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Visual Articulated Tracking in the Presence of Occlusions

Christian Rauch1, Timothy Hospedales1, Jamie Shotton2, Maurice Fallon3

Abstract— This paper focuses on visual tracking of a robotic
manipulator during manipulation. In this situation, tracking is
prone to failure when visual distractions are created by the
object being manipulated and the clutter in the environment.
Current state-of-the-art approaches, which typically rely on
model-fitting using Iterative Closest Point (ICP), fail in the
presence of distracting data points and are unable to recover.
Meanwhile, discriminative methods which are trained only to
distinguish parts of the tracked object can also fail in these
scenarios as data points from the occlusions are incorrectly
classified as being from the manipulator. We instead propose
to use the per-pixel data-to-model associations provided from
a random forest to avoid local minima during model fitting.
By training the random forest with artificial occlusions we can
achieve increased robustness to occlusion and clutter present
in the scene. We do this without specific knowledge about
the type or location of the manipulated object. Our approach
is demonstrated by using dense depth data from an RGB-D
camera to track a robotic manipulator during manipulation
and in presence of occlusions.

I. INTRODUCTION

When estimating the state of a robot during manipulation,
a common approach is to use joint sensing, forward kinemat-
ics (FK) and a complete description of the kinematic model
of the robot to compute the position of the end effector.
However joint sensing can be affected by calibration inaccu-
racies, quantisation noise and non-linearities, or may not be
available at all for underactuated and dexterous manipulators.
This traditional industrial approach does not consider tactile
information nor does it incorporate visual sensing, which is
of course heavily used during human manipulation. Finally,
it cannot track the state of the manipulated object.

We are motivated to explore combined visual tracking of
manipulator and object by the prior work of [1], [2]. A key
challenge for visual tracking is the presence of distractor
objects. These objects occlude the manipulator and add
irrelevant visual information which can dis-improve tracking.

Estimating the full and valid configuration of an articulated
object directly from images is a challenging problem. In this
work we propose similar to [3], [4], [5], [6] to combine
model-based tracking, which simplifies the kinematically
plausible state estimation, with discriminative information to
prevent failures due to the distracting visual information.

The core contribution of this paper is the integration of
pixel-wise predictions from a random forest into a model-
fitting framework that is robust to incorrect initialisation and
un-modelled occlusions, as illustrated in Figure 1.
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(a) observed grasping (b) baseline: tracking
effected by distractions

(c) proposed: tracking
via segmentation

(d) baseline: SDF data association (e) proposed: RF data association

Fig. 1: Tracking the pose of the manipulator (coloured
mesh) during a grasping task (a). The baseline approach
(b) assigns data points of the manipulated object to finger
parts (d) resulting in a shift of the palm towards the bottle.
Our approach (c) keeps the palm pose estimate stabilised
by correctly classifying the pixels of the palm and fingers,
despite the distracting pixels of the manipulated object being
incorrectly classified (e).

II. RELATED WORK

We categorise visual articulated tracking into generative
model-fitting and discriminative approaches as well as hy-
brid methods which combine generative model-fitting with
discriminative information. In the following we give a brief
overview of the relevant literature for each approach.

Generative model-fitting: Given a model of the tracked
object, generative model fitting aims to synthesise a set of hy-
potheses of the model’s state and compare these hypotheses
with the observed state. These methods rely on a good metric
to quantify the similarity between the synthesised state and
the real observation (the objective function), and an efficient
method for exploring the large state space of the articulated
model.

Early work by Oikonomidis et al. [1] used colour and edge



cues as a similarity metric on 2D images for tracking a hand
and an object in interaction. This objective was minimised
using particle swarm optimization (PSO) over the combined
state space. This concept was later applied to data from depth
sensors by Schmidt et al. [7] which used the signed distance
function (SDF) as the similarity metric and gradient-based
Gauss-Newton optimisation to minimise this objective.

Pauwels et al. [8] simplify articulated tracking as a 6D
pose estimation problem given joint sensing and an initial
camera pose. After articulating the manipulator according to
the sensed joint positions, the manipulator is assumed rigid
and fitted to the depth observation.

Generative model-fitting methods can be extended to track
multiple objects in parallel and allow hypotheses rejection by
applying kinematic and physical constraints [2]. However,
these methods share similar properties and disadvantages
with iterative closest point (ICP) algorithms. Their similarity
metric is typically dependent upon local visual features such
as edges and gradients and hence can suffer from local
minima, which is why tracking needs to be initialised close
to the optimal solution.

Discriminative Tracking: Meanwhile, discriminative meth-
ods learn the visual representation of a model with respect
to the true state or joint configuration. This requires an
extensive amount of labelled training images which show
the tracked object in many different states. In this problem
domain, these states are synthesised using known articulated
models a priori.

A popular approach for depth-based tracking of articulated
objects is to use simple depth probe offset features in a
random forest (RF) for segmentation and keypoint locali-
sation. This was used for human pose estimation [9] and
more recently was applied to robot manipulator configuration
estimation [10]. In our work we also use this type of feature
and classification method, but our approach uses the raw
class probability for model-fitting instead of joint position
prediction or mean-shift.

Direct regression of the full manipulator configuration
has been demonstrated in [11], again using depth probe
offset features. Tompson et al. [12] applied convolutional
neural networks to depth data to detect the locations of hand
keypoints on joints and to infer the joint configuration from
inverse kinematics.

Hybrid: Hybrid tracking methods use a combination of
generative and discriminative methods, so as to augment
model-fitting with discriminative information.

The detection of fingertips was used by Tzionas et al. [13]
and Taylor et al. [4] in their objective function to guide
optimisation towards the optimal hand pose. In our work we
propose to instead rely on a full segmentation of the image
to prevent cases where these specific keypoints are occluded,
e.g. when reaching behind an object.

Our work is similar to Sridhar et al. [5] and Krejov et
al. [6], where a RF segmentation of depth images was used
to support model-fitting of a human hand. Compared to the
Gaussian volumetric approximation in [5] we use the full
pixel-wise data-to-model association and a more realistic

mesh model of the robot. Our approach extends [6] to cases
with additional objects.

Finally, approaches which simultaneously track hands and
objects typically rely on knowledge specific to the object of
interest such as colour (Sridhar et al. [14]) or shape (Schmidt
et al. [2]). In our proposed tracking approach we aim to track
the manipulator generally without knowledge of the object
of interest, relying only on the 3D model of the manipulator.
Specifically we do not require a volumetric representation of
the object nor any specific properties of the object to enable
manipulator tracking near occlusions.

III. PROPOSED METHOD

A. Augmenting the Signed Distance Function

Model-fitting approaches rely on the minimisation of an
objective function e(·) which contains a term for the discrep-
ancy between the estimated and the observed state, as well as
other criteria which impose physical or kinematic constraints.
For depth-based model-fitting, the truncated signed distance
function has been commonly used as the metric when
minimising data-to-model discrepancy.

The signed distance function, SDF(x) : R3 7→ R, of a
rigid 3D model provides the shortest Euclidean distance of a
given data point x to the surface of the model mesh, and is
positive outside the model and negative inside the model. For
articulated models, the SDF can be piecewise locally defined
as SDFi for all tracked parts i ∈ [0, . . . ,M ]. To minimise
the data-to-model distance, we first need to assign each data
point to one of the model parts.

Without knowledge of the true identity of a data point,
prior approaches, such as [7], have assigned it to the closest
SDFi∗ using

i∗ = arg min
i∈M
|SDFi(x)| . (1)

The optimal pose θ∗ ∈ R6+N of an articulated object is
then the θ which minimises the data-to-model error when
transforming each SDFi according to the kinematic chain
articulated by the N joints, and its 6D pose.

So as to minimise the huge state space of articulated
tracking, it is common to use iterative gradient-based ap-
proaches such as the Gauss-Newton algorithm initialised
close to the true solution. The gradient of the SDF with
respect to θ is based on a temporary association between
the data and model parts which is re-evaluated with each
iteration. This data association criteria (minimal distance) is
the same as the objective function which reinforces incorrect
data associations and can lead to irreversible tracking failure.

We propose to instead replace the implicit data association
in equation 1 by an explicit association using a discriminative
pixel-wise classifier to provide a class probability distribution
p(c|f) per class c, given a feature vector f , computed per
pixel in the depth image I .

A data point is then explicitly assigned to the SDFi of the
part with the highest class probability

i∗ = arg max
i∈M

p(c = i|f) . (2)
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Fig. 2: Flow chart of iterative pose optimisation using either
DA-SDF (shortest distance) or DA-RF (predicted part).

In what follows we refer to implicit data association
using the shortest SDF distance as DA-SDF (our baseline
approach), and refer to our proposed approach which uses
explicit data association from pixel-wise classifications as
DA-RF.

After carrying out data association, DA-SDF and DA-
RF rely on the same Gauss-Newton optimisation shown
in Figure 2, to minimise the data-to-model distance. After
initialising the optimisation once at the reported robot state,
the algorithm iteratively converges to a minimum starting
from the solution to the previous iteration. Compared to [5],
we evaluate only one hypothesis at a time but we use the
gradients for all pixel-wise associations for the optimisation.

B. Generating Training Data for Pixel Classification

To obtain a sufficiently large set of labelled training data,
we synthesise depth images using the Z-buffer of an OpenGL
renderer. Each part of the robot is associated to a dedicated
class and its volumetric appearance is represented by a mesh.
We do not add any sensor-specific noise. Importantly, to
train an occlusion robust segmentation we do not add a
specific occlusion object class but instead sample pixel-wise
occlusions during the feature generation phase.

To generate the training data, the robot model is articulated
using a set of joint configurations which provide good
coverage of the expected range of manipulation poses. We
first sample poses for the palm in the task space and then
validate each pose using inverse kinematics (IK). The result-
ing (arm) joint configurations are combined with sampled
finger articulations. For each palm pose, we sample (i) a
position within the camera frustum in a distance range of
[0.5, 1.5]m, (ii) axes of the rotation matrix such that the
palm-face is in the direction of typical grasping. These IK
solutions contain self-occlusions of the manipulator by arm
segments. We obtain 4477 valid palm configurations which
are each further articulated by four discrete finger grasping
states (between fully opened and closed), resulting in a total
of 17908 labelled training images.

C. Training

1) Pixel-Wise Segmentation of Robot Parts: To train the
classification random forest (RF) for the task of pixel-wise
labelling of depth images we use the depth probe offset
features presented in [9]:

dΘ(I,x) = dI

(
x +

u · f
dI(x)

)
− dI

(
x +

v · f
dI(x)

)
. (3)

u

v

occlusion

Fig. 3: Probing near the borders of occlusions (blue area)
with a feature configuration Θ : {u,v}. Offset v is probing
an occluded pixel. During training, a surrogate depth value
will be simulated at this location in the image which gener-
ates a different feature response.

The function dI(·) gives the depth value at the queried pixel
location x of a depth image I . The relative offsets u,v ∈ R2

are randomly sampled on a plane in world space and stored
as individual feature configurations Θ. After projecting the
offsets to pixel space using the focal length f and depth at
queried pixel x, the feature response dΘ(I,x) is computed as
the difference of the depth at the two pixel-offset locations.
Sampling offsets in world space makes the feature responses
independent from the depth.

We apply the same procedure as in [9] for training 30
randomised decision trees to maximum depth, using 32 out
of 1000 feature configurations Θ for split-node optimisation.

For simplicity, we train and test without background data
which we set to the constant value of 3m. It has been
demonstrated [11] that an additional prepended RF stage can
be used for foreground/background segmentation.

2) Occlusion Sampling: If a RF is only trained on the
parts of a robot, this usually results in an over-confident
classification of unseen data, such as occlusions or objects,
as parts of the robot. Doing this would distract the data
association of the model fitting stage by assigning model
parts with irrelevant data and drawing the SDF optimisation
away from the true configuration. We address this problem
by training the random forest with generic and randomized
occlusions so as to reduce the confidence of predictions in
the area of occlusions. The effect of this is that the RF
becomes less confident when classifying occlusions as robot
parts. These less confident classifications can then be rejected
using a threshold on the class probability, with only the more
confident data associations then used for model fitting.

At training time, this confidence can be shaped by ran-
domly sampling occlusion pixels when generating the feature
responses. Each time a probe offset (eq. 3) u or v accesses a
pixel of the original synthetic training image, with a certain
probability it is marked as accessing an occluding pixel
(Figure 3).

We temporarily replace the depth value at the probe offset
that has been marked as occluded by a simulated occlusion
depth value. The reference pixel x keeps its label but receives
a different response from the same feature configuration. In
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Fig. 4: Adding robustness to occlusion: During training, the
original depth value dI(x) of a robot part (grey) is replaced
by a depth value do(x) drawn from the shifted probability
density function of a half-normal distribution (blue).

this manner, the RF is forced to learn a certain variance of
the feature response resulting from nearby occlusions.

The simulated occlusion depth value is drawn from a half-
normal distribution whose mean is placed in front of the
occluded part (Figure 4). The half-normal distribution has
been chosen because it has no support for points behind the
farthest occluded distance and allows the occluder to have a
varying shape. A depth value dI(x) of an occluded probe is
replaced in eq. 3 by

do(x) = dI(x)− |N (µ, σ)| (4)

with

µ ∼ U(0, µmax)

σ ∼ U(σmin, σmax)

where µ is sampled per image and σ is sampled per probe.
µmax, σmin and σmax are held constant when training.

We sample these simulated occlusions with a probability
of 0.15 from a half-normal distribution with µ = U(0, 0.1)m
and σ = U(0.05, 0.15)m. These parameters reflect the
expected object distances and dimensions. We only use
pixels with a confidence larger than an empirically chosen
threshold of 0.55 for tracking and refer to the RF training
with occlusions as DA-RF-OCCL.

IV. EVALUATION

Platform: We tested the proposed approach using a KUKA
LWR4 7DOF arm with a Schunk SDH2 7DOF hand (Fig-
ure 5). The hand contains 3 fingers with 2 joints each and
an additional joint that allows two of the fingers to rotate
around their longitudinal axis. Depth images were collected
by an Asus XTION PRO Live structured light sensor. Since
the depth sensor is not part of the kinematic chain, its pose in
the robot frame is estimated using an AprilTag [15] mounted
on the base of the robot.

During our experiments, we only track a subset of the
robot’s links which contains the hand and the last 4 links of
the arm. The tracked state therefore consists of the 6D pose
and 10 joints. The camera pose is chosen such that the arm

Fig. 5: KUKA LWR 4 (7DOF) with Schunk SDH2 (7DOF)
mounted on a table with AprilTags for camera pose estima-
tion.

enters the scene from the right side of the image and it is
held static during a sequence.

Error Metrics: The tracked state for the baseline algorithm
(DA-SDF) and variants of our approach (DA-RF with and
without occlusion sampling) is compared to the robot state
as reported by joint sensing. The reference pose of a frame
is obtained by forward kinematics using the reported joint
positions.

We define the pose tracking error Terr as the transforma-
tion that needs to be applied on the estimated pose Test
to obtain the reference pose Tref in the camera frame.
Decomposing Terr = T>estTref into its translation part terr
and rotation part Rerr, the magnitude of the position error
perr and orientation error oerr are defined as

perr = ‖terr‖2 (5)

oerr =

∣∣∣∣cos−1

(
Trace(Rerr)− 1

2

)∣∣∣∣ . (6)

A. Experiment 1: Discriminative Tracking

In this experiment, we articulated the palm and the fingers
of the manipulator without any external occlusions. This is
to show the general ability of our approach to track palm
pose and finger motions.

1) Palm Pose Tracking: Figure 6 shows that the selected
scenario, with correct initialisation and observations of ma-
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Fig. 6: Experiment 1: Palm pose tracking error. Average:
DA-SDF: 0.8±0.2cm, 0.06±0.02rad; DA-RF: 1.3±0.4cm,
0.09±0.03rad; DA-RF-OCCL: 1.3±0.6cm, 0.15±0.07rad.

(a) colour (b) depth

Fig. 7: Experiment 1: A static pose showing all fingers for
convergence analysis.

nipulator parts only, provides the optimal conditions for the
implicit data association (DA-SDF). Discriminative methods
(DA-RF, DA-RF-OCCL) are affected by misclassified pixels.
These idealised conditions are however unrealistic in scenar-
ios like grasping, which require more robust visual tracking
approaches that can deal with distractions.

2) Convergence of Optimisation: To evaluate the con-
vergence properties of Gauss-Newton optimisation using
both data association approaches, we selected a static palm
pose with all fingers visible (Figure 7). We initialised the
optimisation with a perturbation applied to the true palm
pose. 100 of these pose perturbations were randomly sampled
within the range of ±0.1m per coordinate and ±π2 rad per
Euler angle.

The estimated palm pose error after converging with 500
iterations is reported in Figure 8 with cumulative histograms.
Using DA-SDF as objective results in many local minima,
which are located far away from the original reference pose.
Only 25% of DA-SDF trials converge to palm poses with
errors less than 1.5cm and 0.3rad. The DA-RF objective has
less local minima and 75% of trials converge to poses within
the same error bounds. The rejection of manipulator pixels
in DA-RF-OCCL removes gradients from the optimisation,
that would otherwise prevent local minima in the original
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Fig. 8: Experiment 1: Palm pose error after converging from
a perturbed initial pose. DA-SDF has many local minima
which causes the majority of trials to converge more than
1.5cm and 0.3rad away from the true reference pose, while
the majority of DA-RF trials converge within these bounds.

objective (DA-SDF). This is particularly apparent through
the high orientation errors of the local minima.

The example failure case in Figure 9 demonstrates the
need to explicitly associate data points to model parts (DA-
RF) to avoid local minima caused by implicit data association
(DA-SDF).

B. Experiment 2: Grasping

A more realistic scenario is presented by the grasping
task shown in Figure 10. In this scenario, the manipulator:
(1) approaches and grasps an object, (2) lifts and moves
the object, (3) places it back on the table and (4) moves
away from the object. The baseline approach (DA-SDF)
wrongly attaches the mis-tracked manipulator to the data
corresponding to the object after the initial grasp (Figure
1b). This causes the palm pose estimate to be biased during
subsequent tracking (Figure 11, t > 4s). When retracting
the hand, the tracked manipulator remains associated to the
object and tracking cannot recover (t > 40s).

By comparison our approach (DA-RF) tracks the palm
pose accurately throughout as parts of the manipulator are
correctly classified during the grasping and therefore pro-
vides the correct data-to-model association.

C. Experiment 3: Tracking in the Presence of Occlusions

We evaluate our main contribution in an experiment where
the manipulator is occluded by an object in the near ground.
This is different from the previous experiment as the occlud-
ing object is segmented into manipulator parts and the actual
part is hidden and must not be associated to the occluder.



(a) observed pose (b) SDF converged pose (c) RF converged pose

(d) SDF data association (e) RF data association

Fig. 9: Experiment 1: Example poses and data association
after convergence. DA-SDF iteratively assigns the thumb
(cyan) to both fingers (d), resulting in convergence to a
local minima (b). The segmentation by the RF (e) correctly
distinguishes the fingers and the thumb and allows the
optimisation to converge to a correct pose (c).

Fig. 10: Experiment 2: Grasping and manipulating a bottle.

In this sequence, we initialise the robot in a state where
none of its parts are occluded. The manipulator is then moved
behind a green bottle such that it occludes the palm and
fingers during movement so as to investigate the ability to
fit the model to partial observations. The manipulator later
moves back to a non-occluded configuration to demonstrate
the ability to recover from tracking errors. Characteristic
states of this sequence are shown in Figure 12.

1) Improved Data-Association Through Occlusion Train-
ing: We wish to be implicitly robust to unknown objects
and do not want to rely on object tracking. To overcome the
distraction of the occluding green bottle, we train DA-RF-
OCCL by adding a random sampling of occluding pixels as
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Fig. 11: Experiment 2: Palm pose estimation when grasping
and moving the bottle (grey shaded phase). DA-SDF tracker
is biased as the manipulated object draws the palm away
from its true position. Average tracking error: DA-SDF: 8.3±
9cm, 1.15± 0.39rad, DA-RF: 1.5± 0.6cm, 0.2± 0.15rad.

(a) initial (b) occluded (c) unoccluded

Fig. 12: Sample images from experiment 3. Tracking is
initialised at an unoccluded configuration (a), the hand moves
behind the green bottle (b) and returns to an unoccluded
configuration (c).

described in Section III-C.2.
This random occlusion sampling reduces the probability of

incorrect assignments of bottle pixels to palm parts (Figure
13a,b left), while the visible finger tip keeps most of its
confidence (Figure 13a,b right). This improves model-fitting
in that there are less gradients from bottle pixels that move
the actual palm away from its original position.

Since we can treat the acceptance and rejection of data
associations via thresholds as a binary classification problem,
we can evaluate both RF data association variants (DA-
RF, DA-RF-OCCL) given the true segmentation of the ob-
ject. The Precision-Recall curve in Figure 14 shows that
our proposed training approach (DA-RF-OCCL) improves
classification performance independently from the selected
rejection threshold.

We found that the maximum depth probe distance is an im-
portant parameter that effects the model-fitting performance
in presence of occlusions. For small manipulator parts like
fingers, a short probe distance is important. This is visualised
in Figure 15a where a large maximum probe distance (15cm)
results in similar finger tip probabilities for pixels on the
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Fig. 13: Class probabilities for the palm and a finger. Training
without occlusions (a) results in a high classification confi-
dence for wrongly assigning the occluded palm to the bottle
(a, left) and assigning the finger tip to the robot’s actual finger
tip (a, right). After introducing random occlusions during
training (b), we can reduce the confidence of assigning bottle
pixels to the robot palm (b, left) but keep the high confidence
of the finger tip classification (b, right).
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Fig. 14: Precision-Recall curve for data association seen as
binary classification, averaged over all images of Experiment
3. DA-RF: training without occlusions (AUC: 0.86), DA-RF-
OCCL: training with occlusions (AUC: 0.89). The circled
locations mark the selected rejection threshold (0.55) for
tracking.

(a) probe distance: 15 cm (b) probe distance: 5 cm

Fig. 15: Class probability of the finger tip for different
offset distances. By reducing the probe offset distance and
providing more local information, we can move probability
from the bottle corner (a) to the true finger tip location (b).
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Fig. 16: Experiment 3 without occlusions: Palm pose tracking
error after object removal. Average: DA-SDF: 1.3± 0.4cm,
0.07± 0.04rad; DA-RF: 1.9± 0.7cm, 0.12± 0.08rad; DA-
RF-OCCL: 1.8± 0.8cm, 0.22± 0.14rad.

bottle corner and the actual finger. By enforcing learning
only from local information (5cm) we can shift probability
from the bottle to the actual finger tip (Figure 15b).

2) Baseline: Tracking with Known Object Pixels: As a
baseline, we first use simple colour segmentation to remove
the green bottle leaving only the pixels corresponding to the
arm and hand (albeit with missing pixels). The idea being
that this example can provide a baseline for what could
be achieved when trying to be robust to a more complex
unknown distractor object. The tracking error is reported for
the DA-SDF, DA-RF and DA-RF-OCCL in Figure 16.

3) Occlusions: Pose Tracking Performance: Finally, Fig-
ure 17 shows the pose tracking error for DA-SDF (baseline),
DA-RF and DA-RF-OCCL (proposed) when rejecting pixels
with a probability of less than 0.55. There is a clear dif-
ference in performance after t > 18s when the manipulator
moves towards the bottle.
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Fig. 17: Experiment 3 with occlusion: Palm pose tracking
error during movement close to occlusion (grey shaded
phase). Average: DA-SDF: 10.4±8.6cm, 0.8±0.63rad; DA-
RF: 6.8±5.1cm, 0.44±0.26rad; DA-RF-OCCL: 1.7±0.8cm,
0.22± 0.14rad.

With DA-SDF, the model is fitted to the occluding object
as it cannot distinguish between parts of the robot and the
bottle. By assigning irrelevant points to the manipulator, DA-
SDF finally diverges and cannot recover. A similar behaviour
can be observed for DA-RF, since those pixels of the bottle
that have been classified as palm (Figure 13a, left) distract
the tracking.

Meanwhile, by rejecting these pixels, DA-RF-OCCL is
able to track with a similar performance as without occlu-
sions (Figure 16). Without data association of finger classes,
tracking relies on the visible parts of the arm until the hand
becomes fully visible again.

V. CONCLUSION

In this work we presented a discriminative model-fitting
approach for depth-based tracking of articulated objects in
the presence of distracting visual information. The approach
is based on the explicit pixel-wise association of data points
to model parts.

In our experimental analysis we were able to avoid local
minima which often arise from distractions in currently exist-
ing tracking objectives. The random sampling of unspecified
occlusions during training enabled us to reject less confident
data-to-model associations and provides a way of tracking
partially visible manipulators.

At present, our approach does not explicitly provide esti-
mates for occluding pixels, e.g. we can only indirectly infer
occlusions from low class probabilities. In future work, we
propose to use multi-label classification so as to classify
robot parts and occlusions so that we can independently
access the occlusion probability of a pixel and also which
part it is occluding.

The Gauss-Newton approach only tracks a single state
hypothesis provided by the single gradient from the data-
to-model association per pixel. To make use of the full class

probability distribution per pixel, we propose to use a global
optimisation method, such as particle swarm optimisation
[3], to track multiple hypotheses in parallel. Finally, we note
that most articulated tracking approaches only make use of
depth information and that colour can provide much stronger
cues in particular for small parts such as fingers.
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C. Theobalt, Real-Time Joint Tracking of a Hand Manipulating an
Object from RGB-D Input. Cham: Springer International Publishing,
2016, pp. 294–310.

[15] E. Olson, “AprilTag: A robust and flexible visual fiducial system,”
in 2011 IEEE International Conference on Robotics and Automation,
May 2011, pp. 3400–3407.


	Introduction
	Related Work
	Proposed Method
	Augmenting the Signed Distance Function
	Generating Training Data for Pixel Classification
	Training
	Pixel-Wise Segmentation of Robot Parts
	Occlusion Sampling


	Evaluation
	Experiment 1: Discriminative Tracking
	Palm Pose Tracking
	Convergence of Optimisation

	Experiment 2: Grasping
	Experiment 3: Tracking in the Presence of Occlusions
	Improved Data-Association Through Occlusion Training
	Baseline: Tracking with Known Object Pixels
	Occlusions: Pose Tracking Performance


	Conclusion
	References

