
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adaptation of global land use and management intensity to
changes in climate and atmospheric carbon dioxide

Citation for published version:
Alexander, P, Rabin, S, Anthoni, P, Henry, R, Pugh, TAM, Rounsevell, MDA & Arneth, A 2018, 'Adaptation
of global land use and management intensity to changes in climate and atmospheric carbon dioxide' Global
Change Biology, pp.  2791-2809. DOI: 10.1111/gcb.14110

Digital Object Identifier (DOI):
10.1111/gcb.14110

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Global Change Biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1111/gcb.14110
https://www.research.ed.ac.uk/portal/en/publications/adaptation-of-global-land-use-and-management-intensity-to-changes-in-climate-and-atmospheric-carbon-dioxide(c72b4baa-bde2-4e73-bd7d-289bcab4efd6).html


P R IMA R Y R E S E A R CH A R T I C L E

Adaptation of global land use and management intensity to
changes in climate and atmospheric carbon dioxide

Peter Alexander1,2 | Sam Rabin3 | Peter Anthoni3 | Roslyn Henry1 |

Thomas A. M. Pugh3,4,5 | Mark D. A. Rounsevell1,3 | Almut Arneth3

1School of Geosciences, University of

Edinburgh, Edinburgh, UK

2Global Academy of Agriculture and Food

Security, The Royal (Dick) School of

Veterinary Studies, University of Edinburgh,

Midlothian, UK

3Karlsruhe Institute of Technology, Institute

of Meteorology and Climate Research,

Atmospheric Environmental Research (IMK-

IFU), Garmisch-Partenkirchen, Germany

4School of Geography, Earth and

Environmental Sciences, University of

Birmingham, Birmingham, UK

5Birmingham Institute of Forest Research,

University of Birmingham, Birmingham, UK

Correspondence

Peter Alexander, School of Geosciences,

University of Edinburgh, Edinburgh, UK.

Email: peter.alexander@ed.ac.uk

Funding information

Biotechnology and Biological Sciences

Research Council, Grant/Award Number:

BB/N020707/1; Seventh Framework

Programme, Grant/Award Number: 603542

Abstract

Land use contributes to environmental change, but is also influenced by such changes.

Climate and atmospheric carbon dioxide (CO2) levels’ changes alter agricultural crop

productivity, plant water requirements and irrigation water availability. The global

food system needs to respond and adapt to these changes, for example, by altering

agricultural practices, including the crop types or intensity of management, or shifting

cultivated areas within and between countries. As impacts and associated adaptation

responses are spatially specific, understanding the land use adaptation to environ-

mental changes requires crop productivity representations that capture spatial varia-

tions. The impact of variation in management practices, including fertiliser and

irrigation rates, also needs to be considered. To date, models of global land use have

selected agricultural expansion or intensification levels using relatively aggregate spa-

tial representations, typically at a regional level, that are not able to characterise the

details of these spatially differentiated responses. Here, we show results from a novel

global modelling approach using more detailed biophysically derived yield responses

to inputs with greater spatial specificity than previously possible. The approach cou-

ples a dynamic global vegetative model (LPJ-GUESS) with a new land use and food

system model (PLUMv2), with results benchmarked against historical land use change

from 1970. Land use outcomes to 2100 were explored, suggesting that increased

intensity of climate forcing reduces the inputs required for food production, due to

the fertilisation and enhanced water use efficiency effects of elevated atmospheric

CO2 concentrations, but requiring substantial shifts in the global and local patterns of

production. The results suggest that adaptation in the global agriculture and food sys-

tem has substantial capacity to diminish the negative impacts and gain greater bene-

fits from positive outcomes of climate change. Consequently, agricultural expansion

and intensification may be lower than found in previous studies where spatial details

and processes consideration were more constrained.
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climate change adaptation, CO2 fertilisation, food system, land use change, land use intensity,
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1 | INTRODUCTION

Environmental change will influence future agricultural productivity.

Climate impacts have been shown to have both positive and nega-

tive impacts on yields depending on crop type and latitude; however,

the net global effect of a warming climate on existing cropland is

expected to be negative (Deryng, Sacks, Barford, & Ramankutty,

2011; Deryng et al., 2016; Liu et al., 2016; Pugh et al., 2016; Rosen-

zweig et al., 2014; Tebaldi & Lobell, 2015). Nonetheless, at higher

latitudes, increasing temperatures have the potential to increase crop

yields (M€uller et al., 2015; Pugh et al., 2016). Increased atmospheric

levels of carbon dioxide (CO2) are also widely expected to increase

agricultural productivity, but the magnitude of such CO2 fertilisation

remains contested (Ainsworth, Leakey, Ort, & Long, 2008; Leakey

et al., 2009; Long, Ainsworth, Leakey, N€osberger, & Ort, 2006;

Osborne, 2016; van der Kooi, Reich, L€ow, De Kok, & Tausz, 2016).

Over the coming decades, the food production system will further

be affected by increasing demand for agricultural products (Alexan-

der et al., 2015; Foley et al., 2011; Tilman, Balzer, Hill, & Befort,

2011; Weinzettel, Hertwich, Peters, Steen-Olsen, & Galli, 2013), con-

tinued globalisation of trade in agricultural products (D’Odorico, Carr,

Laio, Ridolfi, & Vandoni, 2014; Meyfroidt, Lambin, Erb, & Hertel,

2013) and adoption of land-based climate change mitigation mea-

sures (Humpen€oder et al., 2015; Smith et al., 2013). However,

through shifting land use and changing management practices, the

global agriculture and food system can adjust, at least in part, to

these changes to lessen the negative impacts and accentuate any

potential benefits.

Land use also creates important environmental impacts. For

example, 24% of all anthropogenic greenhouse gas emissions (GHGs)

in 2010 were associated with agriculture, forestry and other land

use (Smith, Bustamante, et al., 2014), and 11% of anthropogenic

CO2 emissions were associated with land use change (Le Qu�er�e

et al., 2016). Expanding agricultural areas and intensifying production

—that is, using more inputs, such as fertilisers, pesticides or water or

changes in management practices—can increase GHG emissions,

deteriorating soil quality, use scarce water and reduce biodiversity

(Cassman, 1999; Johnson, Runge, Senauer, Foley, & Polasky, 2014;

Newbold et al., 2015; Smith et al., 2013). Furthermore, land-based

mitigation measures may be required to meet current climate change

targets (Popp et al., 2017). Understanding how changes in climate,

changes in demand for agricultural commodities and land-based cli-

mate change mitigation measures will affect the future agricultural

and land use system is therefore critical.

Previous studies have attempted to understand these interac-

tions, using models including a representation of the land use sys-

tem. Notably, integrated assessment models (IAMs) have been used

to investigate climate change mitigation scenarios; for example, con-

sidering options such as afforestation, avoided deforestation and

bioenergy production (Humpen€oder et al., 2014; Popp et al., 2011,

2017; Wise et al., 2009). Under representative concentration path-

ways (RCPs) (van Vuuren et al., 2011), scenarios with GHG emissions

and concentrations that span a range of radiative forcings, and

shared socio-economic pathways (SSPs) (O’Neill et al., 2015), IAMs

and other models of land use have projected outcomes (e.g. Calvin

et al., 2013; Fujimori, Masui, & Matsuoka, 2012; Havl�ık et al., 2014;

Meiyappan, Dalton, O’Neill, & Jain, 2014; Ren et al., 2016; Stehfest,

Vuuren, Bouwman, & Kram, 2014). Interaction between natural dri-

vers, represented by earth system models, and societal drivers, rep-

resented in IAMs, have also been undertaken (Collins et al., 2015).

Models of the global agricultural system have primarily taken eco-

nomic equilibrium optimisation approaches, either general (CGE) or

partial equilibrium models (Robinson et al., 2014). Due to computa-

tional restrictions, these approaches do not typically use high-spatial

resolution when choices regarding rates of agricultural areas and

intensities are made, instead representing the globe via a small num-

ber of regions or agricultural zones. Crop yields achieved with vary-

ing intensities of production are represented using different, but

stylised approaches (Nelson et al., 2014). Increases or decreases in

agricultural areas are also considered, but with increases specified at

regional scales as part of the economic production functions, which

are subsequently spatially disaggregated. This assumes that land

expansion occurs on progressively less productive land but does not

closely relate this expansion to physical properties and limitations.

Although downscaling or disaggregating into finer resolution maps is

common, nonetheless the optimisation to determine the aggregate

land uses within a region (including fertiliser and irrigation rates) has

occurred with these aggregate units. An exception to this regional

optimisation approach is MAgPIE, which takes a least-cost optimisa-

tion approach using gridded yield data from the global vegetation

model LPJml (Lotze-Campen et al., 2008). However, even in this

case, a location-specific yield response to agricultural input changes

is not considered, but rather regional technological change rates are

used (Lotze-Campen et al., 2008). Additionally, MAgPIE aggregates

global spatial input data to between 100 and 600 clusters with simi-

lar crop yields (Dietrich, Popp, & Lotze-campen, 2013; Humpen€oder

et al., 2014; Kreidenweis et al., 2016). Therefore, current global land

use models and IAMs do not explore the interactions between agri-

cultural expansion and intensification using crop behaviour from

plant-ecosystem process modelling on a spatially disaggregated basis.

Furthermore, to date, there has been a lack of focus in global studies

on understanding potential adaptation responses to climate change

in land use (Berger & Troost, 2013). IAMs have been widely used to

investigate land-based climate change mitigation options (Hum-

pen€oder et al., 2014; Popp et al., 2011, 2017; Rose, 2014; Wise

et al., 2009). While most IAMs represent “top-down” mitigation poli-

cies, making the “bottom-up” nature of the adaptation process more

difficult to capture (Hertel & Lobell, 2014).

Here, we present initial results from a novel land use model that

uses more detailed biophysically derived yield data and responses to

inputs, with greater spatial specificity than previously possible. The

approach couples a dynamic global vegetation model (LPJ-GUESS;

Olin, Lindeskog, et al., 2015; Smith, W€arlind, et al., 2014) with a new

land use and food system model (PLUMv2). PLUMv2 responds to
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changes in input (yields and demand for commodities) by endoge-

nously adapting land use at high-spatial resolution. Greater demand

can be met both by intensification and agricultural expansion (John-

son et al., 2014; Tilman et al., 2011). A further novel aspect of this

study is that PLUMv2 does not assume market equilibrium, com-

modity prices are adjusted to account for over- or undersupply,

while trade mechanisms also allow for representation of international

tariffs and transport costs. This offers a more accurate representa-

tion of the trade-offs, responses and cross-scale interactions that are

likely to be important in determining the system dynamics as a

whole (Rounsevell et al., 2014). Land use and demand projections

from the coupled model system were evaluated against historical

data to assess suitability for exploring future scenarios, a task often

not conducted for land use models. These coupled models were

used to investigate the potential for adaptation to climate change

within the agricultural system and possible climate change impacts

on land use.

2 | MATERIALS AND METHODS

2.1 | Overall coupled model framework

The Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS;

Smith, W€arlind, et al., 2014) global vegetation model was coupled to

PLUMv2, a new and reconceptualised version of the Parsimonious

Land Use Model (Engstr€om, Rounsevell, et al., 2016). LPJ-GUESS

produced crop and pasture yield potentials on a 0.5° grid—using a

factorial experiment for crops with three fertilisation rates and

rain-fed vs. irrigated conditions—using climate forcing scenarios.

PLUMv2 used these yields in combination with scenario data, for

example GDP and population, to project land use and management

inputs (Figure 1). The components of the coupled model are

discussed further below.

2.2 | Biophysical crop yield potentials across
intensities from LPJ-GUESS

LPJ-GUESS uses a dynamic global vegetation model approach to

simulate terrestrial ecosystems and their interactions with large-scale

biogeochemical processes. It combines a mechanistic representation

of physiological processes for a number of broad vegetation cate-

gories (plant functional types) with population dynamics based on

forest gap modelling to simulate plant growth, death, competition

and succession (Hickler et al., 2004; Smith, Prentice, & Sykes, 2001;

Smith, W€arlind, et al., 2014). Cropland and pasture were represented

in LPJ-GUESS as fractions of land distinct from “natural” vegetation

that undergo management and harvest (Lindeskog et al., 2013). Pas-

ture is simulated as a natural grassland but with the addition of an

annual grazing “harvest” term. Analogously to natural vegetation, the

wide variety of crops planted around the world is simplified into sev-

eral crop functional types (CFTs). Each CFT was assigned parameters

related to plant physiology (e.g. photosynthetic pathway and vernali-

sation requirements) and management (e.g. fertilisation regime). The

LPJ-GUESS crop model includes nitrogen cycling and has been

shown to realistically simulate yield responses to nitrogen and CO2

fertilisation (Olin, Schurgers, et al., 2015).

LPJ-GUESS was used with four CFTs: winter-sown C3 cereals

(TeWW), spring-sown C3 cereals (TeSW), C4 cereals (TeCo) and rice

(TrRi) (Olin, Lindeskog, et al., 2015). LPJ-GUESS input data and

parameterisation details are available in the supporting information,

along with information on changes made to crop water demand, soil

moisture and irrigation. Potential yields under six alternative combi-

nations of fertiliser and irrigation rates were determined. Three rates

of fertilisation were considered: zero fertiliser, 200 and 1,000 kgN/

ha, with each either rain-fed or fully irrigated (i.e. with as much

water applied as the plants would take up), with the potential heat

units scheme for plant development (Olin, Lindeskog, et al., 2015).

The high-fertilisation rate is substantially beyond that used in prac-

tice, but represents a maximum upper limit of achievable yields. Eco-

nomic considerations are accounted for in the land use optimisation

and act to limit the fertiliser modelled as applied.

2.2.1 | Calibration to observed crop yields

PLUMv2 used seven crop types to represent demand for agricultural

products, mapped on to the four LPJ-GUESS CFTs (Table 1), with

the aim of maintaining realistic physiological and management

parameters. A calibration routine was used to translate yields pro-

duced by LPJ-GUESS into potential yields for each PLUMv2 crop

type, for example, TeSW to pulses. The calibration process was also

used to improve the fidelity of LPJ-GUESS yields to observations for

crops it was designed to simulate (e.g. TrRi to observed rice yields).

The calibration factors were generated via a slope-only regression

between simulated and observed per-area yields for the years 1995–

2005 (Table 1). Observed yields for each PLUMv2 crop type were

derived from FAO data (FAOSTAT, 2015a, 2015b), except for energy

crops, data for which were taken from the Biofuel Ecophysiological

Traits and Yields Database (BETYdb, LeBauer et al., 2010). Figure S2

shows the scatter plots comparing the simulated and observed yields

for each PLUMv2 crop type, and Table 1 gives the derived calibra-

tion factors. The yields used by PLUMv2 were calculated as the pro-

duct of the calibration factors and associated CFT yield output from

LPJ-GUESS.

2.2.2 | Yield potentials in the land use model

The yields available for any combination of fertiliser and irrigation

rate were estimated using the calibrated yield potentials at alternate

irrigation and fertilisation rates for each grid cell and crop. An expo-

nential yield function for all types of intensity was used that fits the

LPJ-GUESS yield potentials provided (see supporting information—

Methods for full equations). As well as fertiliser and irrigation rates,

the level of management practices was represented by a “manage-

ment intensity,” encompassing activities such as pesticide application

rates, reseeding of grassland, controlling of soil pH, for example,

through application of lime, and larger stock of machinery or labour.
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An exponential approach was also used to represent diminishing

returns from increasing management inputs. Yield increases from

technology change, for example, due to plant breeding, were

included as an annual exogenous increment to these yields.

Examples of the surfaces produced for two grid cells and crops

are shown in Figure 2. Figure 2b shows a location with a high

response to irrigation rates, in comparison with Figure 2a, and both

cases demonstrate a response with diminishing returns from increas-

ing fertiliser.

2.3 | Land use and agricultural trade model from
PLUMv2

2.3.1 | Agricultural commodities demand

Demand for agricultural commodities was projected at a country

level for six commodity groups—cereals, oil crops, pulses, starchy

roots, ruminant products and monogastric products—considering

both food and bioenergy requirements. The proportions of

commodities in each group were fixed from the baseline year of

2010, and cereal demand could be met by wheat, maize or rice.

Food demand was projected based on log-linear relationships

with per capita income. Country-level historical data on GDP, popu-

lation and consumption from 1961 to 2010 (FAOSTAT, 2015a,

2015c) were used to derive these relationships, with data points

weighted by country population. Projections used GDP and popula-

tions from the SSP scenarios (O’Neill et al., 2014). Dietary patterns

alter as incomes change, with higher incomes being associated with

a shift from staples such as starchy roots and pulses, to commodities

such as meat, milk and refined sugars (Fiala, 2008; Kearney, 2010;

Keyzer, Merbis, Pavel, & van Wesenbeeck, 2005; Tilman et al.,

2011; Weinzettel et al., 2013). However, further increases in income

tend to lead to lower increases in the rate of consumption (Cole &

McCoskey, 2013), while the consumption of the less preferred pro-

duct, for example, pulses, drops but at a decreasing rate. Both of

these observations can be accounted for by the approach, similar to

that applied by Tilman and Clark (2014) and Bodirsky et al. (2015);

however here, the approach is applied to multiple commodity groups

F IGURE 1 Diagram of main
interactions between LPJ-GUESS and
PLUMv2 showing the components and
flows within the couple models. Data
passed between LPJ-GUESS and PLUMv2
are on a 0.5° grid. Water run-off is
aggregated to food production units
(FPUs), and adjusted for other uses, before
being used to constrain water use in
PLUMv2. Both models run at annual time
steps, with LPJ-GUESS output data
averaged over a 5-year period for input
into PLUMv2 (see Figure S1 for temporal
interaction details)
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rather than to calorific intake and aggregate animal product con-

sumption.

Cultural and other variations between countries lead to differ-

ences between (a) the consumption implied by the regression rela-

tionship from population and income and (b) the observed

consumption in the same year. For example, Japan has less meat

consumption than the global relationship suggests given its per cap-

ita income, but with a high level of fish consumption. The difference

between expected and observed consumption rates for each country

was calculated in the baseline year of 2010. Under some scenarios,

these differences were held constant; under others, an exponential

convergence was applied to global dietary patterns as per capita

GDP increased (see supporting information—Methods). The histori-

cal and projected consumptions plotted against GDP are shown in

Figure S3.

First- and second-generation bioenergy demand trajectories were

specified exogenously to represent a moderate business-as-usual

scenario. Bioenergy demand for food commodities–that is, first-

generation bioenergy–were modelled from an observed baseline

level of demand (Alexander et al., 2015; FAOSTAT, 2015c) adjusted

to double by 2030 from the 2010 level and thereafter remain con-

stant. Demand for dedicated energy crops (i.e. second-generation

bioenergy) was specified as a global trajectory that increases to

4,000 Mt DM/year by 2100 from 34 Mt DM/year in 2010, in line

with the SSP2 demand with baseline assumptions (Popp et al.,

2017). Demand for second-generation bioenergy was not associated

with individual countries, with all production locations determined

endogenously.

2.3.2 | Country-level optimisation of land use,
livestock production and international trade

For each country and time step, the agricultural land use and level

of imports or exports were determined through a least-cost optimi-

sation that meets the national demands for food commodities. For

example, an increased national demand for a commodity can be met

in three ways—increasing the land area for growing associated

crops; increasing the levels of inputs to achieve higher yields, that is,

intensification; or increasing the level of net imports, that is, reduc-

ing exports or increasing imports. The land use and intensities are

spatial (0.5° grid), while the imports and exports rates are national.

Costs were associated with each aspect, using prices in 2010 US$.

The model constraints, equations and the objective function are

given in the supporting information—Method. The 47 countries with

a population of more than 25 million in 2010 were represented sep-

arately, and countries with small populations were aggregated

TABLE 1 Mapping between crop and consumption types used in
FAOStat, LPJ-GUESS and PLUMv2. LPJ-GUESS crop functional
types are TeSW for spring C3 cereals, TeWW for winter C3 cereals,
TeCo for C4 cereals and TrRi for rice

PLUMv2
crop
type

FAOSTAT
(2015b) crop
types

LPJ-GUESS crop
type

Calibration factor
from LPJ-GUESS to
PLUMv2

Cereals

C3

Wheat

Barley

Oats

Higher of TeSW or

TeWW for each

grid cell

0.988

Cereals

C4

Maize

Millet

Sorghum

TeCo 0.706

Rice Rice paddy TrRi 0.978

Oil crops Oil crops

primary

Higher of TeSW or

TeWW for each

grid cell

0.594

Pulses Pulses total TeSW 0.572

Starchy

roots

Roots and

tubers total

TeSW 5.832

Energy

crops

Miscanthusa TeCo 2.148

aData on Miscanthus come from the Biofuel Ecophysiological Traits and

Yields Database (LeBauer et al., 2010).

F IGURE 2 Example yield responses to fertiliser and irrigation inputs at 2010, for spring wheat (a) in Aberdeenshire, Scotland (lat: 57°, lon:
�2.5°), and (b) maize in Texas, USA (lat: 30°, lon: �96°), at maximum management intensity
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regionally using the six World Bank regions (World Bank, 2014).

Livestock nutrition requirements were calculated using feed conver-

sion ratios (Alexander, Brown, Rounsevell, Finnigan, & Arneth, 2016).

Monogastric livestock was considered to only consume feed, while

ruminant livestock nutritional requirements could be met from a mix

of pasture and feed, providing the opportunity for intensification by

increased feed rates and a substitution between pasture and crop-

land.

Agricultural land use costs per unit area were calculated from a

global base crop cost plus a cost of each of the three inputs consid-

ered, that is, fertilisation, irrigation and management intensity. The

base costs are a minimum cost to producing that crop. The input

costs were all products of the intensity rate and a cost rate. The

base crop cost was estimated from a third of the cost per hectare in

an intensive production system costs (Alexander & Moran, 2013;

SAC Consulting, 2013), assuming reductions in inputs (e.g. seed rate,

agrochemical and machinery use) could save cost, but with the impli-

cations for yields achieved (yield potentials in the land use model

section above). To obtain the maximum possible yields—those out-

put by LPJ-GUESS for a given fertiliser and irrigation rate—the

remainder of costs associated with these current intensive produc-

tion practices were included in the management intensity costs plus

additional cost for higher agrochemical usage or machinery use. The

base costs for pasture were assumed to be low, representing exten-

sive grazing; intensive systems would include substantial manage-

ment costs, for example, to represent reseeding to improve pasture

yields. The crop costs parameters used are given in Table S2. An

index of irrigation costs per unit of water varied spatially (Figure S4)

based on an aridity index (CGIAR-CSI, 2008). The required irrigation

rate for each crop and grid cell to minimise plant water stress was

calculated in LPJ-GUESS, allowing the simulated water usage and

implied cost to be determined in PLUMv2. The water use efficiency

of irrigation—the ratio of irrigation water requirements to the water

withdrawn (FAO, 2017)—was taken as 0.5, within the 0.294–0.855

range of irrigation efficiencies globally (Rost et al., 2008). For each

grid cell, the total irrigation water used across crops was constrained

by water availability. Each year, the water available for irrigation was

determined from the LPJ-GUESS-simulated runoff, assuming water

consumption by sectors other than agriculture following Elliott et al.

(2014). Runoff aggregated into food production units (FPUs; Kummu,

Ward, de Moel, & Varis, 2010) was adjusted to account for domestic

and industrial water uses, environmental limitations on water extrac-

tion and to reproduce Elliott et al. (2014) in a baseline year of 2010.

Future water consumption for non-agricultural sectors used SSP2

projections (Elliott et al., 2014). The water remaining per FPU was

allocated equally across the grid cells within each FPU to determine

the irrigation water available.

Costs arising from changes in land cover—between natural and

agricultural land or between cropland and pasture—were calculated

per area converted (Table S3). The conversion of natural land cover

to agricultural land was restricted by protected areas from the World

Database on Protected Areas (WDPA; IUCN & UNEP-WCMC,

2015). Terrestrial protected areas with a WDPA status of

“established,” specified on a 0.5° grid, were prevented from being

converted to agricultural use. China’s National Forest Protection Pro-

gram was implemented as an annual limit to deforestation of 1.1% in

these areas (Ren et al., 2015). A minimum natural area fraction was

applied to preserve at least a proportion of forest or other natural

land cover within each location, where protected areas did not meet

this threshold. Expansion of agricultural areas was taken equally from

forest and other natural vegetation. Urban and barren (e.g. ice-cov-

ered) land areas were constant from LUH2 in 2010 and not available

for agricultural land expansion.

The final country-level cost relates to imported and exported

agricultural commodities. Within the model, a single global market

tariff-free price exists for each commodity and time period. The rev-

enue received for exports was accounted for at this international

market price. However, prices of imported commodities were

inflated to account for transportation costs, losses during transporta-

tion and import trade tariffs (Anderson, Martin, & Valenzuela, 2006).

The net import levels were initialised from observed values (FAO-

STAT, 2015a, 2015c).

2.3.3 | Global trade balance and prices

In PLUMv2, as in reality, supply and demand in the global market for

each commodity need not be in equilibrium, where over- or under-

supply for commodities are buffered through stock variations (FAO-

STAT, 2015c). The modelled international market prices for each

commodity were adjusted exponentially using market conditions to

provide a feedback mechanism (Ghoulmie, Cont, & Nadal, 2005). For

example, where larger quantities of a commodity are exported glob-

ally than imported, the price for that commodity decreases; this

reduces the benefits from its export and reduces the cost of import-

ing it, creating a tendency to correct for the oversupply. The initial

prices for each commodity were set exogenously (Index Mundi,

2016) but subsequently adjusted endogenously from the rate of

under- or oversupply in the market (see supporting information).

Global stocks for each commodity accommodate periods of over-

and undersupply and were explicitly modelled. Initial stock levels

were derived from FAO Commodity Balance data (FAOSTAT, 2015a,

2015c) following the method of Laio, Ridolfi, and D’Odorico (2016).

2.3.4 | Spin-up and spatial clustering in PLUMv2

PLUMv2 was initialised with GDPs, populations, net imports and

demand from FAOSTAT (2015a, 2015c), and land covers from Land

Use Harmonisation version 2 (LUH2; Hurtt, Chini, Frolking, & Sahaj-

pal, 2017), at 2010. Net imports were constrained to be equal to the

FAOSTAT net imports. The aim was to obtain land uses, including

intensities, that generate the observed country-level commodity pro-

duction and are close to the LUH2 land covers, in the initialisation

year. Intensity data (i.e. for fertiliser, irrigation or management input

levels), were not provided to the initialisation process. To ensure

that modelled land use changes occur only because of future sce-

nario shifts, the initialisation was run iteratively, for the same

6 | ALEXANDER ET AL.



demand and net import rates, but using the land use results from

the previous iteration. This process was continued until a stable

solution (<0.4% change in area or intensity values between itera-

tions) was reached (around 10 iterations).

Optimising land use decisions on a 0.5° grid involves the compu-

tationally challenging task of finding a solution to the non-linear

optimisation problem for potentially large numbers of locations; Chi-

na’s 942 Mha of land, for example, is represented by around 3,800

0.5° grid cells. To reduce computational requirements while retaining

spatial accuracy, similar but potentially non-contiguous grid cells

within a country were grouped. Mean crop yields and land cover

type areas were calculated for each cluster, and optimisation

occurred at the cluster level. The land use changes indicated by the

optimisation results were then mapped back to the original grid cells

in proportion to the available natural area. A K-mean clustering

approach (Macqueen, 1967) was used with randomly initialised cen-

troid clusters for each country. The resulting number of clusters in

each country was dependent on the size and homogeneity, for

example, 176 in USA and 140 in Russia. The approach is similar to

that in the MAgPIE land use model, which uses between 100 and

600 clusters globally, divided across 10 regions (Dietrich et al., 2013;

Humpen€oder et al., 2014; Kreidenweis et al., 2016). PLUMv2 here

used around 3,400 clusters globally, with a mean cluster size of

3.5 Mha. Therefore, the PLUMv2 model for each year and ensemble

member had around 100,000 decision variables across the country

optimisation, as for every cluster, there were four decision variables

(i.e. area, fertiliser, irrigation and other intensity) for each of the

eight land use types (seven for crop types plus pasture). There were

also decision variables at a country level for each commodity: for

example, for livestock feed usage and import and export quantities;

however, the total number of the country-level variables was small

compared to the number of spatial variables. More clusters were

used than in MAgPIE due to the country-level approach in PLUMv2

and the desire to represent spatial heterogeneity within countries.

2.4 | Benchmarking to historical data

2.4.1 | Demand benchmarking

To test the demand projection approach, the FAOSTAT (2015a,

2015c) data were divided into a time series for calibration (1961–

1990) and a time series for benchmarking (1990–2010). The demand

regression relationships were derived from the calibration data as

described above. These relationships were used from 1990 to pro-

ject demand for each country to 2010 given the historical population

and GDP data (World Bank, 2014). Countries that split into multiple

states after 1990, for example, the USSR, were handled as the post-

1990 separate states, and the earlier combined historical socioeco-

nomic data disaggregated by population.

A comparison of the projected consumption for the period

1990–2010 against the observed FAO consumption values (FAO-

STAT, 2015a, 2015c) showed similar patterns of change for global

and country-level demand (Figure 3). At 2010, the largest global

percentage difference was seen in ruminants, a commodity group in

which demand increased by 60% globally between 1990 and 2010,

with the projections 15% higher than the FAO values (FAOSTAT,

2015a, 2015c). Monogastric livestock was the only commodity with

a larger growth, increasing by 78%, but here, the PLUMv2 projec-

tions were 1% lower globally in 2010 than the FAO value. This may

indicate a shift in animal product preference from ruminant products

to monogastrics between the time periods of the split data sets.

Nonetheless, the modest level of these differences and the ability to

reproduce the patterns of country and global changes in demand for

the validation period suggest that the demand projection approach is

adequate for the purposes of the land use modelling exercise being

conducted. However, one limitation is that the approach assumes a

continuation of the relationship between income and food demand

and therefore does not account for potential future changes or

transformation in food preferences (Alexander, Brown, et al., 2017;

Stehfest et al., 2009).

2.4.2 | Land use benchmarking

The land use results were benchmarked by initialising the model at

1970 and running to 2010, then comparing the 2010 model results

against historical estimates at 2010 of cropland and pasture areas as

well as fertiliser and irrigation use. LUH2 at 1970 (Hurtt, Chini,

Frolking, et al., 2017; Hurtt, Chini, Sahajpal, & Frolking, 2017) was

used to initialise land covers, with yield data taken from the LPJ-

GUESS benchmarking runs (see supporting information). Demand

data from 1961 to 2010 (FAOSTAT, 2015a, 2015c) were used to

derive the demand relationships. This does not provide an indepen-

dent verification of the demand projections, but such a test has

already been completed (as outlined above). Comparing land use

changes from 1990 was considered to provide an insufficiently long

time series, compounded by the relatively low land use changes from

that date.

The modelled and FAOSTAT (2015d) global cropland and pasture

areas from 1970 to 2010 are shown in Figure 4a–b. Nitrogen (N) and

irrigation water applied was also compared to historical estimates (Fig-

ure 4c–d). Historical N use was estimated from the world inorganic

fertiliser use (IFA, 2017) plus N applied to cropland from manure. The

43.3 Mt of N applied to cropland from manure in 2000 (Bouwman,

Boumans, & Batjes, 2002) was scaled by the livestock production

index (FAOSTAT, 2017) to give a time series of historical manure N

rates. Historical irrigation water extracted was estimated from global

irrigation water extraction of 2,700 km3 in 2010 (AQUASTAT, 2016),

scaled by the irrigated cropland area (FAOSTAT, 2015d) for other

years. The level of uncertainty arising from definitional differences and

data acquisition issues is unknown (Prestele et al., 2016).

The impact of parameter uncertainty on the historical model

results was tested using a stochastic approach. Uniform distributions

of model parameters (Table S3) were sampled over a range of 50%

above and below the central parameter values using a Sobol

sequence method with n = 50 (Chalaby, Dutang, Savicky, & Wuertz,

2015). The median and standard deviation of global cropland area,
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pasture area and nitrogen and irrigation water used were calculated

for each year (Figure 4). Figure 5 shows the distribution of cropland

and pasture land covers from the benchmarking process using the

central parameter values compared to the widely used LUH2 data

set (Hurtt, Chini, Frolking, et al., 2017; Hurtt, Chini, Sahajpal, et al.,

2017).

The benchmarking results (Figure 4) demonstrate that the model

reproduces a net global expansion and intensification in the period

1970–2010 with a reasonable degree of accuracy. For example,

cropland expanded by approximately 8% and fertiliser use increased

around threefold in both the model and historic data. The median-

unadjusted cropland areas are around 50 Mha lower than the FAO

data, as PLUMv2 is not constrained to reproduce the baseline land

cover in the initial year. Total irrigation water use was also slightly

lower than historical estimates, but again tracked the changes over

time. To adjust for these offsets, model values rebased to the

F IGURE 3 Historic and projected demand for the modelled agricultural commodity groups. The FAO data (black lines) show historic
demand from 1961 to 2011 (FAOSTAT, 2015a, 2015c). The benchmarking data (red lines) use 1961–1990 FAO data to calibration
relationships and 1990–2010 GDP and population (World Bank, 2014) to project demand in that period. Projections of demand under each
SSP scenario from a 2010 baseline (other coloured lines), using 1961–2010 FAO data set for calibration and the OECD socio-economic
scenario data (IIASA, 2014)

8 | ALEXANDER ET AL.



historical values at 1970 are shown in Figure 4. As a percentage of

the absolute value, the uncertainty of fertiliser and irrigation was

greater than that for cropland or pasture areas. For example, the

interquartile range for cropland was 5% of the 2010 value, while for

fertiliser use, it was 17% and 31%, respectively, for the rebased and

unadjusted values. Perhaps the greatest discrepancy in the global

aggregate comparison was that for pasture area changes, which sug-

gests that the model’s projections are biased towards underpredic-

tion of pasture change. This is potentially due to the high diversity

and associated complexity encompassed by this land cover (including

problems in defining what is considered pasture) and is consistent

with higher uncertainty seem for pasture area projections from other

models (Alexander, Prestele, et al., 2017; Prestele et al., 2016).

The cropland and pasture distributions in 2010 (Figure 5) demon-

strate a high correspondence to the results of LUH2. Historical esti-

mates of global land use and land cover—including LUH2—are

model outputs typically calculated using a combination of primary

sources such as satellite data and country-level statistics (Klein Gold-

ewijk, Beusen, Van Drecht, & De Vos, 2011; Klein Goldewijk et al.,

2010; Monfreda, Ramankutty, & Foley, 2008; Ramankutty, Evan,

Monfreda, & Foley, 2008). As such, estimates of historical global land

distributions for the same date vary between different models, for

example, LUH2 vs. SAGE (Ramankutty et al., 2008) and differences

between PLUMv2 results and LUH2 could result from uncertainty in

either model. Geographic differences between PLUMv2 and LUH2

include PLUMv2’s output of a lower cropland area in sub-Saharan

Africa and South America but greater cropland area in China. Pro-

cesses that are not modelled may give rise to inaccuracies in the

PLUMv2 results; for example, Chinese policies and direct involve-

ment in some sub-Saharan African and South American countries

(Cotula, Vermeulen, Leonard, & Keeley, 2009; Zoomers, 2010) may

have suppressed domestic expansion in China, displacing it to other

countries. In China, cropland expansion in PLUMv2 was concen-

trated in south-eastern regions, corresponding closely to where for-

est loss has been observed (Ren et al., 2015)—a behaviour not

replicated in LUH2. The PLUMv2 results also show some pasture

(~5 Mha) in northern latitudes, for example, Finland, that is not in

LUH2 (Figure 5). This may be due to yields of pasture from LPJ-

GUESS being higher than obtainable in these areas or because

PLUMv2 takes no account of current accessibility or proximity to

existing populations or infrastructure. Another potential reason for

differences is incomplete or inaccurate protected area information,

F IGURE 4 Global comparison of historic (FAO/IFA) agricultural land use data against benchmark LPJ-GUESS/PLUMv2 simulation, for (a)
cropland and (b) pasture area, and (c) nitrogen and (d) irrigation water used on cropland. Values are plotted both unadjusted, and with
simulated results rebased to the historic values at 1970 to show changes from that date more clearly. Uncertainty ranges were determined
using a stochastic sampling method (n = 50), with shaded areas showing one and two standard deviations around the median. Box plots are
for the modelled values at 2010, showing median, interquartile range, up to 1.5 interquartile range whiskers, and outliers
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for example, where all protection policies are not represented within

the protected areas database used (IUCN & UNEP-WCMC, 2015), or

protections are not fully enforced. These reasons may also con-

tribute to the difference in pasture areas in the Amazon, where

greater pasture expansion was seen than in LUH2.

Given the agreement between agricultural expansion and inten-

sity with the historical estimates as well as the concurrence of spa-

tial distributions, the modelling was considered appropriate for

exploration of future scenarios.

2.5 | Scenario descriptions

The aim of the scenario design was to explore the adaptation of the

land use system to a range of climate and CO2 forcings to 2100,

using the RCPs (van Vuuren et al., 2011). The same “middle of the

road” socio-economic scenario—SSP2 (O’Neill et al., 2014, 2015)—

was used for all scenarios to investigate the impact of climate, with-

out the complexity and potentially offsetting or exacerbating impact

of other scenario changes. The scenarios used should not be taken

as equally likely, as different combinations of SSP and RCP are not

equally plausible; for example, the probability of RCP2.6 and SSP2 is

low (Engstr€om, Olin, et al., 2016). Furthermore, by only varying cli-

mate and CO2 forcing, the scenarios are not intended to represent a

full range of plausible future states.

The adaptation of land use was simulated under four RCPs,

which represent differing intensities of climate change and future

atmospheric CO2 concentrations. A further experiment (“constant-

climate + CO2”) was performed by repeatedly using the 1981–2010

climate with detrended temperature and atmospheric CO2 levels and

nitrogen deposition rates from 2010. This produces temperatures

and precipitation with interannual variability, but using constant cli-

mate, CO2 and nitrogen deposition. Population and GDP trajectories

were taken from SSP2 (O’Neill et al., 2014, 2015) using World Bank

projections (IIASA, 2014). Bioenergy trajectories were assumed with-

out large-scale land-based climate mitigation, with global demand for

dedicated second generation bioenergy crops increasing to

4,000 Mt/year by 2100 (Popp et al., 2017). PLUMv2 model parame-

ter uncertainty was included in the projections, using the stochastic

uncertainty approach described for the benchmarking process. Fur-

ther details of LPJ-GUESS and PLUMv2 inputs can be found in the

supporting information—Methods.

3 | RESULTS

Figure 6 shows global cropland and pasture areas from 2010 to

2100 resulting under each of the climate forcing scenarios. Total

median cropland increases to between 1,690 and 1,743 Mha, an

increase of 170–223 Mha. These cropland areas include areas of

dedicated second-generation energy crops, which expanded to 242–

262 Mha by 2100. Total cropland expansion was less than the

energy crop area increase, and therefore cropland for food and feed

decreased (by 45–82 Mha). Median pasture increased by 291–

3,601 Mha with RCP6.0 and by 228–3,538 Mha with RCP8.5. In all

scenarios, the historic growth of nitrogen fertiliser application rate

continued until about 2040–2050. For example, in RCP2.6 fertiliser

use increases from 151 Mt in 2010 to a peak of 241 Mt in 2045

before reducing slightly to 225 Mt in 2100; in RCP8.5 fertiliser

application declines more substantially to 175 Mt by 2100, from a

peak in 2049 of 234 Mt. The trend for irrigation water use followed

some similar patterns to that of fertiliser, with strong growth until

2040–2050 before either declining (e.g. RCP8.5) or remaining rela-

tively stable (e.g. RCP2.6). The global area-weighted mean yields

achieved, excluding energy crops, increased from 3.0 t/ha to around

F IGURE 5 Cropland and pasture land cover fractions in 2010 (a1 & b1), from PLUMv2 benchmarking projections with 1970 baseline and
(a2 & b2), from LUH2 (Hurtt, Chini, Frolking, et al., 2017)
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4.4–4.6 t/ha by around 2040 in all full RCPs, after which the rate of

increase decreased, with yields in the range 4.5–4.8 t/ha until 2100.

The Constant climate + CO2 simulations resulted in the lowest med-

ian cropland area at 2100 (1,685 Mha) and the highest of pasture

(3,603 Mha), although the differences in area between this experi-

ment and the RCP results were small (29 Mha less cropland and

42 Mha more pasture than RCP 2.6). Constant climate + CO2

required more nitrogen and irrigation water than any of the RCP

scenarios, with 235 Mt of nitrogen and 3,820 km3 of irrigation water

withdrawn in the median result at 2100 (10 Mt more nitrogen and

210 km3 of water than RCP 2.6).

A pattern of lower fertiliser and irrigation use at 2100 with more

intense climate change scenarios is apparent, although the effect was

small in magnitude compared to the uncertainty in results from the

range of model parameters tested (Figure 6). For example, the

interquartile range for nitrogen application in 2100 was 211–240 Mt

with RCP2.6 and 155–194 Mt with RCP8.5. The results from the Con-

stant climate + CO2 scenario also suggest that greater increases in fer-

tiliser and irrigation use are required, in comparison to the climate

change scenarios. The distributions of cropland areas, both including

and excluding energy crop areas, from the simulations of each scenario

are skewed towards higher values, that is, outlier results have high

cropland areas, with a similar uncertainty for each climate forcing.

In all scenarios, the modelled geographic distributions of land

cover changes between 2010 and 2100 show a combination of both

agricultural land abandonment and expansion as well as substitution

between cropland and pasture (Figure 7). Increases and decreases in

fertiliser and irrigation inputs were also suggested to occur at differ-

ent locations. Some of these input changes are associated with the

change in cropland areas, for example, reductions in fertiliser and irri-

gation linked with abandonment of cropland, such as in Egypt—which

sees a corresponding increased dependence on imports. This is an

example of a wider trend in these results, where increasing globalisa-

tion in the food system shifts production to the areas where costs of

production are low. As a result, the percentage of modelled global

demand met from international imports increased from 12% to 25%

between 2010 and 2100 in a central RCP4.5 scenario. The pattern of

agricultural input rates generally decrease in North America and

northern Europe, while increasing in Africa and South America.

The largest changes in land covers are the areas of pasture

expansion in the Congo basin seen in all the climate scenarios. For

example, in the median parameter RCP2.6 case, 120 Mha around

the Congo were converted to pasture by 2100 and as well as

20 Mha in the Amazon Basin (Figure 7-b2).

The diversity of response both within and between countries can

be seen by comparing the results of RCP2.6 and RCP8.5 in 2100

(Figure 7a3-d3). For example, in RCP8.5 relative to RCP2.6, Brazil,

China and the USA all increase output from pasture, reduce costs of

pasture production and reduce reliance on feed in livestock produc-

tion, due to increases in pasture yield potentials from the higher cli-

mate forcing intensity. However, other outcomes from these

countries differ. Pasture in the USA increases by a smaller area

(25 Mha) in 2100 for RCP8.5 compared to RCP2.6, while decreasing

in Brazil by 10 Mha and remaining relatively constant in China

(although with some shifts in location). Production from cropland in

the USA decreases overall, with the difference being met by a lower

use of livestock feed (food demand is the same in all scenarios and

net exports rates remained relatively constant), supported by higher

pasture productivity, due to the climate and CO2 differences. Crop-

land areas in China and Brazil decrease marginally (around 5 Mha),

but increase in the USA by a more substantial 30 Mha. The total

level of intensity measured by cost of production decreases between

these RCP results at 2100, for example, for wheat drop of 19% in

China and 23% in the USA, and a smaller decrease for maize of 9%

in China and 1% in the USA. Changes in cropland in the USA could

be characterised as agricultural production extensification, with

increasing area and lower inputs. However, there is a substantial

shift in location of agriculture and balance of crops grown, for exam-

ple, cropland abandonment in the southeastern USA (some of which

convert to pasture), and an expansion of cropland in more northern

states, including Alaska. Under lower climate forcing scenarios, the

expansion of cropland into Alaska is not seen. The cropland expan-

sion is used to primarily for wheat production, which the abandoned

areas were previously primarily maize. This is associated with a

switch from maize to wheat of around 40 Mha in the USA. Similar

patterns are seen globally, with global maize decreasing by 20% and

wheat increasing by 42%.

4 | DISCUSSION

4.1 | Comparisons to previous land use projections

Previous studies projecting land cover areas have found a wide

range of cropland and pasture areas (Alexander, Prestele, et al.,

2017) encompassing the results produced here. These previous pro-

jections, however, include many scenarios that do not correspond to

those tested. Under similar socio-economic conditions, that is, SSP2,

cropland area for food across five IAMs expanded by 50–350 Mha

(Popp et al., 2017), while having broadly similar bioenergy demand

and area to the PLUMv2 results. Contrastingly, the PLUMv2 results

have a reduction of 45–82 Mha across the RCPs tested here. Pas-

ture from the five IAMs range from �200 to +250 Mha, with their

“marker” model indicating an increase in 250 Mha, close to the med-

ian PLUMv2 cases of 228–293 Mha. Perhaps, the most direct com-

parison to previous scenarios is with Constant climate + CO2

scenario here with the SSP2 “baseline” scenario from Popp et al.

(2017). The results found here have a median change of �74 Mha

cropland for food and feed, +238 Mha for energy crop and

+293 Mha pasture area, while the Popp et al. (2017) marker model

results are +200 Mha for food and feed, +200 Mha for energy crops

and +250 Mha pasture area. The difference in energy crop areas

may be a result of different demand; in 2100, Popp et al. (2017)

assumed 3,500 t/year dry matter, whereas this study used 4,000 t/

year. However, the differences between these model outcomes are

small in comparison with the uncertainty ranges in either study.

Details of fertiliser and irrigation rates have not typically been
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reported in detail in other land use model studies, making compar-

ison difficult. However, the PLUMv2 results show a continuation of

currently observed trends until around 2045, implying an increase in

global nitrogen application of 90 Mt (60% increase in current total)

and 800 km3 additional water extraction (30% increase) by that date.

The more constant or declining inputs after around 2045 coincide

with the slowing in SSP2 of both global population rise and income-

driven dietary transitions to substantially reduce the rate of food

demand increases (Figure 3).

The lower cropland expansion found by the coupling of LPJ-

GUESS and PLUMv2, compared to some previous studies, may be

due to our detailed yield response representation. This allows both

input levels and land use to be varied by the model based on bio-

physically derived yield responses. The model can therefore identify

efficient approaches to fulfil demand as changes occur, for example,

to climate, market conditions or demand. Abandonment and expan-

sion of agricultural land or increases and decreases in production

intensity may all occur within the same country and time. For exam-

ple, modelled irrigation water usage rates will change in response to

water availability, plant water requirements, crop yield potentials and

demand. Perhaps, most straightforwardly, an increase in demand

could be met by increasing water inputs. However, irrigation rates

change due to variation in water availability due to climatic change.

Plant water requirements are also responsive to climate conditions

as well as atmospheric CO2 concentrations and rates of nitrogen fer-

tilisation, leading to changing irrigation demands (Figure 2). Similarly,

nitrogen fertilisation rates are influenced by a range of factors oper-

ating at local, country and global scales.

F IGURE 6 Global agricultural land use results from 2010 to 2100 under RCP climate scenarios and constant climate. Other scenario
parameters were identical in all simulations, with socio-economic values from SSP2 and baseline bioenergy adoption. Uncertainty ranges for
each RCP were determined using a stochastic sampling method of model parameters (n = 50). Box plot distributions for 2100 values are
shown, as per Figure 4
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4.2 | Protected areas

The model includes a representation of protected areas, where con-

version into agricultural land was not permitted (see Method section

for details). Nonetheless, expansion of agricultural areas occurred in

locations of global importance for biodiversity and climate regulation,

including the Amazon and Congo basins. The agricultural expansion

occurred in locations not currently specified as protected in the

IUCN, UNEP-WCMC (2015) database of protected areas used. Such

a land use change would likely have major environmental impacts,

including biodiversity loss and climate effects at local and global

scales (Bala et al., 2007; Gibson et al., 2011; Malhi et al., 2008). Pos-

sible future policies for avoiding deforestation or existing policies

that provide a level of non-spatially specific protection are not con-

tained in this protected area database, and therefore are not

included in these results. For example, economic approaches that

incentivise a reduction in deforestation (Bustamante et al., 2014)

were not represented. If such polices were included, deforestation

and conversion into pasture or cropland may be reduced in the asso-

ciated areas. If land use change was to be avoided in this way, other

consequences in the model would arise through the indirect effects

caused by the displacement of production from areas no longer

entering agricultural use (Popp, Humpenoeder, et al., 2014). The indi-

rect effects could include the expansion of cropland and pasture in

other less protected areas, increases in intensity on existing agricul-

tural land or most likely a combination of both. Similar adjustments

in results could occur if the cost of conversion from forest to agri-

cultural land cover were increased, with a greater conversion of

other land covers to agriculture combined with higher intensity of

production. Greater competition for land could also arise from cli-

mate mitigation policies, for example, supporting bioenergy use or

afforestation to provide a terrestrial carbon sink (Albanito et al.,

2016; Popp, Rose, et al., 2014). Investigating land use outcomes and

displacement effects under climate mitigation policies were out of

scope for this study, but could be addressed in future work.

4.3 | Role of adaptation and impacts of climate
change on agriculture

Adaptation of land use decisions provides a mechanism to moderate

the potential impact of climate change, or changes in demand, on

the global agricultural and food system. The greater the change in

climate and the more substantial the impact on crop yield potentials

(Figure S5), the more likely new opportunities will be created to take

advantage of beneficial changes or to mitigate the impact of nega-

tive shifts, for example, by changing crop types, management prac-

tices or agricultural locations. These climate changes might be

relatively localised and differentially impact locations within regions

or countries. The LPJ-GUESS and PLUMv2 coupling provides a

method to incorporate climatic changes and to investigate the adap-

tive global land use system responses.

At a global aggregate scale, the pattern of increased intensity of

climate forcing (including increased atmospheric CO2 level) is linked

to higher yield potentials, reduced nitrogen losses and greater water

use efficiency, which leads to lower fertiliser and irrigation inputs in

the PLUMv2 results (Figure 6c,d). Reduced nitrogen losses under

elevated CO2 occurred in the model because faster crop growth

rates allow more fertiliser to be taken up by the plant before it is

lost via leaching or gas emission. The apparently counter-intuitive

relationship between intensity of agricultural production and climate

forcing comes about because of the fertilising and water-saving

impacts of increased atmospheric CO2 levels, combined with the

possibility for the global land use system to adapt to minimise crop-

land area in those regions negatively affected by climate change and

maximise cropland area in those where potential is increased. The

result is a relatively complex pattern of global cropland area change

(Figure 7). Pasture area is influenced by the pasture and cropland

yield potentials and cropland area changes. Increases in crop yield

potentials encourage greater use of feed in animal production by

reducing the associated production cost. Cropland and pasture area

changes interact due to the costs of land cover conversion. Conse-

quently, for example, areas where cropland is abandoned are often

converted to pasture: for example, in west Africa, India and the USA

(Figure 7). Overall, notwithstanding some variations, higher intensity

of climate forcing appears to lead to larger cropland expansion and

less pasture expansion.

Rates of agricultural expansion would be reduced if we assume

higher costs of agricultural expansion or other policies to protect for-

est or other non-agricultural land covers. The current parameter

range tested produces benchmarking results in the 1970–2010 per-

iod in line with other available data sets. However, associated costs

may have changed over time, and current and future expansion of

agricultural land may be more constrained and costly than during the

historic period. Further scenario development, for example, using the

SSP framework, and uncertainty analysis would help understand this

more fully, but was out of scope for the analysis presented here.

Our results assume technology change in plant breeding, which pro-

vides an annual increase in yield above that which can be achieved

by increasing intensification (the central parameter value used was

0.2%, Table S3). Higher rates of technology improvements—which

could be achieved by, for example, the introduction of genetically

modified or gene edited organisms—would reduce the expansion of

agricultural land or inputs. Conversely, if technology improvements

were not able to achieve these gains, then more land and other

inputs to agricultural production would result.

4.4 | Limitations of the approach

PLUMv2 is not constrained to reproduce initial land covers used in

the calibration process. Imposing such a constraint could lead to

rapid changes in initial simulation years. Therefore, the approach of

finding a stable state in proximity to a calibration data set, compris-

ing land covers as well as national production, consumption and

international trade data, was preferred. No data on fertiliser or irriga-

tion use were provided to the model calibration, in part due to a lack

of suitable available data, and therefore, the initial fertiliser and

14 | ALEXANDER ET AL.



irrigation rates were derived endogenously during the calibration

process. The PLUMv2 simulation calibration outcomes in 2010 are

close to the historical estimates (Figure 6), making this potential dif-

ference of minor importance in the future simulation results. There

are greater differences in the benchmarking runs starting in 1970 for

cropland and irrigation water use (Figure 4). For example, cropland

in 1970 was 65 Mha (5%) lower, and irrigation water use 300 km3

(20%) lower, than historical estimates (FAOSTAT, 2017; IFA, 2017),

although the high uncertainty in these estimates complicates any

benchmarking. Although the benchmarking process produced a rea-

sonable fit to observed aggregate global outcomes and land cover

distribution from LUH2, discrepancies were noted. The explanations

suggested above for these differences—for example, influence on

land use change in proximity to existing infrastructure, imperfect

protected area enforcement, and effects of bilateral trade agree-

ments between countries—could be implemented to test the out-

come from altering these assumptions.

The demand projections assume a continuation of historical

income–demand relationships and thus do not consider possible

alterations in dietary preferences, for example, towards lower meat

consumption for both health and sustainability reasons (Stehfest

et al., 2009). Furthermore, there was no price elasticity of demand,

and so the types and quantities of commodities demanded do not

alter in response to price changes, but only population and per cap-

ita incomes. Given the objective to investigate adaptation in

response to alternative climate futures, we believe such assumptions

are acceptable. However, to investigate other scenarios, for example,

which include dietary trend adjustments, other assumptions and

approaches would be required.

Soil degradation—including from erosion, compaction, sealing

and salinisation (Smith et al., 2016)—was not included in the mod-

elling conducted. Agricultural land lost to degradation between 2000

and 2030 was projected to be 30–87 Mha (Lambin & Meyfroidt,

2011), with 7.5% of grassland degraded because of overgrazing

(Conant, 2012), while erosion degradation can lead to compensatory

benefit at the site of deposition (Lal, 2001). Changes in soil pH

resulting from excessive nitrogen fertilisation were also not consid-

ered. Continued land degradation increases the pressure on land, but

is perhaps smaller in magnitude than other drivers considered, for

example, socio-economic and climate changes. Nonetheless, it would

be advantageous to include the effect of soil degradation within

models such as LPJ-GUESS and PLUMv2.

5 | FUTURE RESEARCH

This study applied newly coupled models to study the response to

climate changes for a single fixed socio-economic scenario. Further

work is required to explore the response to alternative socio-eco-

nomic conditions, for example, using the SSPs, and to a range of

potential climate change mitigation measures, for example, bioenergy

and measures to reduce deforestation and increase afforestation.

There are also important aspects of crop response to climate change,

such as heat stress and CO2 fertilisation, which are currently the

subject of high uncertainty and merit further investigation. A key

aim of the coupled LPJ-GUESS and PLUMv2 modelled framework

was to allow the feedback for land use change on climate as well as

the climate impacts on land use, to be considered. Further work is

planned to continue model development and to integrate these feed-

backs, using a climate emulator (IMOGEN; Huntingford et al., 2010),

to study the response in a fully couple climate, vegetation and land

use modelled system.

The results suggest that the global agriculture and food system

has the capacity to potentially diminish the negative impacts and

take greater advantage of the more positive outcomes of climate

change through adaptation, for example, by changing crop types,

management practices or shifting cultivated area. These adaptations

are spatially specific, given geographic variability in climate change

impacts on agricultural production. Outputs from models projecting

future land uses without accounting for detailed spatial-, crop- and

input-specific factors may therefore be biased towards overestimat-

ing land use impacts under a changing climate. To quantify this

potential bias, further work is required to establish the extent mod-

elled land adaptation is affected by the level of detail in the repre-

sentation of spatial and input factors. The results found here suggest

that increased intensity of climate forcing reduces the inputs

required for food production, largely due to the fertilising and

enhanced water use efficiency effects of elevated atmospheric CO2

concentrations. However, achieving this requires substantial shifts in

the global patterns of intensity of production, with greater inputs

required in Africa and South America, and reductions in North Amer-

ica and Western Europe. Such changes in land use and management

intensity have consequences for other ecosystem services, and thus,

the apparent resilience in the food system indicated by this study

may lead to degradation of other ecosystems.
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