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BRACES AND SYMMETRIC GROUPS WITH SPECIAL

CONDITIONS

FERRAN CEDÓ, TATIANA GATEVA-IVANOVA, AGATA SMOKTUNOWICZ

Abstract. We study symmetric groups and left braces satisfying special con-

ditions, or identities. We are particularly interested in the impact of conditions

like Raut and lri on the properties of the symmetric group and its associated

brace. We show that the symmetric group G = G(X, r) associated to a nontrivial

solution (X, r) has multipermutation level 2 if and only if G satisfies lri. In the

special case of a two-sided brace we express each of the conditions lri and Raut

as identities on the associated radical ring G∗. We apply these to construct ex-

amples of two-sided braces satisfying some prescribed conditions. In particular

we construct a finite two-sided brace with condition Raut which does not satisfy

lri. (It is known that condition lri always implies Raut). We show that a finitely

generated two-sided brace which satisfies lri has a finite multipermutation level

which is bounded by the number of its generators.
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1. Preliminaries

A quadratic set is a pair (X, r), whereX is a non-empty set and r : X×X → X×X

is a bijective map. Recall that (X, r) is involutive if r2 = idX2 . The image of (x, y)

under r is presented as r(x, y) = (xy, xy). Consider the maps Lx,Rx : X → X defined

by

Lx(y) =
xy and Rx(y) = yx,

for all x, y ∈ X . The quadratic set (X, r) is non-degenerate if Lx and Rx are bijective

for all x ∈ X . The map r is a set-theoretic solution of the Yang–Baxter equation

(YBE) if the braid relation

r12r23r12 = r23r12r23

holds in X ×X ×X, where r12 = r × idX , and r23 = idX × r. In this case (X, r) is

called a braided set. A braided set (X, r) with r involutive is called a symmetric set.

Convention 1.1. In this paper ”a solution” means ”an involutive non-degenerate set-

theoretic solution of the YBE ”, or equivalently, ”a non-degenerate symmetric set”

(X, r).

A left brace is a triple (G,+, ·), where G is a set, + and · are two binary operations,

such that (G,+) is an abelian group, (G, ·) is a group and

a · (b + c) + a = a · b+ a · c,(1.1)

for all a, b, c ∈ G. The group (G,+) is the additive group of the left brace and (G, ·)

is its multiplicative group. A right brace is defined similarly, but replacing property

(1.1) by (b + c) · a+ a = b · a+ c · a. If (G,+, ·) is both a left and a right brace (for

the same operations), then it is called a two-sided brace.

It is known that if (G,+, ·) is a left brace, and 0 and e, respectively, denote the

neutral elements with respect to the two operations ”+” and ”·” in G, then 0 = e.

In any left brace (G,+, ·) one defines the operation ∗ by the rule:

(1.2) a ∗ b = a · b− a− b, a, b ∈ G.

It is known and easy to check that ∗ is left distributive with respect to the sum +.

In general ∗ is not right distributive, nor associative, but it satisfies the following

condition

(a ∗ b+ a+ b) ∗ c = a ∗ (b ∗ c) + a ∗ c+ b ∗ c, ∀a, b, c ∈ G,(1.3)

see the original definition of right brace of Rump [Ru, Definition 2]. It is also known

that (G,+, ·) is a two-sided brace if and only if (G,+, ∗) is a Jacobson radical ring.

Takeuchi introduced the notions of a braided group and a symmetric group as the

group versions of a braided set and a symmetric set, respectively, [Ta]. We recall the

definitions.
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A braided group is a pair (G, r), where G is a group and r : G × G −→ G ×

G, r(a, b) = (ab, ab) is a bijective map satisfying the following conditions

ML0 : a1 = 1, 1u = u, MR0 : 1u = 1, a1 = a,

ML1 : abu = a(bu), MR1 : auv = (au)v,

ML2 : a(u.v) = (au)(a
u

v), MR2 : (a.b)u = (a
bu)(bu),

and the compatibility condition

M3 : uv = (uv).(uv),

for all a, b, u, v ∈ G. For each braided group (G, r) the map r is a braiding operator,

so (G, r) is a braided set, see [LYZ], see also [Ta].

A symmetric group is a braided group (G, r) with an involutive braiding operator

r. Each symmetric group (G, r) is a nondegenerate symmetric set, that is (G, r) is a

solution.

It was proven by the second author that symmetric groups and left braces are

equivalent structures, see [GI] Theorem 3.6. More precisely, the following hold.

(i) Every symmetric group (G, r) has a canonically associated structure of a left

brace (G,+, ·), where the operation ”+” on G is defined via

(1.4) a+ b := a · (a
−1

b), or equivalently, a+ ab = a · b, a, b ∈ G.

(ii) Conversely, every left brace (G,+, ·) has a canonically associated structure of a

symmetric group (G, r), that is a group with a braiding operator r : G×G −→ G×G,

r(a, b) := (ab, ab), with left and right actions of G upon itself given by the formulae

(1.5) ab := a · b− a = a ∗ b+ b, ab := (ab)−1

a, ∀ a, b ∈ G.

Moreover, the following condition holds in G

Laut : a(b + c) = ab+ ac, ∀a, b, c ∈ G.

By convention a symmetric groups (G, r) is always considered together with the as-

sociated left brace (G,+, ·) and vice versa.

For each solution (X, r) of the YBE Etingof, Schedler and Soloviev introduced

in [ESS] two groups: the structure group G = G(X, r) and the permutation group

G = G(X, r). The structure group G is generated by X and has quadratic defining

relations xy = xyxy, for all x, y ∈ X . (The group G(X, r) is also called the YB-group

of (X, r)). The set X is embedded in G. The group G acts on the left (and on the

right) on the set X , so the assignment x 7→ Lx extends to a group homomorphism

L : G(X, r) −→ Sym(X), a 7→ La ∈ Sym(X), where La(x) = ax. By definition

the permutation group G = G(X, r) is the image L(G(X, r)) of G. The group G is

generated by the set {Lx | x ∈ X}. It is known, see [LYZ], that there is unique

braiding operator rG : G × G −→ G × G, such that the restriction of rG on X ×X

is exactly the map r. We call (G, rG) the symmetric group associated to (X, r).

Moreover, the epimorphism L : G(X, r) −→ G(X, r) is a braiding preserving map
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which induces a canonical structure of a symmetric group (G, rG), see [GI] (or [CJO]

for the equivalent version in the language of left braces).

An ideal of a left brace (G,+, ·) is a normal subgroup I of its multiplicative group

which is invariant with respect to the left action of G upon itself, i.e. ab ∈ I for all

a ∈ G and all b ∈ I. It is known that every ideal I of (G,+, ·) is a subgroup of its

additive group, and is invariant with respect to the right action of G.

Each left brace (G,+, ·) has several invariant decreasing chains of subsets.

The series G(n), introduced by Rump, [Ru], consists of ideals of G:

(1.6) G = G(1) ⊇ G(2) ⊇ G(3) ⊇ · · · , where G(n+1) = G(n) ∗G,n ≥ 1.

The second series, Gn, [Ru], is defined as

(1.7) G = G1 ⊇ G2 ⊇ G3 ⊇ · · · , where Gn+1 = G ∗Gn, n ≥ 1.

Recall the following definition.

Definition 1.2. [GIM] Let (X, r) be a quadratic set.

(1) The following are called cyclic conditions on X .

cl1 : (yx)x = yx, for all x, y ∈ X ; cr1 : x(xy) = xy, for all x, y ∈ X ;

cl2 : (xy)x = yx, for all x, y ∈ X ; cr2 : x(yx) = xy, for all x, y ∈ X.

(X, r) is called cyclic if it satisfies all cyclic conditions.

(2) Condition lri is defined as

lri: (xy)x = y = x(yx), for all x, y ∈ X.

In other words lri holds if and only if (X, r) is non-degenerate and Rx = Lx−1

and Lx = Rx−1 .

Symmetric groups and their braces with special conditions on the actions like lri or

Raut were studied first in [GI]. Here we continue this study (i) for general symmetric

groups (G, r), and (ii) under the additional assumption that the associated left brace

(G,+, ·) is a two-sided brace.

Definition 1.3. [GI] A left brace (G,+, ·) satisfies condition Raut if

Raut : (a+ b)c = ac + bc, ∀a, b, c ∈ G.

Note that condition lri on the symmetric group (G, r) implies that the left and

the right actions of the group G upon itself are mutually inverse, while condition

Raut links the two parallel structures- the symmetric group structure and the brace

structure of G.

Notation 1.4. We shall use notation as in [GI]. As usual, given a solution (X, r),

G = G(X, r) denotes its structure group, and G = G(X, r) denotes its permutation

group. The canonically associated symmetric groups will be denoted by (G, rG) and

(G, rG), respectively. In the case when (X, r) is a multipermutation solution of level
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m we shall write mpl(X, r) = m. Given a two-sided brace (G,+, ·), the associated

Jacobson radical ring is denoted by G∗ = (G,+, ∗)

2. Left braces (G,+, ·), the operation ∗ and some identities

We study symmetric groups (G, r) and left braces (G,+, ·) satisfying the identity

(a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ G, or equivalently, (G, ∗) is a semigroup with

zero (e = 0 is a zero element in (G, ∗)). Clearly, if (G,+, ·) is a two-sided brace, then

(G, ∗) is a semigroup. In particular, we are interested in the following questions.

Questions 2.1. (1) What can be said about symmetric sets (X, r) for which some

of the symmetric groups G = G(X, r), or G = G(X, r) has associative law for

the operation ∗?

(2) Does it exist a left brace (G,+, ·), such that (G, ∗) is a semigroup, but (G,+, ·)

is not a two-sided brace?

It is known that if (X, r) is a solution, then G(X, r) is a two-sided brace iff (X, r)

is a trivial solution, [GI, Theorem 6.3]. We shall prove that in the special case when

G = G(X, r) is the symmetric group of a solution (X, r), (G, ∗) is a semigroup if and

only if G is a two-sided brace, and therefore (X, r) is a trivial solution, see Corollary

2.3.

Proposition 2.2. Let (G, r) be a symmetric group and let (G,+, ·) be the correspond-

ing left brace. Suppose (G, ∗) is a semigroup and the additive group (G,+) has no

elements of order two. Then (G,+, ·) is a two-sided brace, or equivalently, (G,+, ∗)

is a Jacobson radical ring.

Proof. We shall prove that

(2.1) (−a) ∗ b = −(a ∗ b), ∀a, b ∈ G.

By (1.3), we have

[a+ (−a) + a ∗ (−a)] ∗ b = a ∗ b+ (−a) ∗ b+ a ∗ [(−a) ∗ b], ∀a, b ∈ G.

This together with the obvious equality [a+ (−a) + a ∗ (−a)] ∗ b = [a ∗ (−a)] ∗ b, and

the associative law in (G, ∗) imply

a ∗ [(−a) ∗ b] = [a ∗ (−a)] ∗ b = a ∗ b+ (−a) ∗ b+ a ∗ [(−a) ∗ b], ∀a, b ∈ G.

It follows that a∗b+(−a)∗b = 0, so the identity (2.1) holds in G. Note that (G,+, ∗)

satisfies the hypothesis of [Smok1, Theorem 13], and therefore (G,+, ∗) is a Jacobson

radical ring. �

An easy consequence of Proposition 2.2 and [GI, Corollari 5.16] is the following

result.

Corollary 2.3. Let (X, r) be a solution, (G, rG), (G, rG), (G,+, ·), (G,+, ·) in usual

notation.
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(1) (G, ∗) is a semigroup if and only if (G,+, ·) is a two-sided brace, so in this

case (X, r) is the trivial solution.

(2) Suppose the additive group (G,+) has no elements of order two (a + a 6=

e, ∀a ∈ G). Then (G, ∗) is a semigroup if and only if it is a two-sided brace.

Moreover, if X is a finite set, then (X, r), is a multipermutation solution, and

0 ≤ mpl(G, rG) = m− 1 ≤ mpl(X, r) ≤ mpl(G, rG) = m < ∞.

Recall that the series Gn and G(n) of a left brace are defined by (1.6), and (1.7).

Lemma 2.4. Let (G,+, ·) be a left brace. Suppose that (G, ∗) is a semigroup. Then

Gn ⊆ G(n) for all positive integers n.

Proof. We shall use induction on n to prove the equality of sets

(2.2) Gn = {

k∑

i=1

gi,1 ∗ · · · ∗ gi,n | k is a positive integer, and gi,j ∈ G}.

For n = 2, one has G2 = G ∗G = G(2) by definition, thus

G2 = {
k∑

i=1

gi ∗ hi | k is a positive integer, gi, hi ∈ G}.

Let n > 2 and assume (2.2) is true for all m < n. By (1.7) one has

(2.3) Gn = G ∗Gn−1 = {

k∑

i=1

gi ∗ hi | k is a positive integer, gi ∈ G, hi ∈ Gn−1}.

By the induction hypothesis every pair g ∈ G, h ∈ Gn−1 satisfies

g ∗ h = g ∗
k∑

i=1

gi,1 ∗ · · · ∗ gi,n−1

=

k∑

i=1

g ∗ gi,1 ∗ · · · ∗ gi,n−1,

where gi,j ∈ G. This together with (2.3) implies the desired equality of sets (2.2).

It is clear that g1 ∗ · · · ∗ gn = (. . . (g1 ∗ g2) ∗ · · · ) ∗ gn ∈ G(n), whenever gi ∈ G, 1 ≤

i ≤ n. Therefore Gn ⊆ G(n). �

Remark 2.5. Let G be a set with two operations ”·” and ”+” such that (G, ·) is a

group, and (G,+) is an abelian group. (We do not assume (G,+, ·) is a brace). Let

∗ be a new operation on G defined by (1.2).

(1) (G,+, ·) is a left brace if and only if (G,+, ∗) satisfies a left distributive law:

a ∗ (b+ c) = a ∗ b+ a ∗ c, ∀ a, b, c ∈ G.

(2) (G,+, ·) is a right brace if and only if (G,+, ∗) satisfies a right distributive

law: (a+ b) ∗ c = a ∗ c+ b ∗ c, ∀ a, b, c ∈ G.

Lemma 2.6. Let (G,+, ·) be a left brace, such that (G, ∗) is semigroup. If Gn = 0

for some positive integer n then (G,+, ·) is a two-sided brace.
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Proof. It follows from [Smok2, Lemma 15] that for every a, b, c ∈ G there are di, d
′
i ∈ G

such that

(2.4) (a+ b) ∗ c = a ∗ c+ b ∗ c+

2n∑

i=0

(−1)i+1((di ∗ d
′
i) ∗ c− di ∗ (d

′
i ∗ c)).

By hypothesis (G, ∗) is a semigroup, so (di ∗ d′i) ∗ c − di ∗ (d
′
i ∗ c) = 0, 0 ≤ i ≤ 2n,

which together with (2.4) imply (a+ b)∗ c = a∗ b+a∗ c, for all a, b, c ∈ G. Therefore,

by Remark 2.5 (G,+, ·) is a two-sided brace. �

Proposition 2.7. Let (G, r) be a symmetric group of a finite multipermutation level,

mpl(G, r) = m. Suppose (G, ∗) is a semigroup. Then the following two conditions

hold.

(1) The left brace (G,+, ·) is a two-sided brace, and hence (G,+, ∗) is a Jacobson

radical ring.

(2) The group (G, ·) is nilpotent.

Proof. By hypothesis (G, r) has a finite multipermutation level, mpl(G, r) = m, so

[CGIS, Proposition 6] implies that G(m+1) = 0 and G(m) 6= 0. It follows from

Lemma 2.4 that Gm+1 ⊆ G(m+1) = 0. Clearly, the hypothesis of Lemma 2.6 is

satisfied, so (G,+, ·) is a two-sided brace. This proves part (1) of the proposition.

The nilpotency of the the group (G, ·) follows from [Smok2, Proposition 8]. �

Question 2.8. Under the hypothesis of Proposition 2.7, can we find an upper bound

B(m), depending on m, so that G has nilpotency class ≤ B(m)?

Proposition 2.9. Let (G, r) be a finite symmetric group such that (G, ∗) is a semi-

group. The following conditions are equivalent.

(1) (G, r) has a finite multipermutation level, mpl(G, r) = m.

(2) (G, ·) is a nilpotent group.

(3) (G,+, ·) is a two-sided brace.

Proof. The implications (1) =⇒ (2) and (1) =⇒ (3) follow from Proposition 2.7. The

implication (3) =⇒ (1) is well known, [Ru], [GI]. (2) =⇒ (3). Assume the group G is

nilpotent. Then [Smok2, Theorem 1] implies Gn = 0 for some positive integer n. It

follows from Lemma 2.6 that (G,+, ·) is a two-sided brace. �

Recall that (X, r) is a multipermutation solution if and only if the corresponding

symmetric group (G, rG) has a finite multipermutation level, [GI, Theorem 5.15].

Corollary 2.10. Let (X, r) be a multipermutation solution, G = G(X, r). Then (G, ∗)

is a semigroup if and only if the left brace (G,+, ·) is a two-sided brace.

Remark 2.11. Let (G, r) be a symmetric group, and let (G,+, ·) be the corresponding

left brace. Suppose that (G,+, ∗) is a Jacobson radical ring generated by a finite set

X = {x1, · · · , xn} ⊆ G. If (G, ∗) satisfies the identity

x ∗ u ∗ x = 0, ∀x ∈ X, u ∈ G, (u = e is possible)
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then the left brace G is nilpotent of nilpotency class ≤ n + 1. Moreover, (G, r) has

finite multipermutation level, mpl(G, r) ≤ n.

Proof. By assumption (G,+, ∗) is a Jacobson radical ring. Therefore any element from

G(k), k ≥ 1, can be written as a sum of elements w of the form w = y1∗y2∗· · ·∗ys, yj ∈

X
⋃
{e}, 1 ≤ j ≤ s, s ≥ k. But |X | = n, hence every such element w ∈ G(n+1) has

a subword x ∗ a ∗ x, where x ∈ X, a ∈ G, or has the shape w = u ∗ e ∗ v, u, v ∈ G,

so in each case w = 0 . Hence G(n+1) = 0, and therefore, by [CGIS, Proposition 6],

mpl(G, r) ≤ n. �

3. Symmetric sets (X, r) whose associated groups and braces have

special properties

It was proven in [GI, Theorem 8.2], that for a nontrivial square-free solution (X, r),

with G = G(X, r) one has mpl(X, r) = mpl(G, rG) = 2 if and only if (G, rG) satisfies

condition lri. We generalize this result for arbitrary solutions (X, r).

Theorem 3.1. Let (X, r) be a solution of arbitrary cardinality, G = G(X, r), (G, rG),

(G,+, ·) in usual notation. The following conditions are equivalent.

(1) (G, rG) is a non-trivial solution with condition lri.

(2) (G, rG) is a multipermutation solution of level 2.

(3) G acts (nontrivially) upon itself as automorphisms that is

L(ab) = La, ∀ a, b ∈ G, and La 6= idG, for some a ∈ G.

(4) (X, r) is a non-trivial solution with lri and the brace (G,+, ·) satisfies Raut.

Each of these conditions imply mpl(X, r) ≤ 2.

Proof. [GI, Proposition 7.13] gives the implications (2) ⇐⇒ (3) =⇒ (1). The equiv-

alence (1) ⇐⇒ (4) follows from [GI, Corollary 7.11].

(1) =⇒ (2). Assume that (G, rG) is a nontrivial solution which satisfies lri. We

shall show that L(az) = Lz for all z ∈ X, a ∈ G.

By [GIM, Proposition 2.25], G satisfies the cyclic conditions. We use successively

ML0, ML2, lri and cl2 to obtain

1 = a(b−1b) = a(b−1)(a
b−1

)b = a(b−1)(
ba)b = a(b−1)ab,

for all a, b ∈ G. Thus

(3.1) a(b−1) = (ab)−1, ∀a, b ∈ G.

Let x, y, z ∈ X . Then condition lri implies

(xy−1)z
−1

= z(xy−1).(3.2)
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Note that y−1 = −
(
y−1

y
)
= − (yy). We now compute each side of (3.2). For the

left-hand side we obtain

(xy−1)z
−1

= x((y
−1)(z−1))(y−1)z

−1

(by MR2 )

= (zy)x(y−1)z
−1

(by lri and (3.1))

=
(
(zy)x

)
(z(−(yy)))

=
(
(zy)x

)
+ ((z

y)x) (z(−(yy))) (by (1.4))

=
(
(zy)x

)
− ((z

y)x) (z(yy)) .

Our computation of the right-hand side gives

z(xy−1) = (zx) ·
(
(zx)(y−1)

)
(by ML2 )

= (zx) + (zx)
(
(zx)(−(yy))

)
(by (1.4))

= (zx)− (zx)·(zx)(yy)

= (zx)− (z·x)(yy).

Therefore the following equality holds in G

(3.3)
(
(zy)x

)
− ((z

y)x) (z(yy)) = (zx)− (z·x)(yy).

Note that (G,+) is a free abelian group with a basis X , and
(
(zy)x

)
, (

(zy)x) (z(yy)),

(zx), (z·x)(yy) ∈ X . Hence the equality (3.3) implies that either

(3.4) (zy)x = zx,

or

(3.5) (zy)x 6= zx, and (zx) − (z·x)(yy) = 0.

We claim that (3.5) is impossible. Indeed, 0 = 1 in G, hence z(xy−1) = (zx) −
(z·x)(yy) = 0 implies z(xy−1) = 1, which by ML0 gives xy−1 = 1, and therefore

x = y. Now the cyclic condition implies
(
(zy)x

)
=

(
(zx)x

)
= (zx), which contradicts

(3.5). It follows then that (yz)x = zx, for all x, y, z ∈ X. This, together with lri and

(3.1), imply ”enforced” cyclic conditions

(3.6)
(zy)x = zx, (yz)x = zx

x(yz) = xz, x(zy) = xz ,

for all x, y, z ∈ X⋆ = X ∪X−1, where X−1 = {x−1 | x ∈ X}.

We use induction on the length |a| of a ∈ G to show that

(3.7) (yz)a = za, (zy)a = za, ∀a ∈ G, ∀y, z ∈ X⋆.

The base for induction follows from (3.6). Assume (3.7) is in force for all a ∈ G with

1 ≤ |a| ≤ k. Suppose a ∈ G, 2 ≤ |a| = k + 1, then a = tb, t ∈ X⋆, b ∈ G, |b| = k. We



10 FERRAN CEDÓ, TATIANA GATEVA-IVANOVA, AGATA SMOKTUNOWICZ

use ML2 and the inductive hypothesis (IH) to yield:

(yz)a = (yz)(tb) = ((
yz)(t))(((

yz)t)(b))

= ((
yz)(t))(((

yz))(b)) by IH

= (zt)(zb) by IH
za = z(tb) = (z(t))((z

t)(b))

= (zt)(zb) by IH.

This implies the first equality in (3.7) for all a ∈ G, y, z ∈ X⋆. Using lri one deduces

that the second equality in (3.7) is also in force. Similar technique ”extends” (3.7) on

the whole group G, so that the following equalities hold:

(bc)a = ca, (bc)a = ca ∀a, b, c ∈ G.

It follows from [GI, Lemma 7.12] that the symmetric group (G, rG) satisfies the

four equivalent conditions.

(3.8)
(i) L(ba) = La, ∀ a, b ∈ G; (ii) L(ab) = La, ∀ a, b ∈ G;

(iii) R(ba) = Ra, ∀ a, b ∈ G; (iv) R(ab) = Ra, ∀ a, b ∈ G.

By [GI, Proposition 7.13] each of the conditions (i) through (iv) is equivalent to (2).

We have shown the implication (1) =⇒ (2), so mpl(G, rG) = 2. By [GI, Theorem 5.15],

one has mpl(G, rG)− 1 ≤ mpl(X, r) ≤ mpl(G, rG), and therefore mpl(X, r) ≤ 2. �

Suppose (X, r) is a solution with lri, and (G, rG) is its associated symmetric group.

Let (G, rG) be a symmetric group, and assume there is a braiding-preserving map

(homomorphism of solutions)

µ : X −→ G x 7→ x ∈ G

Then by [LYZ, Theorem 9], the map µ extends canonically to a braiding preserving

group homomorphism (that is a homomorphism of symmetric groups)

µ : (G, rG) −→ (G, rG) a 7→ a ∈ G.

Moreover, if X = µ(X) is a set of (multiplicative) generators of G then µ : G −→ G

is an epimorphism of symmetric groups.

The following result is a generalization of [GI, Theorem 7.10(2)].

Theorem 3.2. Let (X, r) be a symmetric set with lri (not necessarily finite), let

(G, r) be a symmetric group, and let (G,+, .) be the associated left brace. Assume

there is a braiding-preserving map (homomorphism of solutions)

µ : X −→ G, x 7→ x ∈ G,

such hat the image µ(X) = X, is an r-invariant subset of (G, r) and generates the

(multiplicative) group G. The following conditions are equivalent on G.

(1) The left brace (G,+, ·) satisfies condition Raut.

(2) (G, rG) satisfies condition lri.
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Proof. (1) =⇒ (2). Suppose (X, r) satisfies lri and G satisfies condition Raut.

Recall that X⋆ = {x | x ∈ X or x−1 ∈ X}. By [GI, Proposition 7.6], condition lri

on (X, r) extends to

(3.9) lri⋆ : a(xa) = x = (ax)a, ∀ x ∈ X⋆, a ∈ G.

Denote by X⋆ = µ(X⋆) the image of X⋆ in G. (It is possible that X⋆ contains the

unit 1 = 1G of the group G).

We shall extend lri on the symmetric group (G, rG) in two steps. 1. We show that

(3.10) (a)−1

u = ua for all a ∈ X⋆, u ∈ G.

For u ∈ G we consider u ∈ G of minimal length, such that µ(u) = u. Without

loss of generality we may assume that u 6= 1 (this follows from ML0 and MR0). We

use induction on the minimal length |u| of u, with µ(u) = u. Condition lri⋆, (3.9)

gives the base for induction. Assume (3.10) holds for all a ∈ X⋆ and all u ∈ G, where

u = µ(u), |u| ≤ n. Let a ∈ X⋆ and suppose w ∈ G, where w = µ(w), |w| = n+ 1. A

reduced form of w can be written as w = xu, where x ∈ X⋆, u ∈ G, |u| = n. We

present wa as

wa = (xu)a = ((x)(u))a = (x+ x(u))a,

and consider the following equalities in G:

(3.11)

wa = (x+ x(u))a

= (x)a + (x(u))a by Raut

= (a)−1

(x) + (a)−1

(x(u)) by IH

= (a)−1

(x + x(u)) by Laut

= (a)−1

(x · u)

= (a)−1

(w),

where IH is the inductive assumption. This verifies (3.10) for all a ∈ X⋆, and all

u ∈ G. Clearly, (3.10) is equivalent to

(3.12) a(ua) = u ∀ a, u, where a ∈ X⋆, u ∈ G.

2. We shall extend (3.12) for all a ∈ G. We use induction again, this time on the

minimal length of the elements a ∈ G with µ(a) = a. The base of the induction is

given by (3.12). Assume a(ua) = u for all a, u ∈ G, where there is an a ∈ G, such

that µ(a) = a, and |a| ≤ n. Let a, u ∈ G, and assume the minimal length of the a’s

with µ(a) = a is |a| = n + 1. Then a = bx, x ∈ X⋆, b ∈ G, |b| = n. The following

equalities hold:

(3.13)

a(ua) = bx(ubx)

= b(x((ub)
x

))

= b(ub) by IH

= u by IH.

This verifies
a(ua) = u, ∀ a, u,∈ G.
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The remaining identity

(au)a = u, ∀ a, u,∈ G

is straightforward. We have shown that the symmetric group (G, r) satisfies condition

lri.

(2) =⇒ (1). It follows from [GI, Theorem 7.10] that condition lri on an arbitrary

symmetric group implies Raut on the corresponding left brace. �

Corollary 3.3. Let (X, r) be a symmetric set with lri (not necessarily finite), nota-

tion as usual. The symmetric group (G, rG) satisfies condition lri if and only if the

associated left brace (G,+, ·) satisfies condition Raut.

Proof. The map

L : (G, rG) −→ (G, rG), x 7→ Lx,

is a braiding preserving homomorphisms of symmetric groups, the image L(X) gen-

erates the permutation group G. So the hypothesis of Theorem 3.2 is satisfied for

µ = L, which implies the equivalence of lri and Raut on (G, rG). �

The next corollary follows from Corollary 3.3, and [GI, Theorems 8.5 and 5.15].

Corollary 3.4. Suppose (X, r) is a finite square-free solution, notation as usual. If

the symmetric group (G, rG) satisfies condition Raut, then (X, r) is a multipermuta-

tion solution of level m < |X |, and

mpl(X, r) = mpl(G, rG) = m, mpl(G, rG) = m− 1.

4. Conditions lri and Raut on symmetric groups with two-sided braces

In this section we study symmetric groups (G, r) whose associated braces (G,+, .)

are two-sided, or equivalently G∗ = (G,+, ∗) are Jacobson radical rings. We present

each of the conditions lri and Raut in terms of identities on the radical ring G∗.

We start with some useful results interpreting various conditions on a symmetric

group (G, r) in terms of the operation ∗

Lemma 4.1. Let (G, r) be a symmetric group. The the following conditions hold.

(1) G satisfies the identity

(4.1) (a ∗ c+ c) ∗ ac + ac = a, ∀a, c ∈ G.

(2) Suppose the associated brace (G,+, ·) is two-sided. Then the Jacobson radical

ring G∗ = (G,+, ∗) satisfies the identities

(4.2) a ∗ c ∗ ac + c ∗ ac + ac = a, ∀a, c ∈ G.

(4.3) (ac)a = a ∗ c ∗ a+ ca, ∀a, c ∈ G.
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Proof. (1) The map r is involutive, which is equivalent to the following conditions on

the actions

(4.4)
ac(ac) = a, (ac)a

c

= c, ∀ a, c ∈ G.

We use (1.5) to present the first equality in terms of the the operations +, ∗ and yield

a =
ac(ac)

= (ac) ∗ (ac) + ac

= (a ∗ c+ c) ∗ (ac) + ac.

,

so (4.1) holds.

(2) Suppose the associated brace is two-sided, let G∗ = (G,+, ∗). Clearly, the

identities (4.1) and (4.2) are equivalent. Let a, c ∈ G then

(ac)a = (ac) ∗ a+ a = (a ∗ c+ c) ∗ a+ a = a ∗ c ∗ a+ c ∗ a+ a = a ∗ c ∗ a+ ca,

which proves (4.3) �

Proposition 4.2. Suppose (G, r) is a symmetric group. The following conditions are

equivalent

(1) G satisfies the identity

(4.5) (ca) ∗ a = c ∗ a, ∀ a, c ∈ G.

(2) (G, r) satisfy the cyclic condition cl1:

(4.6) cl1 : caa = ca ∀ a, c ∈ G.

(3) (G, r) satisfies lri.

(4) G satisfies all cyclic conditions, see Definition 1.2.

Proof. The equivalence (1) ⇐⇒ (2) follows straightforwardly from the equalities

(4.7) caa = (ca) ∗ a+ a, ca = c ∗ a+ a, a, c ∈ G

(2) =⇒ (3). Assume cl1 is in force. We shall verify the first and the second lri

equalities

lri1 : (ca)c = a, ∀a, c ∈ G, lri2 : c(ac) = a ∀a, c ∈ G.

Let a, c ∈ G. By the non-degeneracy there exists b ∈ G, with c = ba. We use

(4.4) and cl1 to obtain a = (ba)b
a

= (b
a

a)b
a

= (ca)c. This proves lri1. It follows

from the non-degeneracy again that there exists d ∈ G, such that a = cd. One has
c(ac) = c((cd)c) = cd = a, so the equality lri2 is also in force.

(3) =⇒ (2). Let a, c ∈ G. Then lri1 and (4.4) imply (c
a

a)c
a

= a = (ca)c
a

. By

the non-degeneracy caa = ca, which proves cl1. We have shown the equivalence

of conditions (1), (2), and (3). The equivalence of (3) and (4) follows from [GIM,

Lemma 2.24]. �
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Theorem 4.3. Let (G, r) be a symmetric group with a two-sided associated brace

(G,+, .), and let G∗ = (G,+, ∗) be the corresponding Jacobson radical ring. The

following conditions are equivalent.

(1) G∗ satisfies the identity

(4.8) a ∗ c ∗ a = 0, ∀a, c ∈ G.

(2) G∗ satisfies the identity (4.5).

(3) The symmetric group (G, r) satisfies conditions lri.

(4) The symmetric group (G, r) satisfies all cyclic conditions.

Proof. The equivalence of conditions (2), (3), and (4) follows from Proposition 4.2.

By Lemma 4.1 G satisfies the identity (4.3) which implies the equivalence

[(
ac)a = ca, ∀ a, c ∈ G] ⇐⇒ [a ∗ c ∗ a = 0, ∀ a, c ∈ G].

Now the implication (4) =⇒ (1) is straightforward. We shall prove (1) =⇒ (2).

Assume (4.8) holds. By Lemma 4.1 G satisfies the identity

a = a ∗ c ∗ ac + c ∗ ac + ac, ∀ a, c ∈ G.

Hence
a ∗ c = (a ∗ c ∗ ac + c ∗ ac + ac) ∗ c

= a ∗ (c ∗ ac ∗ c) + c ∗ ac ∗ c+ ac ∗ c

= ac ∗ c by (4.8),

which proves (2). We have verified the equivalence of conditions (1), (2), (3) and

(4). �

Corollary 4.4. Suppose (G, r) is a symmetric group of arbitrary cardinality, such

that

(i) (G,+, ·) is a two-sided brace, so G∗ = (G,+, ∗) is the corresponding Jacobson

radical ring;

(ii) G∗ is finitely generated (as a ring) by a set X of N generators (equivalently,

the group (G, ·) is finitely generated);

(iii) (G, r) satisfies lri.

Then the following conditions hold.

(1) a ∗G ∗ a = 0, for every a ∈ G.

(2) The ring G∗ is nilpotent with level of nilpotency ≤ N + 1.

(3) (G, r) has multipermutation level mpl(G, r) ≤ N .

Proof. By Theorem 4.3 condition lri on (G, r) implies the identity a ∗ b ∗ a = 0, for

all a, b ∈ G, so (1) is in force. Conditions (2) and (3) follow straightforwardly from

Remark 2.11. �

Theorem 4.5. Let G = (G, r) be a symmetric group. Assume its associated left brace

(G,+, .) is a two-sided brace, and let G∗ = (G,+, ∗) be the corresponding Jacobson

radical ring.
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(1) Let a, b, c ∈ G, u = u(a, b, c) = (a + b)c, w = w(a, b, c) = ((a+b)c)(ac + bc).

Then there is an equality

(4.9) w = a ∗ c ∗ bc + b ∗ c ∗ ac + u.

(2) G satisfies condition Raut if and only if the following identity is in force

(4.10) a ∗ c ∗ bc + b ∗ c ∗ ac = 0, ∀a, b, c ∈ G.

Proof. (1). We compute u and w as elements of the radical ring G∗. One has u =

(a+ b)c = (a+ b) ∗ c+ a+ b+ c, hence

(4.11) u = a ∗ c+ b ∗ c+ a+ b+ c.

Now we compute w:

w = ((a+b)c)(ac + bc)

= ((a+b)c) ∗ (ac + bc) + (a+b)c+ ac + bc

= ((a+ b) ∗ c+ c) ∗ (ac + bc) + ((a+ b) ∗ c+ c) + ac + bc

= (a ∗ c+ b ∗ c+ c) ∗ (ac + bc) + ((a+ b) ∗ c+ c) + ac + bc

= a ∗ c ∗ ac + a ∗ c ∗ bc + b ∗ c ∗ ac + b ∗ c ∗ bc + c ∗ ac + c ∗ bc

+a ∗ c+ b ∗ c+ c+ ac + bc

= [a ∗ c ∗ ac + c ∗ ac + ac] + [b ∗ c ∗ bc + c ∗ bc + bc]

+a ∗ c ∗ bc + b ∗ c ∗ ac + a ∗ c+ b ∗ c+ c

= a+ b+ a ∗ c ∗ bc + b ∗ c ∗ ac + a ∗ c+ b ∗ c+ c (we have applied (4.2) twice)

= (a ∗ c ∗ bc) + (b ∗ c ∗ ac) + (a ∗ c+ b ∗ c+ a+ b + c)

= (a ∗ c ∗ bc) + (b ∗ c ∗ ac) + u (by (4.11)),

which proves (1).

(2). Note that condition Raut holds in G iff

(4.12) (a+ b)c = ((a+b)c)((a + b)c) = ((a+b)c)(ac + bc), ∀a, b, c ∈ G.

In other words (in notation as above) condition Raut in G is equivalent to

u(a, b, c) = w(a, b, c), ∀a, b, c ∈ G.

This together with (4.9) implies that G satisfies Raut if and only if the identity (4.10)

is in force. �

5. Graded Jacobson radical rings (G,+, ∗), their braces and symmetric

groups

In this section we consider graded Jacobson radical rings R = (R,+, ∗).

Convention 5.1. To each Jacobson radical ring R = (R,+, ∗), by convention we

associate canonically a symmetric group (R, r) and a two-sided brace (R,+, ·) with

operations and actions satisfying

(5.1)

a · b = a ∗ b+ a+ b,
ab = a ∗ b + b = a · b− a, ab = (ab)−1

a,

∀ a, b ∈ R.



16 FERRAN CEDÓ, TATIANA GATEVA-IVANOVA, AGATA SMOKTUNOWICZ

Conversely, if (G, r) is a symmetric group whose left brace (G,+, ·) is a two-sided

brace, by convention we associate to G the corresponding Jacobson radical ring G∗ =

(G,+, ∗).

By a graded ring we shall mean a ring graded by the additive semigroup of positive

integers. Thus a graded Jacobson radical ring R = (R,+, ∗) is presented as

R = ⊕∞
i=1Ri, where Ri ∗Rj ⊆ Ri+j , 0 ∈ Rj , i, j ≥ 1.

As usual, each element a ∈ Rj , a 6= 0, is called a homogeneous element of degree j,

by convention the zero element 0 has degree 0.

For consistency with our notation the operation multiplication in R is denoted by

∗ (the ring R does not have unit element with respect to the operation ∗).

Proposition 5.2. Let (G, r) be a symmetric group, such that the associated left brace

(G,+, ·) is two-sided. Suppose the associated Jacobson radical ring G∗ = (G,+, ∗)

is graded: G∗ = ⊕∞
i=1Gi, and is generated as a ring by the set V ⊆ G1. Then

mpl(G, r) = m if and only if Gm 6= 0 and Gi = 0, ∀ i ≥ m+ 1.

Proof. Consider the chain of ideals G(1) = G, G(n+1) = G(n) ∗ G,n ≥ 1, see (1.6).

One has Gi ⊆ G(k), for all i ≥ k, moreover

(5.2) G(k) = ⊕i≥kGi, ∀ k ≥ 1.

By [CGIS, Proposition 6], the symmetric group (G, r) has finite multipermutation

level mpl(G, r) = m < ∞ if and only if G(m+1) = 0 and G(m) 6= 0. This together

with (5.2) imply that mpl(G, r) = m if and only if Gm 6= 0, and Gi = 0, for all

i ≥ m+ 1. �

Remark 5.3. Let R be a graded Jacobson radical ring. Suppose a, b, c ∈ R are nonzero

elements, and a is a homogeneous element of degree i, that is a ∈ Ri. Then it is clear

that

(5.3)
(i) ba = a+ ã, where ã = b ∗ a ∈ ⊕j>iRj ;

(ii) ac = a+ ã, where ã = ((ac)−1) ∗ a ∈ ⊕j>iRj

Lemma 5.4. Let R∗ = (R,+, ∗) be a graded Jacobson radical ring, R∗ = ⊕∞
i=1Ri. Let

(R,+, ·) be the associated two-sided brace, and let (R, r) be the associated symmetric

group. Suppose the brace R satisfies condition Raut.

(1) The following equality holds for homogeneous elements of R:

(5.4) ai ∗ cj ∗ bk + bk ∗ cj ∗ ai = 0, ∀ ai ∈ Ri, cj ∈ Rj , bk ∈ Rk, i, j, k ≥ 1.

(2) Moreover, if the additive group (R,+) has no elements of order two, then

(5.5) ai ∗ cj ∗ ai = 0, ∀ ai ∈ Ri, cj ∈ Rj , i, j ≥ 1.
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Proof. (1) Let a ∈ Ri, c ∈ Rj , b ∈ Rk, i, j, k ≥ 1 be non-zero elements (we omit the

indices of a, b, c for simplicity of notation). Consider he equalities

0 = a ∗ c ∗ (bc) + b ∗ c ∗ (ac) by Theorem 4.5

= a ∗ c ∗ [b+ b̃] + b ∗ c ∗ [a+ ã] see Remark 5.3

= [a ∗ c ∗ b+ b ∗ c ∗ a] + [a ∗ c ∗ b̃+ b ∗ c ∗ ã] = f + g,

where f = a ∗ c ∗ b + b ∗ c ∗ a, and g = a ∗ c ∗ b̃ + b ∗ c ∗ ã. Clearly, f ∈ Ri+j+k,

and g ∈ ⊕m≥i+j+k+1Rm, see Remark 5.3. But R is a graded ring, hence the equality

f + g = 0 holds iff f = 0 and g = 0. This proves (5.4).

(2) Assume now that (R,+) has no elements of order two, and let a = ai ∈ Ri, c =

cj ∈ Rj , i, j ≥ 1. Then we set k = i, bk = a in (5.4) and obtain

ai ∗ cj ∗ ai + ai ∗ cj ∗ ai = 0,

which implies the desired equality ai ∗ cj ∗ ai = 0, ∀i, j ≥ 1. �

Theorem 5.5. Let R∗ = (R,+, ∗) be a graded Jacobson radical ring, R∗ = ⊕∞
i=1Ri.

Let (R,+, ·), and (R, r), respectively, be the associated two-sided brace and the cor-

responding symmetric group. Suppose the additive group (R,+) has no elements of

order two. The following two conditions are equivalent.

(1) The brace (R,+, ·) satisfies condition Raut.

(2) The symmetric group (R, r) satisfies condition lri.

Proof. (1) =⇒ (2). Assume the brace (R,+, ·) satisfies Raut. We shall prove that

a ∗ c ∗ a = 0, ∀a, c ∈ R. Suppose a, c ∈ R and present each of them as a finite sums

of homogeneous components. So a =
∑N

i=1 ai, c =
∑N

j=1 cj , where ai, ci ∈ Ri, i ≥ 1,

and there are natural numbers Na, Nc, such that ai = 0 for all i ≥ Na, cj = 0 for all

j ≥ Nc. Set N = max(Na, Nc).

Lemma 5.4 implies the following equalities

(5.6) ai ∗ cj ∗ ak + ak ∗ cj ∗ ai = 0 and ai ∗ cj ∗ ai = 0,

for all i, j, k with 1 ≤ i, j, k ≤ N . Then, by (5.6), one has

a ∗ c ∗ a = (

N∑

i=1

ai) ∗ (

N∑

j=1

cj) ∗ (

N∑

k=1

ak)

=

N∑

j=1

∑

1≤i<k≤N

(ai ∗ cj ∗ ak + ak ∗ cj ∗ ai) +

N∑

j=1

N∑

i=1

(ai ∗ cj ∗ ai)

= 0

We have shown that a ∗ c ∗ a = 0, ∀a, c ∈ R, which by Theorem 4.3 implies condition

lri.

The implication (2) =⇒ (1) follows from [GI, Theorem 7.10]. �
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6. Constructions and examples

It is not difficult to construct a Jacobson radical ring R = (R,+, ∗) with y∗x∗y 6= 0,

for some x, y ∈ R, for example one can use Golod-Shafarevich theorem. Another way

to find such radical rings is to fix a field F , to consider the free noncommutative

F -algebra S (without unit) generated by a finite set X , and let I be the two-sided

ideal

I = S4 = {

n∑

i=1

s1,i ∗ s2,i ∗ s3,i ∗ s4,i | s1,i, s2,i, s3,i, s4,i ∈ S}.

Then the quotient R = S/I is a nil-algebra (a4 = 0, ∀a ∈ R), hence R is a Jacobson

radical ring. Moreover x∗y ∗x 6= 0, for any x, y ∈ X, and therefore the corresponding

brace (R,+, ·) does not satisfy lri.

Note that Theorem 3.1 provides us with a class of symmetric groups (G, r) and

their left braces (G,+, ·) each of which is not two-sided, but satisfies lri and Raut,

e.g. G = G(X, r), where (X, r) is a square-free solution of arbitrary cardinality and

mpl(X, r) = 2.

Theorem 6.1. Let F be a field of characteristic two, and let A be the free F -algebra

(without identity element) generated by the elements x, y. Let I be the two-sided ideal

of A generated by the set

W = {x∗y∗y+y∗y∗x, x∗x∗y+y∗x∗x}
⋃

{x1 ∗x2 ∗x3 ∗x4 | x1, x2, x3, x4 ∈ {x, y}},

and let R be the quotient ring R = A/I. Then (R,+, ∗) is a graded Jacobson radical

ring and the associated brace (R,+, ·) satisfies condition Raut but the symmetric

group (R, rR) does not satisfy lri. Moreover, mpl(R, rR) = 3

Proof. Let X = {x, y}. Observe that, R = (R,+, ∗) is a graded radical ring R =

⊕∞
i=1Ri with Ri = 0 for every i > 3, and R1 = SpanFX . By Proposition 5.2,

mpl(R, rR) = 3, since R3 6= 0. It is easy to show that W is a Groebner basis of the

ideal I w.r.t. the degree-lexicographic order on the free semigroup 〈x, y〉. (Here the

semigroup multiplication is denoted by ∗, and we assume x > y). Hence the set

x, y, x ∗ x, x ∗ y, y ∗ x, y ∗ y, y ∗ y ∗ y, y ∗ y ∗ x, y ∗ x ∗ y, y ∗ x ∗ x, x ∗ y ∗ x, x ∗ x ∗ x

project to an F - basis of R, considered as an F - vector space. In particular, x∗y∗x 6=

0, y ∗ x ∗ y 6= 0 in R, hence by Theorem 4.3, R doesn’t satisfy lri. We shall show that

R satisfies Raut. By Theorem 4.5 it will be enough to show

a ∗ b ∗ c+ c ∗ b ∗ a = 0, ∀a, b, c ∈ X.

Clearly, at least two of the elements a, b, c coincide. If a = c (a = b = c is also

possible) then a ∗ b ∗ c + c ∗ b ∗ a = a ∗ b ∗ a + a ∗ b ∗ a = 0, since the field F has

characteristic 2. If a = b 6= c, then a ∗ b ∗ c+ c ∗ b ∗ a = a ∗ a ∗ c+ c ∗ a ∗ a = 0 holds in

R, since by construction the element a ∗ a ∗ c+ c ∗ a ∗ a ∈ A is contained in the ideal

I. Similarly, if b = c 6= a one has a ∗ b ∗ c+ c ∗ b ∗ a = a ∗ b ∗ b+ b ∗ b ∗ a = 0. We have
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shown that a ∗ b ∗ c + c ∗ b ∗ a = 0 for all a, b, c ∈ X, therefore R satisfies condition

Raut. �

Theorem 6.2. Let F be a field of arbitrary characteristic, and let A be the free

F -algebra (without identity element) generated by the elements x, y. Let I be the

two-sided ideal of A generated by the set of monomials

W = {x1 ∗ x2 ∗ x3 ∗ x4 | x1, x2, x3, x4 ∈ {x, y}},

and let (R,+, ∗) be the monomial algebra R = A/I. Then (R,+, ∗) is a graded

Jacobson radical ring and the associated brace (R,+, ·) does not satisfy condition

Raut. Moreover, mpl(R, rR) = 3.

Proof. Note first that I is a monomial ideal, generated by the set W of all monomials

of length 4 in A, so R = (R,+, ∗) is a graded algebra, moreover as a nil-algebra, R is

a graded Jacobson radical ring R = ⊕∞
i=1Ri with Ri = 0 for every i > 3, and R1 =

SpanF {x, y}. By Proposition 5.2, this implies mpl(R, rR) = 3 (since R3 6= 0). The

set W is a Groebner basis of I, so the set of all words in x, y of length ≤ 3 projects

to an F - basis of R. In particular, x ∗ x ∗ y + y ∗ x ∗ x is a nonzero element of R, and

setting a = b = x, c = y we see that a ∗ b ∗ c + c ∗ b ∗ a = x ∗ x ∗ y + y ∗ x ∗ x 6= 0

in R. It follows from Theorem 5.5 that the two-sided brace (R,+, ·) does not satisfy

Raut. �
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[CJO] Cedó, F., Jespers, E. , Okniński J., Braces and the Yang–Baxter equation, Commun. Math.

Phys. 327, (2014) 101–116.

[ESS] Etingof, P., Schedler, T. and Soloviev, A., Set-theoretical solutions to the quantum Yang–

Baxter equation, Duke Math. J. 100 (1999), 169–209.

[GI] Gateva-Ivanova, T., Set-theoretic solutions of YBE, Braces and Symmetric groups,

arXiv:1507.02602v4 [math.QA]

[GIM] Gateva-Ivanova, T. and Majid, S., Matched pairs approach to set theoretic solutions of the

Yang–Baxter equation, J. Algebra 319 (2008), 1462–1529.

[LYZ] Lu, J., Yan, M., and Zhu, Y., On the set-theoretical Yang–Baxter equation, Duke Math. J.

104 (2000), 1–18.

[Ru] Rump,W., Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307

(2007), 153–170

[Smok1] Smoktunowicz, A., A note on set-theoretic solutions of the Yang-Baxter equation, J. Alge-

bra,article in press, DOI: 10.1016/j.jalgebra.2016.04.015.

[Smok2] Smoktunowicz, A., On Engel groups, nilpotent groups, rings, braces and the Yang-Baxter

equation, to appear in Trans. Amer. Math. Soc.

[Ta] Takeuchi, M., Survey on matched pairs of groups. An elementary approach to the ESS-LYZ

theory, Banach Center Publ. 61 (2003), 305–331.

http://arxiv.org/abs/1507.02602
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