig. 1 step 4, before making any change
to a production micro-service group of servers we first make
this change to the offline version and run the synthetic
workload to measure the QoS and resource usage response
for a wide range of workload volume. By comparing these
with our baseline values, we can determine the impact to
capacity or QoS before any change in hardware, software,
configuration, or networking, is deployed to production.
Most importantly we not only detect when a change happens,
we also determine the curve describing the change, enabling
adjustment of capacity plans if needed. Furthermore this
curve tells us what we expect the QoS (performance) and
resource usage of a software change will be in production,
before we deploy it. This enables us to adjust production
server pool capacity for new features or changes if needed
before the change is deployed.

Using this approach for each version of software released
to a server pool, we detect scalability problems that would
have caused unplanned service outages before they were
released to production. Our system uses two server pools of
the same size and hardware, one running with the change and
the other without. We precisely generate identical workloads
to each pool enabling us to detect changes with high con-
fidence and precision. We make small workload increments
over time to obtain a broad set of data for latency and
resource utilization. Finally, we compare the pool results
to understand the impact of the change.

III. METHOD EVALUATION

We validate our approach by predicting the QoS (latency)
impact of removing servers from two micro-service pools
containing 100s of servers and then experimentally mea-
suring the impact, as described in Section III-A. For the
first service we predicted the 95th-perc. latency to be 31.5ms
after removing 30% of servers and measured this to be 30.9,
and for the second one we predicted it to be 52.6ms after
removing 10% of servers and measured it as 50.7ms.

We also analyzed the capacity usage of all production
servers in a large online service to understand the op-
portunity for capacity savings. Our results, described in
Section III-B, show a significant opportunity for savings
with 80% of servers using less than 30% of their bottleneck
resource, CPU. Next we analyzed the availability of these
servers in Section III-B2 to determine the capacity used
to compensate for planned and unplanned maintenance. We
found only 2% of capacity is needed, and a potential capacity

RPS / Server Percentiles
Experiment Stage 50% 75% 95%
Original Server Count 249.5 309.3 376.8
30% Server Reduction 390.4 461.1 540.3
% Change 56% 49% 43%

Table II: Lists 50th, 75th, and 95th percentiles of RPS/Server
during the two stages of the server pool D reduction ex-
periment. The count of active servers during each stage
agreed with the expected 30% reduction, but the RPS/server
increased by more than 43% at the 95th percentile due to
increased traffic load to the service during the experiment.

savings of 15% of total capacity if some micro-services
improved their planned maintenance practices. These results
are based on our analysis of 30 PB of data containing
performance counters and request processing data spanning
90 days from hundreds of thousands of production servers.
Production servers are a subset of all servers containing only
those used in the real-time processing of service requests.
Performance counters were sampled every 100 ns [43] and
averaged over a 120 s window. The window size was
selected to be as large as possible to minimize the cost of
storage and the overhead of collecting approximately 3 GB/s.

A. Evaluation of Capacity Forecasting

Since our forecasts are based on extrapolations there is
no way of knowing how the shape of these trend curves
will shift, it is best to remove servers slowly and monitor
the accuracy of these forecasts. More data closer to the
target performance points would improve the later model
accuracy. Section III-A1 and III-A2 describe the two server
pool reduction experiments.

By comparing the resource utilization at varying work-
loads for each version of software released to a new server
pool, we were able to detect scalability problems that would
have caused unplanned outages to the online service before
they were released to production.

1) Detailed Analysis of the Server Pool B: The first server
count reduction was performed for a query modification
service (Server Pool B in data center DC 1). The original
server pool servers were observed over 5 weekdays to
be processing 377 requests per second (RPS) at the 95th

percentile of load (see Table II). Fig. 8 and Fig. 9 show
the average total percent processor time and latency at these
loads was 12% and 30.5ms.

During the second stage of the experiment, the request
volume per server was increased by reducing the server pool
size by 30%. Coincident with this reduction, the production
traffic increased to this service resulting in 540 RPS/server
(43% increase) at the 95th-perc. of load.

Fig. 8 overlays the average processor percentages/server
from both experimental stages. A linear model trained on
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the original server pool size

y = 0.028∗RPS+1.37 R2 = 0.984 N = 1221

would have predicted an average 16.5% processor uti-
lization/server at an average 540 RPS/server. Performance
during the reduced server stage exceeded the forecast value
coming in at 17.4%

y = 0.029∗RPS+1.7 R2 = 0.99 N = 576

The forecast error resulted from the increased intercept,
which historically has coincided with code or data deploy-
ments. The scatter plot in Fig. 9 shows how the average
95th percentile of internal latency changed across the two
experiment stages. A quadratic polynomial trained on the
original server pool size

y = 4.028e−5 ∗RPS2−0.031∗RPS+36.68

R2 = 0.79 N = 1221

forecast an average latency of 31.5ms, while the measured
average latency was 30.9ms. Data is insufficient to forecast
when the latency curve will rise at even higher loads.

Since we do not know the underlying model for the
system we are analyzing, our analysis techniques did not
assume the shape of the underlying data distribution. We
started by trying the simplest techniques first and found that
quadratic polynomials worked in this case and for 10s of
other server pools, so there was no need to evaluate more
complex approaches such as a Gaussian model. Techniques
such as nearest neighbor are useful for interpolation and not
accurate for the extrapolation we need to forecast resource
usage and latency at higher workloads.

2) Detailed Analysis of Server Pool D: The second server
count reduction experiment was performed for a service
responsible for routing traffic within the data center. The
original server pool servers were observed to be processing
78 workload units at the 95th percentile of load (see Ta-
ble III). Fig. 10 and Fig. 11 show the average processor and
95th percentile internal latency at the 95th percentile of load
to be 12.1% and 52.8ms.

RPS / Server Percentiles
Experiment Stage 50% 75% 95%
Original Server Count 56.8 74.8 77.7
30% Server Reduction 63.5 89.0 94.9
% Change 12% 19% 22%

Table III: Lists 50th, 75th, and 95th percentiles of RPS/Server
during the two stages of the server pool D reduction ex-
periment. The count of active servers during each stage
agreed with the expected 10% reduction, but the RPS/server
increased by 22% at each the 95th percentile due to increased
traffic load to the service during the experiment.
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Figure 11: Average 95th percentile latency versus average
workload per server for server pool D in datacenter 1 follows
our quadratic prediction.

The experiment testing our ability to forecast average
CPU and latency under higher load was executed by re-
ducing the server count by 10% for two days. The data
collected during this phase of the experiment is shown in
Fig. 10 and Fig. 11 as orange data points. As with the service
B experiment, reducing server count does not ensure the
expected load increase and in this tests, the load distribution
shifted to 95 RPS / server a 22% increase.

A linear model trained on the original server pool size

y = 0.0916∗RPS+5.006 R2 = 0.940 N = 576

would have predicted an average 13.7% utilization proces-
sor/server at 94.9 RPS/server. Results from the 10% server



reduction stage show average processor utilization hit 13.3%

y = 0.0892∗RPS+4.843 R2 = 0.969 N = 864

in line with the forecast value.
Fig. 11 shows the average 95th percentile of internal

latency response to load increases. A quadratic polynomial
trained on the original server pool size

y = 4.66e−3 ∗RPS2−0.80∗RPS+86.50

R2 = 0.90 N = 576

forecast an average latency of 52.6ms, while the observed
latency at the 95th percentile of load was 50.7.

The same experiment was replicated in data center D4
and produced similar forecast accuracy for both processor
and 95th-perc. internal latency. The expected and observed
processor were both 15.5 after a 29% increase in RPS/server,
while the expected and observed 95th-perc. internal latency
shifted from 59 to 61ms.

B. Overall Capacity Saving Opportunity

Now that we have shown our method works for 2
representative micro-services, we analyzed the potentially
capacity saving opportunity across the overall large online
service running across hundreds of thousands of servers.
Since testing our approach at full scale was impractical, as
the servers belong to different organizations, etc., we esti-
mate the potential savings by analyzing the server utilization
across micro-service pools used by the service. Our intent
was to identify a theoretical maximum potential efficiency as
an indication of overall system utilization, and an indication
of the practical maximum efficiency to tell us how viable
it may be to reclaim servers without significant impact to
service quality. As others have seen [7], [8], we found a
significant portion of server resources are idle as shown in
section III-B1.

We applied our methodology to server pools across the
large online service we investigated, and show the results
for the 7 largest in table IV. It shows a potential savings
of 30% of servers while impacting QoS (latency) by an
average of 5ms which is less than 1% of the overall service
latency, and was considered negligible. 20% of these savings
are from running each server pool with less servers while
still maintaining an acceptable QoS, and 10% are from im-
proving server availability by changing planned maintenance
practices of how many servers are taken offline, and for how
long, during software and configuration deployment. Section
III-B2 describes our server availability analysis in detail.

1) Savings From Headroom Elimination: We calculate
global utilization by taking the sum of the normalized
usage over the day. This gives us the theoretical maximum
utilization of the current system, indicating the upper bound
for efficiency gains. This efficiency is unlikely to be achieved
because it assumes we could perfectly partition and mix

Server
Pool

Efficiency
Savings

Latency (QoS)
Impact

Online
Savings

Total
Savings

A 15% 9ms 4% 19%
B 33% 2ms 27% 60%
C 4% 7ms 7% 11%
D 33% 8ms 0% 33%
E 33% 2ms 2% 35%
F 33% 4ms 0% 33%
G 5% 1ms 0% 5%

Savings5 (20%) (avg. 5ms) (10%) (30%)

Table IV: Summary of Server Savings for the seven largest
server pools, across all datacenters.
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Figure 12: CDF of how many servers are at each percentage
of 95th percentile utilization each day.

workloads across servers accurately enough to maintain this
throughout the day, and assumes we have a fixed workload is
CPU bound. From our analysis of the entire set of servers,
we found the global utilization to be 23%. This indicates
we have the upper bound for nearly 4x potential for CPU
efficiency improvement.

To understand the theoretical efficiency target we ex-
amined the variation of resource utilization for individual
servers over the course of the day. We first recorded the
95th percentile value of CPU utilization, which indicates that
capacity could be reclaimed without impacting the service.
Next we examined the impact of prolonged high server
utilization on QoS.

Figure 12 shows the distribution of servers versus their
maximum CPU usage for a typical day. We see several
interesting things. First, 60% of all servers exhibit a 95th

CPU utilization of 15% which is a significant number of
underutilized servers. Second, there is a wide variation (be-
tween 30% and 100%) of 95th CPU utilization across 20%
of the servers. This indicates a relatively small population of
servers have high utilization. These results were surprising
because we expected at least one CPU intensive event, such
as process startup, would cause nearly all machines to have
a high 95th utilization value. Service owners told us the over
allocation of capacity was to absorb unexpected increases in
traffic and unplanned capacity outages.

To understand the duration of servers with high maximum
CPU utilization, we examined the distribution of individual
120 second CPU usage samples over the course of the day
to understand how they varied. Figure 13 shows it is rare
for CPU usage to be above 25% at any point during the



day. Only 1% of samples were greater than 25% and fewer
than 0.1% of samples were above 40%. This indicates even
though 50% of servers have a maximum usage greater than
25% from Figure 12, Figure 13 indicates these are short and
rarely occurring spikes, which aligns with our server pool
analysis which has no samples above 50% utilization. This
shows there are few instances of short duration where high
CPU utilization will slow request processing and thus impact
latency. Figure 12 tells us fewer than 15% of machines
exhibited these spikes of more than 40% utilization. Overall
this indicates these servers could use significantly more CPU
and still expect few instances of short duration where high
utilization impacts latency.

2) Savings From Improving Server Availability: We ana-
lyzed the availability of servers to understand how often they
are online and measured how much capacity was required
to compensate for this unavailability.

We measured the percentage of time each server was
online daily, independent of the server pool they were part
of, and found the overall average availability was 83%. The
distribution of server availability in figure 14 shows most
servers are online at least 80% of the time, with a large
population at 85% and 98%. Given the large population
at 98%, our intuition is that planned maintenance practices
could be improved to increase the availability of all servers
to this level. Service owners told us the servers online less
than 80% of the time were part of server pools re-purposed
during non-peak hours to run offline validation of software
changes.

Next we investigated the correlation between server avail-
ability and server pool availability to know if specific pools
were more highly available or if servers with low availability
were randomly found in all pools. Figure 15 shows the
availability for 3 of the largest server pools C, D, and H,
across all data centers. It shows the availability of servers
within a pool is quite constant, where pools D and H
consistently had 98% availability while pool C consistently
had 90% availability, leading us to believe the reasons for
unavailability were likely related to server pools as opposed
to individual servers. We also see the variation in pool
availability is small from day to day, though we do see
occasional major unavailability days as we see at the start
of the period for pool D.

Planned maintenance of server pools requires the work-
load to be supported at the required quality level while a
subset of servers are taken offline. Service owners told us the
primary planned maintenance task was updating software,
configuration, and data. The offline event varied in duration
depending on the time to drain in-flight requests, apply
changes, and restart to receive new requests. The secondary
reason was planned infrastructure maintenance for operating
system upgrades, network changes, and hardware repairs.
We expect availability loss from infrastructure maintenance
to be uniform across all servers, so the overhead of this can

potentially be estimated as one minus the availability of the
most available servers (100% - 98% = 2%).

C. Regression Analysis

We conclude our evaluation by showing an example where
our regression analysis enabled finding a bug which was
previously deployed to production. We used our offline
regression analysis to validate a software change for elim-
inating a memory leak. The system confirmed the change
fixed the memory leak, though found it introduced a new
defect causing a significant increase in latency of the server
pool under higher workloads. Deep engineering investigation
initiated by this result found a complex design flaw, which
was then rectified. Fig. 16 shows the results of a software
change to eliminate the memory leak and the overall latency
regression.

We believe this example shows there is value in analyzing
the magnitude of resource and latency impact from changes
at scale before deploying them to production. As shown
here, this can catch regressions and can serve as a potential
measurement of the resource and latency cost of a new
change. The ability to measure this cost enables budgeting
of resources and latency for individual features, whereas
without such a system it is only possible to coarsely identify
this cost as part of all features running within a server pool.

IV. RELATED WORK

Cloud system efficiency research has focused on increas-
ing utilization and workload throughput by optimizing VM
placement on servers to over provision or collocate indepen-
dent workloads [3], [8], [44], [45]. Our work optimizes for
low overall request processing latency in addition to overall
throughput. The service we investigated is composed of a
single distributed workflow with hundreds of components
that run directly on the server hardware whereas the previous
work focused on optimizing a large number of smaller
independent workloads.

Previous analysis of an online travel service [46] focused
on characterizing user session patterns, described the work-
load and resource variation over time, and described the
relationship between latency and workload increases. This
analysis was on a much smaller scale and shorter time
period, covering only 35 servers in a single location for
seven days.

Improving server utilization by running additional work-
loads is another related area. These follow a strategy of
running additional workloads on the same physical server
with lower resource guarantees [10]–[13]. Our work is
compatible with this solution, by focusing on reducing
minimizing the overall capacity of the system we make the
workload response more predictable and therefore easier
to manage which minimizes the need to locate additional
workloads and maximizes the resource guarantees they can
have. In addition, our analysis evaluates the impact of higher
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server utilization on the QoS (such as end-user latency) of
the micro-services running on the servers, illustrating the
potential impact of mismanaging secondary workloads.

Another approach to increasing capacity efficiency has
been to dynamically add or remove servers as demand
changes [2], [3], [47]–[53], or even turn off unused server
capacity [54]. In practice this approach is difficult to imple-
ment for large online services because it requires existing
systems to be ported to run on top of a new infrastructure,
and the complexity of dynamic capacity makes the system
difficult to debug. Dynamically enabling capacity assumes
capacity is available in the specific datacenter topological
location when needed, which is inefficient and difficult to
guarantee when thousands of servers may be required instan-
taneously. Our analysis investigates the benefits of moving
workload requests closer to the existing capacity because
this requires less operational overhead and eliminates the
lag time to bring capacity online.

Our work builds on research into the area of tools and
strategies for optimizing distributed system software per-
formance [55]. We show our results from comparing new
releases of software to their previously released version to
detect regressions in scale and performance. Our approach
is able to support validating changes that require more
capacity than a single server, yet does not require the entire
distributed system to validate the change.

Custom hardware has been used to make efficiency im-
provements [56]. With the transition to cloud computing,
service owners will not be able to make hardware choices
because cloud providers will achieve greater economies of
scale by minimizing variation in the servers it uses. This

will require service builders to focus on maximizing the
utilization and performance of their software on common
cloud hardware, using techniques similar to those provided
in this paper. Simply allocating additional headroom is a
prohibitively expensive solution, and cloud providers are not
incentivized to tell service owners they can run with less.

Research into data center efficiency has focused on opti-
mization of physical resources such as power and cooling
both at a macro level of the datacenter itself, and also of the
individual servers [57]–[60]. We believe it is more cost- and
energy-efficient to have fewer servers overall with consistent
usage than to have large numbers of dormant machines. Any
improvements in this area are complimentary to efficient
server allocation.

V. CONCLUSION

We presented a summary of server capacity usage across
a large online service containing on the order of hundred
thousands of servers, shared a novel methodology for ca-
pacity planning that forecast significant server savings (20%
to 40%) and confirmed these results experimentally. One
of the key lessons learned was if you blindly measure
the resource usage of your system there will be too much
noise in the results to use for capacity planning. However,
partitioning the resource usage data by workload enables us
to clearly see the linear relationship between workload and
resource usage which enables our simplified yet effective
black-box capacity planning approach. In addition, without
accurate partitioning of micro-service behavior into servers
with identical behaviors this approach would not be possible.
We found developing metrics for each workload to be
relatively simple since workloads are naturally consumed
across machine boundaries, however VMs, containers, or
process boundaries are sufficient for our approach to work.
Given the large number of online services in operation
today, the potential savings by applying this work could be
significant in terms of servers and money saved as well as
the environmental impact of energy savings.
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