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Abstract 

A thin TS-1 zeolite film was successfully fabricated on palladium membrane using an 

assembly method combined with secondary growth technique. The preparation of 

TS-1-Pd composite membrane involved three stages: (1) deposition of palladium layer 

on porous alumina support through electroless plating; (2) assembly of silicalite-1 

zeolite seeds on the palladium layer; (3) growth of TS-1 layer from the zeolite seeds 

over the top surface of the palladium layer using hydrothermal synthesis method. The 

detailed microstructure of the TS-1-Pd composite membrane was examined by SEM, 

EDX, XRD, FT-IR and UV-vis. This architecture allows the composite membrane to 

remain stable for 10 days of hydrogen permeation tests at 773 K and tolerate 30 cycles 

in gas exchanging tests, even for 5 days of hydrogen permeation tests at 423 K. 

Furthermore, the presence of a TS-1 zeolite film on palladium membrane effectively 
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protected the palladium membrane from the contamination from the hydrocarbon, 

therefore greatly enhanced its operation stability. 

Keywords: Palladium membrane; Zeolite; Thin film; Hydrogen separation; Stability 

 

1. Introduction 

Hydrogen as a clean energy carrier has drawn much attention in the last decades [1-6]. 

For production of hydrogen, a variety of techniques have been developed, such as steam 

reforming of hydrocarbons, partial oxidation of fossil fuels, electrolysis of water, etc. 

However, hydrogen is not the only product from above mentioned methods. Therefore, 

obtaining highly pure hydrogen from the gas mixtures is the key point. Membrane 

technologies are expected to play a key role in separation and purification of hydrogen. 

Among various H2-permeable membranes [7], palladium and palladium alloy 

membranes seems to be excellent candidates for applications in hydrogen separation 

and purification [8-14], fuel cells [15, 16], steam reforming [17-19] and H2-related 

reactions [20-22] due to their excellent hydrogen permselectivity.  

Based on the configuration, palladium-based membranes can be classified as two 

main types, palladium foil [23] and supported palladium membrane [24-31]. Compared 

to palladium foil, the supported palladium membrane has attracted intense interest 

owing to its low cost, excellent H2 permeability and high physical strength. Despite 

extensive contributions which have been made on the preparation of supported 

palladium membranes, the membrane stability is still an obstacle for their applications 

in industries [32-35]. For instance, most studies focused on the preparation of 
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palladium-based membrane on the outer surface of porous support [36-40]. Under such 

way, the palladium membranes can be easily polluted and scratched during the 

operation, resulting in a decrease of their H2 permeation performance and stability, even 

failure.  

On the other hand, palladium membranes are often exploited for dehydrogenation 

process of hydrocarbons, such as dehydrogenation of propane to propylene [41] and 

dehydrogenation of ethylbenzene to styrene [42, 43]. By combining separation and 

catalytic functionalities in a single membrane reactor, instantaneous removal of 

hydrogen in the reaction zone by permeation through a membrane can increase the 

conversion. However, degradation of palladium membrane is often observed when they 

were applied to separate hydrogen from those carbon-containing gas mixtures. During 

the separation process of hydrogen, the palladium layer directly exposed to the feeding 

gas was prone to be contaminated and poisoned by carbon, resulting in a loss of 

hydrogen permeability [44, 45].  

Recently, a novel strategy to enhance the stability of palladium membrane has been 

reported, in which a zeolite film as a protective layer was deposited on the surface of 

palladium membrane. This sandwich-like structure significantly improved the 

membrane stability. Abate et al.[46] reported that a TS-1 zeolite film was fabricated on 

the palladium membrane by secondary growth technique, including seeding of 

palladium membrane with TS-1 nanocrystals followed by hydrothermal synthesis. 

During the seeding process, polymers have to be used to increase the adhesion between 

TS-1 particles and the palladium membrane. Yu et al. [47] used the dilute acid to 
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pre-treat palladium membrane to form the imperfections of palladium membrane. This 

morphology will improve the adhesion of zeolite film on the palladium membrane. 

Evidently, fabricating a continuous and compact zeolite film on a palladium membrane 

is quite challenging, owing to their different chemical characteristics.  

This paper presents a novel method to fabricate a TS-1 zeolite film on the palladium 

membrane using an assembly method combined with secondary growth technique to 

enhance the membrane stability. The microstructure and morphology of the TS-1-Pd 

composite membrane were characterized by SEM, EDX, XRD, FT-IR and UV-vis. The 

membrane stability was evaluated by long-term operation test, gas exchange cycling test. 

Moreover, the effect of propylene on hydrogen permeation properties of the TS-1-Pd 

composite membrane was also investigated. 

2. Experimental 

2.1 Materials 

N2H4, Na2EDTA, SnCl2, HCl, NH4OH, and TEOS, which were used for synthesis of 

palladium membrane and TS-1 zeolite film, were purchased from Tianjin Kermel 

Chemical Reagent Co. Ltd. The tetrapropyl ammonium hydroxide (TPAOH, 20 wt.%) 

was prepared in the laboratory. The PdCl2 was provided by Shanghai Jiuling Chemical 

Co. Ltd. A porous alumina tube (O.D. 13 mm, I.D. 9 mm, length 75 mm, nominal pore 

diameter 200 nm) was provided by Foshan Ceramics Research Institute of China. 

2.2 Fabrication of TS-1-Pd composite membrane 

Fabrication of palladium membrane. The palladium membrane was fabricated on 

the porous alumina support by electroless plating. Prior to plating, the substrate was 
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activated by a SnCl2/PdCl2 method at room temperature. The activation process was 

composed of a two-step immersion sequence in an acidic SnCl2 solution (2 g/L), 

followed by an acidic PdCl2 solution (0.2 g/L). Then the palladium membrane was 

prepared by electroless plating at 318 K using the plating solution [48] containing PdCl2 

(3.5 g L-1), Na2EDTA(30 g L-1), NH4OH (15 M, 101 ml L-1) and N2H4 (1 M, 16 ml L-1).  

Assembly of silicalite-1 (Sil-1) zeolite seeds on palladium membrane. The resulted 

palladium membrane was functionalized with 3-aminopropyltrimethoxysilane 

(APTMS). During this process, the palladium membrane was placed in APTMS 

solution of ethyl alcohol (1:40 v/v) in a sealed autoclave and was heated at 373 K for 4 

h. The unreacted organic linkers were washed away from the surface palladium 

membrane with ethanol. Subsequently, the APTMS-treated palladium membrane was 

immersed in an autoclave containing 0.08 wt.% silicalite-1(Sil-1) zeolite suspension of 

ethanol for 4 h at 373 K to assemble the zeolite seeds on the membrane surface. The 

Sil-1 zeolite seeds were synthesized from a solution with molar composition of 25 

TPAOH:100 TEOS:2700 H2O at 368 K for 24 h as described by Zhang et al. [49]. 

Growth of TS-1 zeolite. After seeding palladium membrane, the TS-1 zeolite layer 

was grown on the top surface of the palladium membrane using hydrothermal synthesis 

from a synthesis solution with a molar composition of 1 TEOS: 0.01 TBOT:0.18 

TPAOH: 250 H2O [50, 51]. A seeded palladium membrane was immersed in the 

synthesis solution in a Teflon vessel, which was sealed in a stainless steel autoclave at 

448 K for 72 h. Thereafter, the resulted TS-1-Pd composite membrane was rinsed with 

deionized water, dried overnight at 373 K and calcined for 6 h at 823 K in nitrogen 
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atmosphere to remove the organic template.  

2.3 Characterization 

The morphologies of silicalite-1(Sil-1) zeoite seeds, palladium membrane, the seeded 

palladium membrane with Sil-1 zeolites and the TS-1-Pd composite membrane were 

examined by field emission scanning electron microscopy (FESEM, Hitachi S-4800). 

The X-ray diffraction (XRD) analysis was carried out with a D/Max2400 Rigaku X-ray 

diffractometer using Cu Kα radiation at 40 kV and 50 mA. Elemental composition of 

the samples was measured by Energy dispersive X-ray spectroscopy (EDXS, 

Bruker-quantax). Fourier transform infrared spectra (FT-IR) was recorded on an 

EQUINOX55 spectrometer (Bruker) using the KBr disk technique. The resulted 

samples were also analyzed by JASCO V-550 diffuse reflectance UV-vis spectrometer 

with BaSO4 as the internal standard.  

2.4 Permeation test 

Permeation test of TS-1-Pd composite membrane was carried out in a stainless steel 

reactor described in previous report [48]. The membrane was sealed in the permeation 

module using graphite O-rings. The permeation module was placed in a 

temperature-programmable furnace and heated to the desired temperatures with a 

heating rate of 1 K min-1. A set of thermocouples (K-type) within the permeation 

module were used to monitor the temperature during the permeation test. The gases 

(hydrogen, nitrogen and propylene) were introduced to the permeation module by the 

mass-flow controller. The hydrogen permeance at the permeation side was measured at 

desired temperature using a soap-bubble flow meter.  
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To investigate the membrane stability, the TS-1-Pd composite membrane was tested 

for 10 days at 773 K. In addition, the membrane was subjected to rapid changes in 

hydrogen and nitrogen for 30 cycles at 773 K. Furthermore, the chemical stability of the 

resulting membrane was tested with the treatment of propylene (30 ml/min) for 30 min 

at 703 K, followed by the measurement of hydrogen permeance.  

3. Results and discussion 

3.1 TS-1-Pd composite membrane 

The preparation of TS-1-Pd composite membrane is illustrated in Fig.1. The 

preparation procedure involves three stages: (1) deposition of palladium layer on porous 

alumina support through electroless plating; (2) assembly of silicalite-1 zeolite seeds on 

the palladium layer; (3) growth of TS-1 film on the top surface of the palladium layer 

using hydrothermal synthesis method. 

 

Fig.1  A schematic diagram of the preparation procedure for TS-1-Pd composite 

membrane. 

 

For the preparation of palladium membrane on the non-conductive substrates 

including porous ceramic substrate or porous glass, electroless plating technique is one 

of the most effective methods in comparison with electroplating [52], chemical vapor 

deposition [53] and sputtering [23]. Fig.2a and b show that the non-conductive substrate 
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(porous alumina support) has smooth surface and nominal pore size of 200 nm. Fig.2c 

and d exhibit the SEM images of the palladium membrane prepared by electroless 

plating. A dense and smooth palladium layer was obtained on the alumina support 

(Fig.2c). No defects or cracks could be observed. As shown in Fig.2d, a palladium 

membrane with thickness of 6 μm was firmly connected to the substrate surface.  

1

(a)

 5

(b)

 

20

(c)

 10

(d)

Pd layer

Substrate

 

Fig.2  SEM images of porous substrate (a, b) and palladium membrane (c, d) 

 

The secondary growth technique is a common method for the synthesis of zeolite 

films on substrates, involving deposition of zeolite seeds on a support followed by 

hydrothermal crystallization, due to its flexibility in controlling the orientation of the 

zeolite crystals and the microstructure of the zeolite film. A number of studies focused 

on the growth of zeolite film on different substrates, such as porous supports [50] and 
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non-porous metal substrates [54]. The seeding process of substrate plays a key role in 

the synthesis of the zeolite film by the secondary growth technique. The zeolite seeds 

will offer the crystal nuclei for the growth of zeolite film. In general, the zeolite seeds 

could be easily deposited on the porous substrate by dip-coating method mainly due to 

the capillary force. Nevertheless, this method is not very useful to deposit the zeolite 

seeds on the non-porous metal substrates, such as gold, copper and nickel. Therefore, 

pretreatments of the non-porous metal substrates are necessary. In our method, the 

surface of the resulted palladium membrane was pretreated with silane coupling agents 

(APTMS) to form a linker between the TS-1 zeolite and the palladium membrane.  

Prior to depositing TS-1 zeolite film on the palladium membrane, Sil-1 zeolite seeds 

with particle size of 200~300 nm were prepared, as shown in Fig.3a. The Sil-1 zeolite 

seeds were then uniformly attached and assembled on the surface of the palladium 

membrane through APTMS linkers, as presented in Fig.3b. During the seeding process, 

the APTMS linkers can attach to palladium surface through the NH2 groups, which is 

similar to that in the previous reports [55, 56]. The alkoxysilane group of the APTMS 

linkers tethered on the surface of palladium membrane will connect with the hydroxyl 

groups on the Sil-1 zeolite surface. These zeolite seeds will provide nuclei for further 

growth of TS-1 zeolite layer. In comparison, the palladium membrane was seeded 

without the assistance of APTMS. As presented in Fig.3c, only some Sil-1 zeolite 

particles scattered on the palladium membrane. This indicates that APTMS as a linker 

plays an important role in the seeding process of palladium membrane. The EDX 

analysis of the seeded palladium membrane shown in Fig.3d clearly indicates that 
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silicon (Si K) and palladium (Pd L1) along with oxygen (O K) were detected. This 

result also confirmed that the Sil-1 zeolite seeds were dispersed on the surface of the 

palladium membrane. 

200 nm

(a)

  

(b) Pd

Sil-1Sil-1

Pd
1 um1 um

 

   

Fig. 3. SEM images of Sil-1 zeolite seeds (a), seeded palladium membrane with (b) and 

without (c) assistance of APTMS, respectively. EDX analysis of the seeded palladium 

membrane (d). 

 

According to the dissolution-recrystallization growth mechanism for the synthesis of 

the zeolite by hydrothermal synthesis, the Sil-1 zeolite seeds on the palladium 

membrane will grow to a continuous TS-1 zeolite film. Fig. 4a presents the SEM image 

of the TS-1-Pd composite membrane. It reveals that the palladium membrane surface 

was fully covered with compact and well intergrown TS-1 zeolite crystals. No 
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palladium layer can be found. This indicates that the palladium layer will be protected 

very well by the zeolite layer. In contrast to the cross-sectional view of palladium 

membrane (Fig.2d), it can be clearly seen in Fig.4b that an additional TS-1 film with 

thickness of 2 μm was formed on the top surface of the palladium membrane. However, 

when the seeding process was carried out without the assistance of APTMS, obvious 

defects can be observed in the resulted TS-1 film, as displayed in Fig.4c. The palladium 

membrane was not fully covered by TS-1 zeolite crystals. This is attributed to the poor 

seeding of the palladium membrane, as shown in Fig.3c. In addition, compared to the 

secondary growth technique, TS-1 zeolite film was prepared on the palladium 

membrane using directly hydrothermal synthesis without seeding process. From the 

SEM image presented in Fig.4d, only some scattered TS-1 zeolites were deposited on 

the palladium membrane. It reveals that a continuous and dense TS-1 zeolite film could 

not be easily formed without zeolite seeds on the palladium membrane.  

1 um1 um
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10 um   
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Pd layer
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Fig.4. SEM images of TS-1-Pd composite membranes prepared by hydrothermal 

synthesis with (a, b) and without (c) assistance of APTMS and directly hydrothermal 

synthesis without seeding process (d), respectively. 

 

To further understand the structure of the TS-1-Pd composite membrane, the 

elemental distribution of the composite membrane was studied by EDX lining analysis. 

As shown in Fig.5, the Pd signal between the TS-1 layer (Ti, Si and O signals) and the 

porous alumina support (Al signal) was clearly observed. This reveals that the TS-1-Pd 

composite membrane has sandwich-like structure, which is in good agreement with the 

SEM result displayed in Fig.2d. 

SiSi

OO

TiTi

AlAlPdPd

20 40 60 80 100
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20
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Fig.5.  EDX lining analysis of the TS-1-Pd composite membrane. 

 

The X-ray diffraction patterns have also confirmed the sandwich-like structure of 

the TS-1-Pd composite membrane, as shown in Fig.6a~6c. For the palladium membrane 

deposited on the porous alumina, only the characteristic peaks of pure palladium could 

be seen in Fig.6b, suggesting that the palladium layer is dense. After synthesizing TS-1 

zeolite film, apart from typical palladium peaks, characteristic peaks of TS-1 zeolite 
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were also clearly observed in Fig.6c. This indicates that the TS-1 zeolite layer was 

successfully fabricated on the outer surface of palladium membrane. Moreover, no 

diffraction peak of alumina was detected on the TS-1-Pd composite membrane, 

suggesting the integrity of the palladium membrane was not affected during the 

formation of TS-1 zeolite layer by hydrothermal synthesis. Fig.6d shows FT-IR 

spectrum of the TS-1 zeolite powders collected at the bottom of synthesis autoclave. It 

indicates that absorption peaks at 1220 cm-1, 1100 cm-1, 800 cm-1, 550 cm-1 and 450 

cm-1 were clearly seen. These peaks were assigned to the characteristic bands of MFI 

zeolite [57]. Besides, the infrared signal at about 960 cm-1 is commonly originated from 

Ti-O-Si and often taken as the fingerprint of titanium substitution in the zeolite 

framework [58]. Moreover, Fig.6e presents the UV-vis spectrum of the TS-1 zeolite 

crystals. It can be found that the zeolite exhibits a dominant peak at 220-240 nm, which 

is assigned to the presence of the tetrahedral titanium in the zeolite framework. As 

expected, the characteristic adsorption peak of anatase TiO2 at 330 nm was not observed, 

which confirms that the only tetrahedral coordinated titanium was formed in the zeolite 

framework [59]. 

 

(a)

(b)

(c)

Pd

TS-1 zeolite

Support

     

2000 1800 1600 1400 1200 1000 800 600 400

 

960

Wavenumbers (cm
-1

)

1080

450

550

800

1200

(d)

 

 

 



 

14 

200 300 400 500 600 700

 

 

 

 
A

b
s

Wavelength (nm)

(e)

 

Fig. 6. The XRD patterns of alumina support (a), palladium membrane supported on 

alumina substrate (b) and TS-1-Pd composite membrane (c). FT-IR (d) and UV-vis (e) 

spectra of the TS-1 zeolite collected at the bottom of synthesis autoclave. 

 

3.2 Hydrogen permeation performance 

To investigate the effects of TS-1 zeolite film on the hydrogen transport properties 

and stability of the TS-1-Pd composite membrane, permeation tests were performed 

with H2 and N2 at temperature range of 423~773K. Fig.7 plots the H2 permeation fluxes 

of palladium membrane before and after zeolite regrowth at various temperatures and 

pressure differences. The palladium membrane and resulted TS-1-Pd composite 

membrane have H2 permeances of 2.05×10-6 and 0.54×10-6 mol m-2 s-1 Pa-1, respectively. 

These permeance values are comparable to other hydrogen-permeable membranes 

(Table 1). After growth of TS-1 zeolite on the palladium membrane, an obvious decease 

of hydrogen permeance for TS-1-Pd composite membrane was observed. This is 

attributed to the higher transport resistance across the compact TS-1 zeolite film. Yu et 

al. [46] reported that the presence of an additional zeolite film on top of the palladium 

membrane markedly decreased its hydrogen permeance. In addition, Ti element was 

introduced to synthesize TS-1 zeolite film. Fernandez et al. [65] reported that Ti has 
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strong chemical interaction with palladium, resulting in the low hydrogen permeance of 

palladium membrane. 

 

Table 1 Comparison of hydrogen permeation flux for various hydrogen-permeable 

membranes 

Membrane 
Temperature 

(K) 

Pressure 

difference 

(kPa) 

H2 flux 

(mol m-2 s-1) 

H2/N2 

Selectivity 
Ref. 

Pd/ZrO2/PSS 773 K 100 0.083 160 [60] 

MCM-22/silica/Al2O3 473 K 100 0.007 50 [61] 

silica 773 K 100 0.018 730 [62] 

ZIF-90 473 K 100 0.021 17.5 [63] 

Pd/NaA 723 K 50 0.079 608 [64] 

Pd/YSZ 673 110 0.0734 320 [36] 

Pd 773 K 100 0.205 886 This work 

TS-1-Pd 773 K 100 0.054 268 This work 

According to Sieverts’ law, the hydrogen flux is proportional to the square root of 

hydrogen partial pressure (pressure exponent n=0.5) when bulk diffusion through 

palladium layer is the rate-controlling step. When the surface process is important, this 

exponent corresponds to n=1. Fig.7 shows that the hydrogen flux is linearly 

proportional to the pressure difference across the membrane at different temperatures, 

reflecting the n value=1. Factually, the pressure exponent often deviated from 0.5, as 

reported by many researchers [31, 37, 38, 46], the differences of n-values would be 

attributed to the differences in the preparation method, surface activity, membrane 

microstructure and mass transfer resistance for palladium composite membranes. It is 

believed that the existence of TS-1 film decreases the surface which may be reached by 

H2, because part of the palladium membrane is shielded from the deposited zeolite 
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crystals. This causes the change of surface activity and mass transfer properties of the 

palladium membrane, resulting in the increase of n value. On the other hand, the H2 

permeation flux increases with temperature and activation energies of 15.4 and 13.7 kJ 

mol-1 were obtained for the palladium membrane and resulted TS-1-Pd composite 

membrane, respectively. These values are comparable to that reported in other 

publications [34, 46].  

   

Fig. 7.  The H2 permeation fluxes of palladium membrane before (a) and after (b) 

zeolite regrowth at various temperatures and pressure differences. 

 

Thermal and chemical stability of the palladium membranes remains as one of the 

major problems for their applications in industries. The formation of defects on 

palladium membranes has often been observed when undergoing thermal treatment for 

long-term operation and hydrogen absorption/desorption cycles [33]. To measure the 

stability of the TS-1-Pd composite membranes, long-term operation was carried out at 

773 K and 423 K, as presented in Fig.8. The plots show that a stable hydrogen 

permeance was obtained during a continuous operation of 10 days at 773 K, even when 

the membrane was operated for 5 days of permeation at 423K which is below the 
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embrittlement temperature of palladium. In addition, the gas exchange cycle between 

hydrogen and nitrogen at 773 K and 100 kPa was also used to evaluate the stability of 

the resulting TS-1-Pd composite membrane. Fig.9 shows the hydrogen permeance 

almost kept unchanged after 30 cycles of the gas exchange between hydrogen and 

nitrogen. This indicates that the TS-1-Pd composite membrane has a good stability. 

  

Fig.8. Long-term tests for the TS-1-Pd composite membrane at 773 K (a) and 423 K (b). 

 

 

Fig.9. Gas permeances vs. gas exchange cycle between hydrogen and nitrogen at 773K 

for the TS-1-Pd composite membrane. 

 

Furthermore, the effects of hydrocarbon on the hydrogen permeation performance of 

palladium composite membrane were investigated to determine the chemical stability of 
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the membrane. During the experimental process, propylene of 30 ml/min was 

introduced into permeate side of the membrane reactor for 30 min at 723 K. Then the 

gas flow was switched to the hydrogen from propylene, followed by measuring the 

hydrogen flux of the membrane. After the test, the hydrogen flux of the palladium 

membrane and TS-1-Pd composite membrane decreased 18% and 5% compared to the 

original hydrogen flux of the membranes, respectively, as shown in Fig.10. It revealed 

that propylene adsorption on the palladium membrane will affect the hydrogen 

permeability of the membrane. EDX analysis (not shown here) showed that a certain 

amount of carbon was observed on the membrane surface. This indicated that the 

palladium membrane was polluted by propylene, resulting in the decrease of the surface 

activity. Yu et al.[47] also found that some Pd1-xCx phases formed on the palladium 

membrane after permeation test by propylene. However, the loss of hydrogen 

permeance for the TS-1-Pd composite membrane was much smaller than that for the 

pure palladium membrane. The results presented have demonstrated that the TS-1 

zeolite layer as a protector was grown on the top surface of palladium membrane. This 

sandwich-like membrane configuration makes the TS-1-Pd composite membrane able to 

operate under harsh condition. 
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Fig.10. Effects of propylene on the hydrogen flux of pure palladium membrane (a) and 

TS-1-Pd composite membrane (b). 

 

Reproducibility is a crucial factor for developing a novel fabrication method, which 

will influence the industrial mass production. A series of TS-1-Pd composite 

membranes were fabricated at the same synthesis condition. Table 2 lists the permeation 

test results of those TS-1-Pd composite membranes. The results show that all samples 

exhibited similar permeation selectivities and hydrogen fluxes at 773 K. In addition, the 

reproducibility was also evaluated by hydrogen permeation test at different temperatures 

and their distribution of data was shown in Fig. 11. The relative standard deviations in 

the H2/N2 selectivity were below 20%. The results of hydrogen permeation tests 

suggested that the reproducibility was acceptable for the fabrication method.  

 

Table 2 The hydrogen permeation properties of the resulted TS-1-Pd composite 

membranes fabricated at same condition in permeation tests at 773 K. 

Sample number 
Temperature 

(K) 

Pressure 

difference 

H2 flux 

(mol m-2 s-1) 

H2/N2 

Selectivity 

1 773 K 100 kPa 5.41 268 

2 773 K 100 kPa 5.92 244 

3 773 K 100 kPa 4.98 205 

4 773 K 100 kPa 5.15 221 
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Fig.11. Reproducibility in fabrication of TS-1-Pd composite membranes that evaluated 

by hydrogen permeation tests at the temperature range of 603 K~773 K. 

 

4. Conclusion 

This work reports a novel method to fabricate a sandwich-like TS-1-Pd composite 

membrane to enhance the membrane stability. A continuous and compact TS-1 zeolite 

film was grown on the outer surface of palladium membrane using assembly method 

combined with secondary growth technique. The resulted TS-1-Pd composite membrane 

was stable for repeated cycling of gases and long-term operation at 773 K and 423 K. 

Furthermore, the existence of the TS-1 zeolite film can effectively suppressed the 

hydrogen flux loss from 18% to 5% reduction after pretreatment of the composite 

membrane in propylene atmosphere. In addition, the reproducibility in fabrication of 

TS-1-Pd composite membranes was acceptable, possessing a promising potential in the 

industry application. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China 

(21103076, 21601075), the Natural Science Foundation of Liaoning Province 



 

21 

(20170540435, 2015020249) and Program for Liaoning Excellent Talents in University 

(LJQ2012055).  

REFERENCES 

[1] Senseni AZ, Meshkani F, Rezaei M. Steam reforming of glycerol on mesoporous 

nanocrystalline Ni/Al2O3 catalysts for H2 production. Int J Hydrogen Energy 2016; 

41(44):20137–46. 

[2] Allakhverdiev SI. Photosynthetic and biomimetic hydrogen production. Int J 

Hydrogen Energy 2012; 37(10): 8744–52. 

[3] Meshkani F, Rezaei M. Hydrogen production by high temperature water gas shift 

reaction over highly active and stable chromium free Fe-Al-Ni catalysts. Int J 

Hydrogen Energy 2015; 40(34):10867–75. 

[4] Ambrose AF, Al-Amin AQ, Rasiah R, Saidur R, Amin N. Prospects for introducing 

hydrogen fuel cell vehicles in Malaysia. International Journal of Hydrogen Energy 

2017; 42(14):9125–34. 

[5] Gallucci F, Basile A. Pd-Ag membrane reactor for steam reforming reactions: A 

comparison between different fuels. International Journal of Hydrogen Energy 2008; 

33(6):1671–87. 

[6] Meshkani F, Rezaei M. A highly active and stable chromium free iron based catalyst 

for H2 purification in high temperature water gas shift reaction. International Journal 

of Hydrogen Energy 2014; 39(32):18302–11 

[7] Gallucci F, Fernandez E, Corengia P, van Sint Annaland M. Recent advances on 

membranes and membrane reactors for hydrogen production. Chem Eng Sci 2013; 



 

22 

92:40–66.  

[8] Peters TA, Kaleta T, Stange M, Bredesen R. Development of thin binary and ternary 

Pd-based alloy membranes for use in hydrogen production. J Membr Sci 2011; 

383(1–2):124–34 

[9] Yun S, Oyama ST. Correlations in palladium membranes for hydrogen separation: A 

review. J Membr Sci 2011; 375: 28–45. 

[10] Brunetti A, Barbieri G, Drioli E. Upgrading of a syngas mixture for pure hydrogen 

production in a Pd-Ag membrane reactor. Chem Eng Sci 2009; 64(15): 3448–54. 

[11] Fernandez E, Helmi A, Medrano JA, Coenen K, Arratibel A, Melendez J, de 

Nooijer NCA, Spallina V, Viviente JL, Zuñiga J, van Sint Annaland M, Pacheco 

Tanaka DA. Palladium based membranes and membrane reactors for hydrogen 

production and purification: An overview of research activities at Tecnalia and TU/e, 

Int J Hydrogen Energy 2017; 42(19):13763–76. 

[12] Ryi SK, Park JS, Kim SH, Cho SH, Hwang KR, Kim DW. A new membrane 

module design with disc geometry for the separation of hydrogen using Pd alloy 

membranes. J Membr Sci 2007; 297: 217–25. 

[13] Zhu B, Tang CH, Xu H., Su DS, Li H. Surface activation inspires high 

performance of ultra-thin Pd membrane for hydrogen separation. J Membr Sci 2017; 

526:138–46. 

[14] Zhang K, Way JD. Palladium-copper membranes for hydrogen separation. Sep 

Purif Tech 2017; 186:39–44. 

[15] Vivanpatarakij S, Aiouache F, Assabumrungrat S. Performance of an improved 



 

23 

combination unit of Pd-membrane methane steam reformer and intermediate 

temperature solid oxide fuel cell (C-Pd-ITSOFC). Int J Hydrogen Energy 2015; 

40(4): 1894–901.  

[16] Swesi Y, Ronze D, Pitault I, Dittmeyer R, Heurtaux F. Purification process for 

chemical storage of hydrogen for fuel cell vehicles applications. Int J Hydrogen 

Energy 2007; 32(18): 5059–66. 

[17] Basile A, Pinacci P, Iulianelli A, Broglia M, Drago F, Liguori S, Longo T, Calabrò 

V. Ethanol steam reforming reaction in a porous stainless steel supported palladium 

membrane reactor. Int J Hydrogen Energy 2011; 36(3):2029–37.  

[18] Rei MH, Yeh GT, Tsai YH, Kao YL, Shiau LD. Catalysis-spillover-membrane. III: 

The effect of hydrogen spillover on the palladium membrane reactor in the steam 

reforming reactions. J Membr Sci 2011; 369(1-2): 299–307. 

[19] Tosti S, Zerbo M, Basile A, Calabrò V, Borgognoni F, Santucci A. Pd-based 

membrane reactors for producing ultra pure hydrogen: Oxidative reforming of 

bio-ethanol. Int J Hydrogen Energy 2013; 38(1):701–7. 

[20] Niwa S, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F. 

A one-step conversion of benzene to phenol with a palladium membrane. Science 

2002; 295:105–7. 

[21] Guo Y, Zhang XF, Zou HY, Liu HO, Wang JQ, Yeung KL. Pd-silicalite-1 

composite membrane for direct hydroxylation of benzene. Chem Commun 2009; 

39: 5898–900. 

[22] Lundin STB, Law JO, Patki NS, Wolden CA, Way JD. Glass frit sealing method 



 

24 

for macroscopic defects in Pd-based composite membranes with application in 

catalytic membrane reactors. Sep Purif Tech 2017; 172:68–75. 

[23] Tosti S, Bettinali L, Castelli S, Sarto F, Scaglione S, Violante V. Sputtered, 

electroless, and rolled palladium-ceramic membranes. J Membr Sci 2002; 196: 

241–9. 

[24] Guo Y, Wu HM, Zhou LD, Zhang ZB, Liu HO, Zhang XF. Fabrication of 

palladium membranes supported on a silicalite-1 zeolite-modified alumina tube 

for hydrogen separation. Chem Eng Tech 2014; 37:1778–86. 

[25] Yeung KL, Christiansen SC, Varma A. Palladium composite membranes by 

electroless plating technique: Relationships between plating kinetics, film 

microstructure and membrane performance. J Membr Sci 1999; 159:107–22. 

[26] Ayturk ME, Kazantzis NK, Ma YH. Modeling and performance assessment of Pd- 

and Pd/Au-based catalytic membrane reactors for hydrogen production. Energy 

Environ Sci 2009; 2:430–8. 

[27] Zeng GF, Goldbach A, Xu HY. Impact of support mass flow resistance on 

low-temperature H2 permeation characteristics of a Pd95Ag5/Al2O3 composite 

membrane. J Membr Sci 2009; 326(2):681–7. 

[28] David E, Kopac J. Development of palladium/ceramic membranes for hydrogen 

separation. Int J Hydrogen Energy 2011; 36(7):4498–506. 

[29] Hu X, Chen W, Huang Y. Fabrication of Pd/ceramic membranes for hydrogen 

separation based on low-cost macroporous ceramics with pencil coating. Int J 

Hydrogen Energy 2010; 35:7803–8. 



 

25 

[30] Chen WH, Tsai CW, Lin YL. Numerical studies of the influences of bypass on 

hydrogen separation in a multichannel Pd membrane system. Renewable Energy 

2017; 104:259–70. 

[31] Zhang XL, Xiong GX, Yang WS. A modified electroless plating technique for thin 

dense palladium composite membranes with enhanced stability. J Membr Sci 2008; 

314: 226–37. 

[32] Abu El Hawa HW, Lundin STB, Patki NS, Way JD, Steam methane reforming in a 

PdAu membrane reactor: Long-term assessment. Int J Hydrogen Energy 2016; 

41(24):10193–201.  

[33] Li H, Caravella A, Xu HY. Recent progress in Pd-based composite membranes. J 

Mater Chem A 2016; 4: 14069–94. 

[34] Tong J H, Su LL, Haraya K, Suda H. Thin and defect-free Pd-based composite 

membrane without any interlayer and substrate penetration by a combined organic 

and inorganic process. Chem Commun 2006; 10: 1142–4. 

[35] Zheng L, Li H, Xu HY. “Defect-free” interlayer with a smooth surface and 

controlled pore-mouth size for thin and thermally stable Pd composite membranes. 

Int J Hydrogen Energy 2016; 41: 1002–9.  

[36] Huang Y, Dittmeyer R. Preparation of thin palladium membranes on a porous 

support with rough surface. J Membr Sci 2007; 302:160–70. 

[37] Guo Y, Jin YJ, Wu HM, Zhou LD, Chen QQ, Zhang XF, Li XX. Preparation of 

palladium membrane on Pd/silicalite-1 zeolite particles modified macroporous 

alumina substrate for hydrogen separation. Int J Hydrogen Energy 2014; 39: 



 

26 

21044–52. 

[38] Pan XL, Xiong GX, Sheng SS, Stroh N, Brunner H. Thin dense membranes 

supported on α-Al2O3 hollow fibers. Chem Commun 2001; 24:2536–7.  

[39] Li XT, Li AW, Jim LC, Grace JR. Hydrogen permeation through Pd-based 

composite membranes: Effects of porous substrate, diffusion barrier and sweep gas. 

J Membr Sci 2016; 499:143–55. 

[40] Melendez J, Fernandez E, Gallucci F, van Sint Annaland M, Tanaka DAP. 

Preparation and characterization of ceramic supported ultra-thin (~1µm) Pd-Ag 

membranes. J Membr Sci 2017; 528:12–23. 

[41] Sheintuch M, Dessau RA. Observations, Modeling and Optimization of Yield, 

Selectivity and Activity during Dehydrogenation of Isobutane and Propane in a Pd 

membrane Reactor. Chem Eng Sci 1996; 51(4):535–47. 

[42] She Y, Han J, Ma YH. Palladium membrane reactor for the dehydrogenation of 

ethylbenzene to styrene. Catal. Today 2001; 67:43–53. 

[43] Hermann C, Quicker P, Dittmeyer R. Mathematical simulation of catalytic 

dehydrogenation of ethylbenzene to styrene in a composite palladium membrane 

reactor. J Membr Sci 1997; 136:161–72. 

[44] Li H, Goldbach A, Li WZ, Xu HY. On CH4 decomposition during separation from 

H2 mixtures with thin Pd membranes. J Membr Sci 2008; 324(1–2): 95–101. 

[45] Jung SH, Kusakabe K, Morooka S, Kim SD. Effects of co-existing hydrocarbons 

on hydrogen permeation through a palladium membrane. J Membr Sci 2000; 

170(1): 53–60. 



 

27 

[46] Abate S, Díaz U, Prieto A, Gentiluomo S, Palomino M, Perathoner S, Corma A, 

Centi G. Influence of Zeolite Protective Overlayer on the Performances of Pd Thin 

Film Membrane on Tubular Asymmetric Alumina Supports. Ind Eng Chem Res 

2016; 55:4948–59. 

[47] Yu JF, Qi CC, Zhang JX, Bao C, Xu HY. Synthesis of a zeolite membrane as a 

protective layer on a metallic Pd composite membrane for hydrogen purification. J 

Mater Chem A 2015; 3:5000–6. 

[48] Guo Y, Zhang XF, Deng H, Wang XB, Wang Y, Qiu JS, Wang JQ, Yeung KL. A 

novel approach for the preparation of highly stable Pd membrane on macroporous 

α-Al2O3 tube. J Membr Sci 2010; 362: 241–8. 

[49] Zhang XF, Liu HO, Yeung KL. Influence of seed size on the formation and 

microstructure of zeolite silicalite-1 membranes by seeded growth. Mater. Chem. 

Phys. 2006; 96: 42–50. 

[50] Guo Y, Jin YJ, Wu HM, Li DX, Fan XF, Zhou LD, Zhang XF. Direct synthesis of 

propylene oxide using hydrogen peroxide in a membrane reactor. Chem Pap 2017; 

71:49–57. 

[51] Wang XB, Zhang XF, Wang Y, Liu HO, Wang JQ, Qiu JS, Ho HL, Han W, Yeung 

KL. Preparation and performance of TS-1/SiO2 egg-shell catalysts. Chem Eng J 

2011; 175:408–16. 

[52] Itoh N, Tomura N, Tsuji T, Hongo M. Deposition of palladium inside straight 

mesopores of anodic alumina tube and its hydrogen permeability. Micropor 

Mesopor Mater 2000; 39:103–11. 



 

28 

[53] Xomeritakis G, Lin YS. CVD synthesis and gas permeation properties of thin 

palladium/alumina membranes. AIChE J 1998; 44(1):174–83. 

[54] Mintova S, Valtchev V, Konstantinov L. Adhesivity of Molecular Sieve Films on 

Metal Substrates. Zeolites 1996; 17 (5):462–65. 

[55] Zhou JL, Zhang XF, Zhang J, Liu HO, Zhou L, Yeung KL. Preparation of 

alkali-resistant, Sil-1 encapsulated nickel catalysts for direct internal 

reforming-molten carbonate fuel cell. Catal Commun 2009;10:1804–7. 

[56] Yang GH, Zhang XF, Liu SQ, Yeung KL, Wang JQ. A novel method for the 

assembly of nano-zeolite crystals on porous stainless steel microchannel and then 

zeolite film growth. J Phys Chem Solids 2007; 68(1):26–31. 

[57] Au LTY, Mui WY, Lau PS, Ariso CT, Yeung KL. Engineering the shape of zeolite 

crystal grain in MFI membranes and their effects on the gas permeation properties. 

Micropor Mesopor Mater 2001; 47(2-3):203–16. 

[58] Qiu FR, Wang XB, Zhang XF, Liu HO, Liu SQ, Yeung KL. Preparation and 

properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chem. Eng. J. 

147(2009) 316–22. 

[59] Chen XS, Chen P, Kita H. Pervaporation through TS-1 membrane. Micropor 

Mesopor Mater 2008; 115:164–9. 

[60] Wang D, Tong JH, Xu HY, Matsumura Y. Preparation of palladium membrane over 

porous stainless steel tube modified with zirconium oxide. Catal Today 2004; 

93–95: 689–93. 

[61] Choi J, Tsapatsis M, MCM-22/silica selective flake nanocomposite membranes for 



 

29 

hydrogen separations. J Am Chem Soc 2010; 132: 448–9. 

[62] Tsuru T, Igi R, Kanezashi M, Yoshioka T, Fujisaki S, Iwamoto Y. Permeation 

properties of hydrogen and water vapor through porous silica membranes at high 

temperatures. AIChE J 2011; 57:618–29. 

[63] Huang A, Caro J. Covalent Post-functionalization of zeolitic imidazolate 

framework ZIF-90 membrane for enhanced hydrogen selectivity. Angew Chem Int 

Ed 2011; 50 (21), 4979–82. 

[64] Bosko ML, Ojeda F, Lombardo EA, Cornaglia LM. NaA zeolite as an effective 

diffusion barrier in composite Pd/PSS membranes. J Membr Sci 2009; 331:57–65. 

[65] Fernandez E, Helmi A, Coenen K, Melendez J, Viviente JL, Tanaka DAP, van Sint 

Annaland M, Gallucci F. Development of thin PdeAg supported membranes for 

fluidized bed membrane reactors including WGS related gases. Int J Hydrogen 

Energy 2015; 40: 3506–19. 

 


