-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Generalized Profile-Guided Iterator Recognition

Citation for published version:

Manilov, S, Vasiladiotis, C & Franke, B 2018, Generalized Profile-Guided Iterator Recognition. in
Proceedings of the 27th International Conference on Compiler Construction (CC2018). ACM, Vienna,
Austria, pp. 185-195, 27th International Conference on Compiler Construction, Vienna, Austria, 24/02/18.
DOI: 10.1145/3178372.3179511

Digital Object Identifier (DOI):
10.1145/3178372.3179511

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Proceedings of the 27th International Conference on Compiler Construction (CC2018)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/195267408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3178372.3179511
https://www.research.ed.ac.uk/portal/en/publications/generalized-profileguided-iterator-recognition(41480ed4-18b1-4e43-84d0-c33f3e77f564).html

Generalized Profile-Guided Iterator Recognition

Stanislav Manilov
S.Z.Manilov@sms.ed.ac.uk
University of Edinburgh
United Kingdom

Abstract

Iterators prescribe the traversal of data structures and deter-
mine loop termination, and many loop analyses and transfor-
mations require their exact identification. While recognition
of iterators is a straight-forward task for affine loops, the
situation is different for loops iterating over dynamic data
structures or involving control flow dependent computations
to determine the next data element. In this paper we propose
a compiler analysis for recognizing loop iterators code for
a wide class of loops. We initially develop a static analysis,
which is then enhanced with profiling information to sup-
port speculative code optimizations. We have prototyped
our analysis in the LLVM framework and demonstrate its
capabilities using the SPEC CPU2006 benchmarks. Our ap-
proach is applicable to all loops and we show that we can
recognize iterators in, on average, 88.1% of over 75,000 loops
using static analysis alone, and up to 94.9% using additional
profiling information. Existing techniques perform substan-
tially worse, especially for C and C++ applications, and cover
only 35-44% of the loops. Our analysis enables advanced
loop optimizations such as decoupled software pipelining,
commutativity analysis and source code rejuvenation for
real-world applications, which escape analysis and transfor-
mation if loop iterators are not recognized accurately.

CCS Concepts - Software and its engineering — Com-
pilers;

Keywords Loop iterators, loop analysis

ACM Reference Format:

Stanislav Manilov, Christos Vasiladiotis, and Bjorn Franke. 2018.
Generalized Profile-Guided Iterator Recognition. In Proceedings
of 27th International Conference on Compiler Construction (CC’18).
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3178372.
3179511

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CC’18, February 24-25, 2018, Vienna, Austria

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5644-2/18/02...$15.00
https://doi.org/10.1145/3178372.3179511

Christos Vasiladiotis
C.Vasiladiotis@sms.ed.ac.uk
University of Edinburgh
United Kingdom

Bjorn Franke
bfranke@inf.ed.ac.uk
University of Edinburgh
United Kingdom

1 Introduction

Advanced compiler optimization [43] is largely concerned
with the optimization of loops as the largest proportion of
time executing a program is spend in loops, where small per-
iteration improvements multiply to greater overall effect.
In fact, mathematical frameworks — such as the polyhedral
model [6] — underpinning loop optimization and paralleliza-
tion have been specifically designed to capture loop behavior
for analysis and transformation. Central to loop analysis is
knowledge of loop iterators, which determine the iteration
ranges of loops, are updated in every iteration and prescribe
how data structures are traversed. Whereas recognition of
loop iterators for Fortran-style do-loops is trivial and can be
accomplished using syntactic pattern matching, most compil-
ers employ some variation of induction variable recognition
at the intermediate representation level to capture a wider
range of iterators resulting from a multitude of idioms and
programming styles.

While advanced loop optimizations have been developed
in the academic literature their deployment in commercial
or open-source compilers such as LLVM has been hampered
by the fact that real-world source code often defeats exist-
ing compiler analyses. Our generalized iterator recognition
analysis developed in this paper represents a critical step
towards enabling development and application of novel loop
transformations, applicable to wider range of loops.

It is possibly surprising that different interpretations of
what constitutes a loop iterator have been developed in the
compiler and programming language communities. For ex-
ample, in the polyhedral model underpinning many loop
transformations each loop iteration within loop nest is mod-
elled as a lattice point inside a polytope describing the loop
iteration space. A loop iterator is then an enumerator for
point vector with integer valued components with bounds
representing the faces of the loop limiting polytope. In com-
parison, in the object-oriented programming community
iterators are objects, which enable a programmer to traverse
a container data structure, e.g. a list. Iterators are objects
instantiated from iterator classes, which implement a com-
mon interface and provide possibly complex functionality
through method invocations on iterator objects and abstract
the implementation details of how exactly a data structure
is traversed from the programmer. In this paper we aim to
develop a generalized notion of loop iterators, which is not
restricted to affine loops or data structure traversals using

https://doi.org/10.1145/3178372.3179511
https://doi.org/10.1145/3178372.3179511
https://doi.org/10.1145/3178372.3179511

CC’18, February 24-25, 2018, Vienna, Austria

object-oriented iterator objects, but applicable to the widest
possible range of loops.

Based on our generalized definition of loop iterators we
develop a static analysis, which can be readily integrated in a
compiler framework such as LLVM without relying on exter-
nal tools. We then enhance this static analysis to incorporate
profiling information to overcome inherent limitations, e.g.
data dependence analysis is undecidable in general [40]. We
show how profiling information can complement static anal-
ysis to enable more aggressive iterator recognition, i.e. fewer
loop instructions are marked as “iterator code” and more as
“payload”. This can be useful for e.g. speculative optimiza-
tions, which benefit from a potentially larger loop payload
and can better cope with “unsafe” information.

We evaluate the usefulness of our generalized iterator
definition and analysis by its ability to separate loops into
iterator code and loop "payload". For this we have devel-
oped an LLVM analysis pass and applied to the entire SPEC
CPU2006 benchmark suite, including integer and floating-
point applications written in C, C++ and Fortran. In total,
we cover over 75,000 loops representing real-world applica-
tions. We show that iterator recognition can be applied to
all loops and is able to successfully recognize iterators in the
vast majority of cases. In particular, our iterator recognition
can separate iterators from non-affine loops, which escape
traditional analysis.

1.1 Motivating Examples and Use Cases

To motivate the technique developed in this paper we con-
sider three loop analyses and transformations, which have
in common that each of them can benefit from improved
separation of code constituting the loop iterator from the
rest of the code, forming the per-iteration “payload” of the
loop.

Consider the affine loop in Figure 1, where the iterator i
can be trivially recognized using syntactic pattern matching?.
Optimizing and parallelizing compilers typically rely on the
recognition of basic loop iterators to enable further analyses
and transformations [29]. Induction variables induced by
the surrounding loop (not present in this example) can be
identified and substituted by closed form expressions using
techniques developed in e.g. [35, 36].

Now consider the example in Figure 2. This loop traverses
a recursive data structure — a singly-linked list — and applies
a local update to each element of the list. It is clear that this
loop does not have a natural iterator in the sense of an integer
value loop index incremented by a fixed amount in every
iteration [36], but instead a pointer is updated and checked.
Such pointer chasing iterators can be recognized using ad-
hoc pattern matching [39] or using an algorithm developed

1Please note that examples in this paper are shown using C/C++ source code
for ease of illustration, whereas the techniques and their implementations
operate on internal representations such as LLVM IR and are language
agnostic (with exception of source code rejuvenation in Figure 3).

Stanislav Manilov, Christos Vasiladiotis, and Bjorn Franke
int array[100];

1
2 ...
3 for(i =0; i <100; it+t+) {
4 array[i]++;

5

}

Figure 1. An affine loop, where the highlighted loop iterator
is trivially recognized using syntactic pattern matching. Fur-
ther induction variables depending on this iterator i may be
recognized using techniques developed in e.g. [29, 35, 36].

as part of DSWP+ [22, 45]. Following successful recognition
of the loop iterator, highlighted in the example, the loop
can be parallelized using a decoupled software pipelining
(DSWP) approach.

1 my_list ptr;

2 ...

3 while (ptr) {

4 ptr->val++;

5 ptr = ptr->next;

6}

Figure 2. A traversal of a recursive data structure loop with
highlighted iterator code. Recursive Data Structure (RDS)
loop iterators can be recognized using an ad-hoc technique
[39] or a partitioning algorithm in DSWP+ [22, 45].

An alternative use of iterator recognition is in source code
rejuvenation [34], where the loop from Figure 2 may be
converted to the form shown in Figure 3, where the user-
defined singly-linked list and its traversal have been replaced
with an STL 1ist container and its hidden iterator methods,
another common programming language abstraction of itera-
tors offered by the C++ programming language. Generalized
iterator recognition (together with shape analysis [47] and
abstract data structure recognition [12]) enables this kind of
loop transformation aimed at raising code abstraction.

Our third example in Figure 4 is a code excerpt showing
breadth-first graph search implemented in the C++ program-
ming language. Conceptually, the loop spanning lines 15-30
of this example is similar to the loop in the pointer-chasing
loop in Figure 2, but now the code makes use of STL’s 1ist
container to store lists of adjacent nodes (adj) and a queue
of nodes (queue) needed for BFS traversal. Within the loop,
methods for checking and updating the iterator are invoked.
Additionally, the loop contains an inner loop in lines 24-29
with its own iterator and further conditional inner control
flow, adding to the complexity of the code contributing to
the traversal of the graph data structure. Conceptually, we
can say that a BFS graph iterator involves a queue and oper-
ations on it as well as an additional loop to enqueue newly
discovered nodes, which matches our expectations for this
algorithm.

In this example, we can separate out the output statements
in line 18, which do not contribute to the loop traversal
and its termination, and we therefore consider to form the

Generalized Profile-Guided Iterator Recognition

1 std::list<int> list;
2 ...

3 for(int &val :
4 val++;

5}

list) {

Figure 3. The loop from Figure 2 after source code rejuve-
nation, where the traversal of the user-defined linked list
has been replaced with an equivalent STL list container
and abstracted iterator methods. Iterator recognition enables
further analyses driving this kind of loop transformation.

loop “payload”. RDS loop recognition [22, 39, 45] is defeated
by this loop comprising method invocations and complex
control flow, whereas the technique presented in this paper
successfully identifies the code forming the (highlighted)
iterator of the outer while-loop. Accurate recognition of
the iterator in this example can be used to enable further
analysis, e.g. to drive DSWP-style parallelisation or loop
commutativity analysis [41].

1 void Graph::BFS(int s)

2 {

3 // Mark all the vertices as not visited
4 bool *visited = new bool[V];

5 for(int i = 0; i < V; i++)

6 visited[i] = false;

7
8
9

// Create a queue for BFS
list<int> queue;

11 // Mark the current node as visited and enqueue it
12 visited[s] = true;

13 queue.push_back(s);

15 while (!queue.empty()) {

16 // Dequeue a vertex from queue and print it
17 s = queue.front();

18 cout << s << " ",

19 queue.pop_front();

20

21 // Get all adjacent vertices of the dequeued
22 // vertex s. If a adjacent has not been visited,
23 // then mark it visited and enqueue it

24 for(auto i : adjls]) {

25 if(!visited[i]) {

26 visited[i] = true;

27 queue. push_back(i);

28 3

29 3

30 }

31}

Figure 4. Breadth-first search of a graph implemented in
C++ and using STL’s 1ist container to store lists of adjacent
nodes (adj) and a queue of nodes (queue) needed for BFS
traversal. The iterator of the while-loop spanning lines 15-
30 comprises complex control flow and method invocations,
and can be separated from the loop “payload” in line 18,
which prints a vertex id. Example adopted from [1].

The previous examples highlight different notions of it-
erators and how iterator recognition can drive novel opti-
mizations. They also demonstrate that current techniques

CC’18, February 24-25, 2018, Vienna, Austria

for iterator recognition are limited in their ability to process
non-affine iterators. As a result, success of advanced loop
transformations which require separation of loop iterator
code from the payload is hampered. What is needed is a
technique capable of processing real-world codes employ-
ing a broad range of different styles of loop iterators, which
may make use of user-defined data structures, STL or Boost
containers and iterators, and complex control flow alike.

1.2 Contributions

In this paper we propose a new definition of generalized loop
iterators, which subsumes various existing notions of itera-
tors. We then develop a novel iterator recognition algorithm,
which can be used to separate iterator code from the loop
“payload”. We develop two versions of our iterator recogni-
tion algorithm: (a) based on static analysis only, which is fast,
but conservative, and (b) using additional profiling informa-
tion to enable more aggressive speculative optimizations. We
evaluate our LLVM prototype implementation against the
SPEC CPU2006 benchmark suite and demonstrate its ability
successfully recognize more loop iterators than any other
technique.

2 Background

Affine Iterators. In compiler theory iterators are typically
associated with structured for-loops, where a normalized
loop iterates over a sequence of consecutive integer numbers
between affine lower and upper bounds. The iteration space
of such a loop or loop nest is an ordered set of loop iterations,
in which each iteration is represented by a point (i, . . ., in)
for a loop nest of depth n. Loop iterators are then the space
represented by a column vector I = [iy,..., in]T, and loop
ranges form a system of inequalities LB, (i, . . .,in,_1)! <
in <UBp(i1,...,in1)", where LBy and UBy are lower and

upper loops bounds, respectively, at nesting level k.

RDS/DSWP Loop Partitioning. Parallelization of RDSloops
is the main concern of DSWP [39]. Traversals of a RDS
are matched against a syntactic pattern. Specifically, DSWP
searches for load instructions that are data dependent on
previous instances of the same instruction. These induction
pointer loads (IPL) form the kernel of the traversal slice [31].
IPLs can be identified using augmented techniques for iden-
tifying induction variables [16, 31]. This relatively simple
approach works well for one-dimensional pointer-chasing
loops, but fails beyond that.

A more sophisticated technique for detecting cycling de-
pendences in loops has been developed in [22, 32, 45] as part
of DSWP+. It comprises an algorithm for systematic separa-
tion of dependence cycles, some of which may be involved
in loop iterators. However, DSWP+ does not make any at-
tempt to recognize iterators. Instead, all dependence cycles
are treated equal. In Section 3 we extend this algorithm with
the ability to extract the specific instructions and variables,

CC’18, February 24-25, 2018, Vienna, Austria

which form the loop iterator while marking up the remaining
code as “payload”.

Object-oriented Iterators. Iterators have a different mean-
ing in the OOP community [7, 27] where constructs such
as C++ STL iterators are considered. Specifically, in C++ an
iterator is any object that, pointing to some element in a
range of elements (e.g. a container), has the ability to iterate
through the elements of that range using a set of operators
(with at least the increment (++) and dereference (*) oper-
ators). Using existing compiler techniques these iterators
escape analysis and transformation.

Iteratorless and Unseparable Loops. Not all loops have it-
erators, which naturally advance the position in an iteration
space or data structure. For example, consider a spin-lock
loop, which spins until a flag is set by e.g. an interrupt han-
dler or in another thread. In some cases iterators cannot be
separated from a distinct loop “payload”. An example of such
an unseparable loop is a linear search in a linked list.

3 Methodology

In this section we present our methodology for iterator recog-
nition. Initially, we will provide an overview and create an in-
tuitive understanding of iterators before we develop a formal
definition of our concept of iterators. This is followed by a
static analysis for iterator recognition, which - as a useful ad-
dition for speculative loop transformation - is subsequently
complemented with profiling information to significantly
enhance its capability to separate iterator code. Finally, we
share insights from our LLVM prototype implementation.

3.1 Definitions

Intuitively, a loop iterator is a variable (or a set of variables),
which is updated in every iteration of a loop and is involved
in controlling loop exits, e.g. as part of a conditional ex-
pression. This intuitive understanding is captured in the
following definition:

Definition 3.1. Generalized Loop Iterator. A generalized
loop iterator is a minimal set of variables and operations
manipulating these variables, which form a Strongly Con-
nected Component (SCC) in the Program Dependence Graph
(PDG) and exhibit a loop-carried dependence of distance 1.
Furthermore, this SCC has no incoming edges from other
SCCs in the PDG.

For this definition we exploit that conditional expressions
controlling loop exits will introduce control dependences to
every operation contained in the loop body. Since we are
also interested in variables, which are updated in every loop
iteration, we are looking for data dependences in the other di-
rection, i.e. from update operations in the loop body towards
read operations in loop termination expressions. Together
these dependences will form a loop-carried dependence cycle
or, more generally, a SCC in the PDG. Other operations may

Stanislav Manilov, Christos Vasiladiotis, and Bjorn Franke

depend on this SCC, but it is the dominant SCC of operations,
which does not depend on any other operations and vari-
ables that determines loop termination and thus constitutes
the loop iterator.

In counted or affine loops the conventional iterator is intu-
itively covered by our definition as it is this variable (often i)
and its updates and checks, that form the dominant SCC con-
trolling execution of the remaining loop operations, which in
turn form the loop “payload”. Similarly, iterators of pointer-
chasing loops are covered by the same definition as pointer
updates and checks introduce a cyclic dependence relation
on which the remaining loop body depends. However, our
definition also covers STL-like iterators, which are updated
and checked in every single loop iteration, possibly involv-
ing calls to methods in other classes, which necessitate the
use of inter-procedural analysis for their identification.

Abstraction and generalization of the properties of a loop
iterator in our definition allows us to develop an iterator
recognition analysis operating on the compiler IR, thus en-
abling a source-language agnostic approach.

3.2 Static Analysis

Our analysis for determining loop iterators involves three
stages closely following Definition 3.1:

1. PDG construction. We assume the IR provides us with
a Control Flow Graph (CFG) in Static Single Assignment
(SSA) form (Figure 5a). We apply the algorithm from [11] to
construct the Control Dependence Graph (CDG) of the loop.
Additionally, we combine the implicit def-use chain present
in the intermediate representation with a static dependence
analysis of memory accesses based on [19] to build the Data
Dependence Graph (DDG) of the loop. We produce the PDG
by combining the CDG and DDG (Figure 5b).

2. Determine SCCs. Once we have the program depen-
dence graph of a loop, we determine its strongly connected
components. We build a directed acyclic graph (DAG) con-
necting the SCCs using Kosaraju’s algorithm [2].

3. Dominant SCC and iterator recognition. Finally, we
take the dominant SCC, i.e. the one that has no incoming
edges in the SCC DAG. This dominant SCC represents the
loop iterator and we label instructions represented by the
SCC as “iterator instructions” and variables involved as “it-
erator variables” (Figure 5c¢). Inspection of the properties of
these iterator instructions and variables reveals that together
they satisfy Definition 3.1 by construction, showing that we
have indeed recognized the loop iterator.

3.3 Incorporating Profiling Information

Conservatism of the static analysis used as part of the con-
struction of the DDG in section 3.2 is a limiting factor. May
dependences introduce spurious dependence relations, which
may not materialize for any program execution on valid in-
put data. We now investigate how incorporating profiling

Generalized Profile-Guided Iterator Recognition

15: queue.empty()

17: s = queue.front();
18: cout <s <« “";
19: queue.pop_front();
24a: i = adj[s].begin()

[24b: i == adj[s].end()

|25: visited[i] |

26: visited[i] = true;
27: queue.push_back(i);

24c: ++1 |

exit

(a) CFG. (b) Corresponding PDG.
iterator payload
[15,17, 19, 24a, 24b, 24c, 25, 26, 27

(c) SCCs of the PDG. The green SCC has no incoming edges and
constitutes the iterator.

Figure 5. CFG, PDG & SCC for the while-loop in Fig. 4.

information obtained from instrumentation and execution of
the target program can be used to improve iterator recogni-
tion. We use a profiling technique similar to [49] to capture
data dependences.

Clearly, any approach relying on profiling information
for the computation of data dependences is prone to errors
such as missing a dependence, which did not materialize in
a specific execution trace, but could well occur in another
[46]. However, there is still benefit in incorporating such
unsafe information for two reasons: (a) we can determine an
upper bound, which enables us to quantify the scope for im-
provements of static analyses, and (b) some transformations,
e.g. speculative parallelization [33], are inherently resilient
against data dependence violations and can benefit from
more aggressive loop transformations.

In principle, we complement our PDG construction algo-
rithm (stage 1 above) with profiling information similar to
[24], i.e. for each of the statically detected may data depen-
dences we refer to profiling information to resolve this may
dependence as either must dependence or no dependence,
based on whether or not a dependence was observed in the
execution profile. The remaining stages of the algorithm
remain unchanged.

We expect users to profile their applications using rep-
resentative, but reduced data sets, e.g. [14], and focussing
their efforts on those parts of the program relevant to their
targeted transformation in order to avoid excessive profiling
costs.

3.4 Implementation

We have implemented a prototype of our technique as an
analysis pass in the LLVM compiler infrastructure. This al-
lows us to analyze all of the SPEC CPU2006 benchmarks,
since there are LLVM front-ends available for C/C++ (clang)

CC’18, February 24-25, 2018, Vienna, Austria

and Fortran (flang). The LLVM IR is a CFG in SSA form as
needed by the technique. Standard LLVM analyses allow
for detecting loops in this graph and promoting memory
accesses to virtual registers and thus simplifying the IR.

Instrumentation & Profiling. In order to collect memory
access information about a subject program, we apply a
context aware memory profiler. This begins with building
a complete call graph of the program and computing con-
text offsets for function calls. When these context offsets
are accumulated for a given stack trace (i.e. a sequence of
function calls) the result is always a context identifier that
is unique for the given stack trace. We handle groups of re-
cursive functions and indirect function calls. The former we
do by reducing the call graph to a SCC DAG and assigning a
unique context ID to every SCC: the calls within the recur-
sive groups have offsets of zero (see Figure 6). The latter —
by adding calls to the runtime that indicate indirect function
calls and function returns and keeping a stack of indirect
calls at runtime.

SCC

(a) A recursive call graph.

(b) Contracted SCC DAG.
Figure 6. Handling recursion robustly. The strongly con-
nected component in Figure 6a is represented by a single
node in the contracted graph in Figure 6b. The resulting
graph does not contain any further cycles, i.e. it is a DAG.

Once this map from function calls to context offsets is
computed we instrument each call with calls to the runtime
to advance and then restore the context ID. Once this is done
we instrument all memory accesses with a call to a runtime
function that records the instruction ID and the address that
is accessed.

Lastly, we also instrument loops, since we want to know
which iterations triggered a dependence and across which
loop nesting level did the dependence occur. For this, we
instrument loop entering and loop exiting edges in the CFG
as well as loop backedges.

Once instrumentation is complete we execute the program
and collect a profile that consists of a list of the dependences
and the code coverage. Each dependence is described by
its type (RAW, WAW, WAR); source and target instructions;
source and target contexts; and list of loop iteration counters.
Iteration counters are obtained by counting the number of
times a backedge was encountered, rather than relating to
our complex notion of iterators that we are trying to extract.

CC’18, February 24-25, 2018, Vienna, Austria

Incorporating Profiling Information. Once the profiling
information is collected, we incorporate it back in the analy-
sis to augment the static analysis results. Because we need
to map unique contexts back to the functions in which they
occur, we need to explicitly build the tree of all possible con-
text IDs. This is the Call Tree (CT) of the program (see Figure
7a), with unique context IDs associated with each node.

main
Y
foo path 1:| main| foo
PN
qux bar path 2:| main| foo
(a) CT. (b) Identical paths.

path 2:| mainl foo | qux|

path l:l mainl foo | bar |

path 2:| mainl foo | qux|

(c) Prefix of another path.
Figure 7. Comparing the paths from the root of the CT to
the instructions in an observed dependence is necessary
in order to decide which instructions to associate with the
dependence.

(d) Paths with common prefix.

The size of the CT is asymptotically exponential in the
number of distinct functions in the program, so it is impossi-
ble to construct in an efficient manner. For this reason we
implement a lazy tree access procedure, which builds only
parts of the tree which are required to compute the nodes
for context IDs which have actually been observed during
the profiling run. The results are cached, so that the same
part of the tree does not need to be computed twice. This
puts a limit on the complexity of the analysis and ensures
that the number of nodes in the tree that will be explicitly
computed will be at most the number of contexts seen during
the profiling run, which is less than exponential.

With the CT built, for each dependence in the gathered
profile we compute the paths from the root of the CT to
the context in which the source and target instructions of
the dependence were encountered. By taking the longest
common prefix of these two paths we find the appropriate
instructions to build the dependence between:

1. Between two memory instructions, if the paths are the
same (instructions are part of the same function: Fig. 7b);

2. Between a memory instruction and a call instruction, if
one path is a prefix of the other (one instruction happens
before a function call in the function in which the other
instruction belongs to: Figure 7c¢);

3. Between two call instructions, if no path is a prefix of
the other (the memory instructions happen before different
function calls within the same function: Figure 7d).

Stanislav Manilov, Christos Vasiladiotis, and Bjorn Franke

PDG Construction. Each of the dependences encountered
during profiling is added to the PDG built by static analysis,
where may dependences are treated as absent dependences
for the purpose of enabling aggressive, speculative transfor-
mation, but are re-inserted as encountered. In our evaluation
we discuss the impact of resolving statically determined may
dependence, which have not been covered by profiling, as
either must dependence (=conservative lower bound) or no
dependence (=aggressive upper bound).

4 Evaluation

While iterator recognition is central to driving non-affine
loop transformations we evaluate its usefulness by determin-
ing its capability of separating loops into iterator code and
payload. We prefer this direct measurement of its analytic
power over e.g. measuring the impact on a particular loop op-
timization as this avoids bias introduced by transformation
itself or details of the target platform.

Experimental Set-up. We evaluate our methodology for
iterator recognition and separation against SPEC CPU2006
application benchmarks. We include all integer and floating-
point benchmarks covering codes written in C, C++ and
Fortran. In order to limit the time required for profiling we
have chosen to use the test input data set, as we found out
there is no justified improvement from using the ref data
set instead.

We use an LLVM implementation (version 3.9) of our tech-
nique as described in the previous section. For our iterator
recognition pass we conduct two experiments: (a) we rely
on static analysis only for PDG construction, and (b) we
use both static analysis and additional profiling informa-
tion obtained from running an instrumented version of the
benchmarks, where we feed back profiling information to
the dependence analysis pass of the LLVM compiler. The
host system uses four AMD Opteron 6376 CPUs and has 1TB
of RAM available.

For each benchmark we report the total number of loops,
the number of loops with affine iterators identified by Polly
[20], the number of statically separable loops by our iterator
recognition technique, and the number of separable loops
using additional profiling information.

Results. We present our main results in Table 1. We show
results for > 75.000 loops across all SPEC CPU2006 applica-
tions, both integer and floating-point, grouped by program-
ming language (C, C++ and Fortran). For each benchmark we
report the total number of loops, the number of affine loops
and their percentage of the total number of loops, the num-
ber and percentage of statically separable loops using our
technique, and the number and percentage of dynamically
separable loops. Since profiling with standard data sets does
not guarantee that a particular loop is executed, we report a
range, i.e. a lower and an upper bound, for each benchmark

Generalized Profile-Guided Iterator Recognition

CC’18, February 24-25, 2018, Vienna, Austria

Table 1. Results for the SPEC CPU2006 benchmarks, grouped by programming language. For each benchmark we provide the
total number of loops and how many of them have affine iterators. We compare this to our generalized iterator recognition pass
when driven (a) by static dependence analysis and (b) profile-guided dependence analysis indicating lower and upper bounds,
respectively. We observe that our novel iterator recognition pass can identify and separate substantially more loop iterators —
for either programming language — than what is possible with affine iterator recognition alone. Profiling information always

increases the number of separable loops, in particular for the C++ benchmarks.

[Benchmark [Loops [Affine Iterators [Statically Separable [Separable After Profiling

C Benchmarks # # [% # [% lower bound (#/%) upper bound (#/%)
400.perlbench 1,333 364 27.3 1,285 96.4 1,292 96.9 1,297 97.3
401.bzip2 238 106 44.5 191 80.3 235 98.7 238 100
403.gcc 4,617 957 20.7 4,581 99.2 4,581 99.2 4,588 99.4
429.mcf 50 16 32.0 50 100 50 100 50 100
433.milc 426 257 60.3 424 99.5 424 99.5 425 99.8
445.gobmk 1,288 554 43.0 1,272 98.8 1,274 98.9 1,281 99.5
456.hmmer 876 337 38.5 867 99.0 867 99.0 868 99.1
458.sjeng 267 50 18.7 265 99.3 265 99.3 267 100
462.libquantum 98 36 36.7 98 100 98 100 98 100
464.h264ref 1,870 1,268 67.8 1,859 99.4 1,859 99.4 1,869 99.9
470.1bm 23 22 95.7 23 100 23 100 23 100
482.sphinx3 591 151 25.5 582 98.5 587 99.3 587 99.3
Total >(11, 677) %(4,118) [2(35.3) | 3(11,495) [@(98.4) [X(11,555) [@(99.0) | =(11,591) [@(99.3)
C++ Benchmarks # # [% # [% # [% # [%
444.namd 623 450 72.2 548 88.0 557 89.4 557 89.4
447.dealll 7,323 4,115 56.2 3,999 54.6 4,239 57.9 6,073 82.9
450.soplex 759 360 47.4 453 59.7 532 70.1 649 85.5
453.povray 1,357 438 323 975 71.8 1,035 76.3 1,220 89.9
471.omnetpp 481 133 27.7 162 33.7 178 37.0 233 48.4
473.astar 119 42 35.3 82 68.9 107 89.9 110 92.4
483.xalancbmk 3,617 676 18.7 1,907 52.7 2,169 60.0 2,712 75.0
Total >(14, 279) 3(6,214) [@(43.5) %(8,126) [@(56.9) 3(8,817) [@(61.8) | =(11,554) [©(80.9)
Fortran Benchmarks # # [% # [% # [% # [%
410.bwaves 85 84 98.8 85 100 85 100 85 100
416.gamess 21,386 19,970 93.4 20,353 95.4 20,386 95.3 20,924 97.8
434.zeusmp 547 533 97.4 534 97.6 537 98.2 537 98.2
435.gromacs (Fortran/C) 2,364 1,717 72.6 2,088 88.3 2,120 89.7 2,273 96.2
436.cactusADM (Fortran/C) 1,903 1,150 60.4 1,523 80.0 1,567 82.3 1,724 90.6
437 leslie3d 405 403 99.5 403 99.5 404 99.8 404 99.8
454.calculix (Fortran/C) 4,610 3,309 71.8 3,877 84.1 3,980 86.3 4,409 95.6
459.GemsFDTD 1,181 1,161 98.3 1,165 98.6 1,174 99.4 1,178 99.7
465.tonto 10,791 10,464 97.0 10,610 98.3 10,636 98.6 10,710 99.2
481.wrf (Fortran/C) 7,739 7,390 95.5 7,568 97.8 7,576 97.9 7,618 98.4
Total 2(51,011) | =(46,181) | @(90.5) | =(48,206) | @(94.5) | =(48,465) [@(95.0) | =(49,862) [@(97.7)

for the dynamically separable loops. The lower bound cor-
responds to cases where may dependences in non-profiled
loops are conservatively approximated, whereas the upper
bounds corresponds to a scheme where such unobserved
may dependences are resolved aggressively.

Comparison to Affine Loop Iterators. Inspection of the
data in Table 1 reveals that affine loop iterators are com-
mon in Fortran based programs and account for 90.5% of
all loops in these applications, but are less frequently en-
countered in programs written in C and C++ (35.3% and
43.5%, respectively). However, even for C and C++ applica-
tions there exists great variance with individual programs,
e.g.458.sjeng, 403.gcc or 483. xalancbmk, exhibiting only
few affine iterators, whereas others including 470. 1bm make
frequent use of such iterators.

For most C and Fortran programs almost all loop iterators
can be separated from loop “payloads”, resulting in 94.5%
and 98.4% of statically separable loops. Note that failure to
separate iterators is not a failure of our technique, but an
inherent loop property (“‘unseparable loop”).

For C++ codes we observe fewer separable iterators, al-
though this figure (56.9%) is still well above that for affine
iterators (43.5%) and can be improved substantially using
profiling information.

Evaluation By Programming Language. Again, consider
Table 1. Static iterator recognition works well for Fortran and
C programs with 94.5% and 98.4%, respectively, of all loops
separable using static analysis alone. This is a slightly sur-
prising result given that the C based SPEC applications tend
to be more irregular and pointer based than their Fortran
counterparts. However, we find that some C benchmarks
such as 401.bzip2 and some mixed Fortran/C codes such
as 436.cactusADM and 454 . calculix have a lower than av-
erage number of statically separable loops. For the mixed
language this benchmarks these loops are contained in the
C parts of the applications, though.

The situation is different for the applications written in
C++, where the average percentage of statically separable
loops is substantially lower at 56.9% than for C or Fortran
based codes. For some applications, e.g. 471.omnetpp this

CC’18, February 24-25, 2018, Vienna, Austria

percentage can be as low as 33.7%, whereas for 444 .namd
88.0% of its loops are statically separable. Lower separability
figures for C++ applications can be attributed to following
two reasons: (a) the C++ applications comprise fewer sepa-
rable loops, and (b) C++ applications are harder to analyse
statically using the analyses provided in the LLVM compiler.

Some of the non-separable loops in C++ applications are
caused by the programming language’s specified require-
ment for zero initialization of arrays, where each element is
zero-initialized. It is also known that some of the C++ appli-
cations in the SPEC CPU2006 suite contain a large number of
non-natural and multi-exit loops [42], which defeat LLVM’s
static analysis. We have also observed that LLVM’s ability to
disambiguate accesses to fields and members in structures
(and classes) is limited, e.g. in 473.astar.

Impact of Profiling Information. For cases where static
analysis already enables iterator separation for e.g. > 98% of
all loops there is obviously limited scope for improvement
(other than minimizing iterator instructions). This is the
case for most Fortran and C benchmarks, although there
are a number of notable exceptions. While only 191 out of
238 loops are statically separable for 401.bzip2 profiling
enables separation of, at least, 235 loops, thus increasing
recognition from 80.3% to 98.7%.

For C++ applications with their lower number of separable
loops and iterators profiling improves separability by, on
average, 5% (lower bound) and up to 24%. For 450. soplex,
for example, static analysis enables separation of 59.7% of all
loops, whereas profiling contributes to an increase of greater
than 10% and up to almost 26% depending on whether a
conservative or aggressive scheme is used.

Coping with Limited Profiling Coverage. Profiling incurs
a substantial overhead and it is in the interest of the user
to reduce the time for profiling. This can be achieved by
using a smaller input data set, e.g. the test instead of the
ref data set for SPEC CPU2006. However, a typical data set
often does not fully exercise every code path, i.e. there is
limited loop coverage. We found that the test input data
set for SPEC CPU2006 covered, on average, only 19% of all
loops (see Figure 8).

We see that profiling information has a substantial im-
pact on the ability to separate iterators, especially for the
C++ applications. These findings suggest that profiling with
standard data sets is not ideal, but a more targeted approach
supported by techniques from the field of software testing,
e.g. automated test case generation [3], should be considered,
but this is beyond the scope of this paper.

Evaluation of Iterator Size and Complexity. Consider the
three diagrams in Figure 9, where we plot the distribution of
relative iterator sizes and their frequency across the SPEC

Stanislav Manilov, Christos Vasiladiotis, and Bjorn Franke

CPU2006 benchmarks, broken down by programming lan-
guage (C, C++, Fortran). We make two interesting observa-
tions: (a) Iterator sizes are not uniformly distributed, and (b)
the distribution of iterator sizes varies significantly for the
three programming languages used in the benchmark suite.

For the C benchmarks we observe a bimodal distribution
of iterator sizes, where iterators are either very small (around
5-10% of loop instructions) or large (around 85% of loop in-
structions). The situation is different for Fortran codes, where
the vast majority of iterators is small. The C++ applications
exhibit the same bimodal trait as the C codes, but the peaks
at the lower and higher end of the scale are less distinct.

Further inspection of the iterators reveals that small itera-
tors are typically affine or near-affine iterators, which only
require a few instructions to update and compare. Larger
iterators often comprise control flow.

Analysis and Profiling Overhead. Static analysis needs to
consider pairwise all instructions contained in a loop for de-
pendence testing (using LLVM’s DependenceAnalysis pass),
resulting in O(n?) complexity. This is an LLVM restriction
and a different implementation of LLVM’s dependence anal-
ysis could improve this algorithmic complexity substantially.
However, for most of the SPEC CPU2006 applications analy-
sis is reasonably fast and only adds a few seconds to the over-
all compilation time. A notable exception is the 416.gamess
application, which with its 2M+ IR instructions and 17.5M+
static dependences spread over 21k+ loops, takes almost 11
minutes to analyse statically. None of the C or C++ bench-
marks takes longer than 30 seconds to analyse, though, and
most of them can be processed in under 10 seconds.

Profiling naturally incurs a much greater overhead than
static analysis. For example, profiling of the SPEC CPU2006
applications using the test data set requires several min-
utes and up to several hours. In our (somewhat naive) setup,
the overhead resulting from instrumented execution of a
program yields, on average, a 760X slowdown (compared to
289x of the technique in [26], which exhibits far more con-
ceptual and practical restrictions). This is clearly prohibitive
in a continuous edit-compile-test cycle or on very large data
sets. However, these are not the envisaged use cases of our
profiling technique. Instead, the preferred application as en-
abler of one-off transformations is inherently more tolerant
to the observed profiling overhead in exchange for greater
accuracy.

Use in Commutativity Based Parallelization. As an ex-
ample of its usefulness to enable novel loop transformations
we have applied iterator recognition to drive a dynamic com-
mutativity based parallel loop detection method inspired by
[41], which also uses machine learning to select profitable
loops for OpenMP parallelization [44]. This loop paralleliza-
tion approach critically relies on iterator recognition for
handling of both affine and non-affine loops, possibly com-
prising traversals of dynamic data structures.

Generalized Profile-Guided Iterator Recognition

CC’18, February 24-25, 2018, Vienna, Austria

E 100
éﬂ 80
S 60
— 40
= 20 ﬂ ﬂ
q§ 0 H%Q ﬂr—\% W& i D@ ﬂﬂ [l m — %’_‘Hb’_‘ ’_‘%WD
~ S A >4 & 3 > S g EE NS S © &L
a‘&@»&oﬁoc & @ N ‘&é\@o & bbéz go’&-@“* S DF K q’%&"}% & L SF D &\é‘: S Q&Qo\\.é B 0
SN D707 S (Fo? P W L FAT S 0¥ LA NP TS KT L
& A R I S v P I A WA, OGN G T F ST W
QQQ W q}@ Ky 3 LA NN ‘@QXX R b{g) D B of &ﬁ&o@f
» ¥ o oo @ <8

Figure 8. Percentages of loops covered by the SPEC CPU2006 test data set.

-103

“QZ HHHHHHHHHmﬂﬁﬁHHHHHHﬁ

B ROR N SESENEE SN AN

FRPFFFETOFE Sy
(a) C benchmarks.

-4 glll0a0lan.nollonsns.

NINCINN RSN NI I I AN I I\ I SN SRR SN
NP I WD PO I AN I AR N NS
TGP F YIS FFFESTE N

(b) C++ benchmarks.

#&Z HHHHHHHHH —

505 D oD 05 D 5 D D ® SO ® O P
DR TRSEeI TB pO S U AN T M RN
T FFFNF Y I FFFE G N

(c) Fortran benchmarks.

Figure 9. Distribution of iterator sizes as percentages of loop
IR instructions (0% = iteratorless, 100% = unseparable).

In Figures 2 and 10 we compare this loop parallelization
approach driven by our novel iterator recognition developed
in this paper to three competing parallelizing compilers:
Intel’s ICC compiler (version 17.0) [10], LLVM/Polly [20],
and constraint-based parallel idiom recognition [18]. Table 2
shows the number of loops each of the parallelization tools
is capable to identify in the sequential C sources of the NAS
benchmarks (version 3.3.1) [4]. We also directly compare the
union of parallelizable loops, which Intel ICC, LLVM/Polly
and parallel idiom recognition together can detect with the
loops identified by our approach. As shown iterator recog-
nition directly enables commutativity based parallelization,
which as a single method combines as much parallelism as
Intel ICC, LLVM/Polly and parallel idiom recognition to-
gether. Combined with a suitable machine learning based
profitability analysis [44] this enables parallel performance
levels exceeding those of any of parallelization methodology
in isolation (see Figure 10).

5 Related Work

We have discussed existing notions of iterators in Section
2 and provided examples of code transformations enabled

Table 2. Parallel loops discovered by Intel ICC, LLVM/Polly,
constraint-based idiom recognition and commutativity anal-
ysis enabled by our iterator recognition pass.

. Union Comm.-based
Total | Polly | ICC | Idioms ICC/Polly/Idioms || Parallelization
BT 50 24 40 5 42 42
CG 26 1 16 8 19 19
DC 75 1 23 12 33 33
EP 7 0 3 1 3 3
FT 16 0 3 1 4 4
IS 16 1 4 8 11 11
LU 63 17 40 0 42 42
MG 38 0 18 5 21 21
SpP 53 27 42 2 44 44
UA 157 28 115 10 127 127
Total 501 99 304 52 346 346
1946 2021 2446 159 13.64 17.64
]
12
10
o 8
3
3 6
&
4
2
0
BT CG DC EP FT IS LU MG SP UA

‘ == LLVM Polly==aIntel ICC==Idioms == Comm.-based Par. ‘

Figure 10. Parallel speedup for NAS 3.3.1 sequential bench-
marks resulting from parallelization using (a) Intel ICC, (b)
LLVM/Polly, (c) parallel idiom recognition and (d) commuta-
tivity analysis powered by iterator recognition.

by iterator recognition in Section 1.1. Loop concepts and
iterators are as old as the oldest high-level programming lan-
guages [17] and have received particular attention in polyhe-
dral loop analysis and programming language design. Loop
identification [38] is the general problem of finding loops
in programs. It is often based on Tarjan’s interval-finding
algorithm and is an essential step in performing various
optimizations and transformations, but it is not concerned
with identifying loop iterators. Decidability of termination
of several variants of simple integer loops, without branch-
ing in the loop body and with affine constraints as the loop
guard (and possibly a precondition) has been considered in
[5]. Whilst this work is related to iterator recognition, it
follows decision theoretical approach. Reducible and inrre-
ducible loops are subject of [21]. Efficient symbolic analysis
of chains of recurrences supporting induction recognition

CC’18, February 24-25, 2018, Vienna, Austria

is presented in [13]. Pointer-based array traversals are ana-
lyzed and transformed to closed form array expressions in
[15]. Static analysis is employed in [9] to determine loop
iteration counts using polytope-based loop evaluation and
program slicing. A constraint based approach to recogni-
tion of reductions is presented in [18], where a wide class
of reductions including their loop iterators is recognized in
the LLVM framework. However, generalized iterators as pre-
sented in this paper are beyond the scope of their work. In
[28] a technique for computing SSA-PDGs and their SCCs
is introduced, but no attempt is made to extract their domi-
nating SCC as a loop iterator. Instead, all SCCs are treated
equal and merged in the graph to coarsen the granularity of
potential parallel regions by applying typed fusion.

HELIX [8, 30] is a speculatively parallelizing compiler,
which would benefit from iterator recognition. While HE-
LIX applies parallelizing loop transformations, it relies on
normalizable loops (equivalent to while loops), but it does
not attempt to separate loop iterator code. Instead, HELIX
monitors all loop carried data dependences without further
distinction. In [37] automatic parallelization of loops that iter-
ate over user-defined containers that have interfaces similar
to the lists, vectors and sets in the C++ STL is demonstrated.
However, this approach relies on the user inserting OpenMP
directives into a serial program and, effectively, marking up
loop iterators. Partitioning of heap-allocated data structures
and transformation of pointer-manipulating programs is a
concern for high-level synthesis supporting FPGA design
flows. Separation logic is used in [48] for static analysis and
transformation enabling parallelization of programs with dy-
namic data structures and pointer-based memory accesses.

An early framework supporting profile-guided data de-
pendence analysis and subsequent loop parallelization was
developed in [44], but it has only been applied to a selection
of benchmarks. A more scalable and efficient data depen-
dence profiling methodology was presented in [26], which
experiences slowdowns in the same order of magnitude as
our technique, but suffers from more restrictions. In [25]
another data dependence profiling technique is developed,
which reduces slowdowns to around 150X, but does not over-
lay dependence to a dynamic call graph, but only merges
dependences in a static call graph. An online dynamic de-
pendence analysis is shown in [23].

6 Summary and Conclusions

In this paper we have developed a generalized notion of
loop iterators, which enables compiler-based iterator recog-
nition. This in itself is an enabling analysis, which supports
novel code transformations including loop optimization, par-
allelization and general loop rewriting. In particular, iterator
recognition enables the development of new loop transfor-
mations targeting non-affine loops, which in some domains
make up the majority of loops. We show that static analysis
works well for C and Fortran, but complex C++ code benefits

Stanislav Manilov, Christos Vasiladiotis, and Bjorn Franke

from additional profiling information. We have demonstrated
that our approach to iterator recognition works in practice
and our LLVM prototype implementation is capable of sepa-
rating a substantially larger number of loops and iterators
than previous techniques based on our evaluation against
the full SPEC CPU2006 suite. Future work will focus on inte-
grating our technique with advanced loop parallelization.

References

[1] Breadth first traversal or BFS for a graph.

http://www.geeksforgeeks.org/breadth-first-traversal-for-a-graph/.

[2] A.V.Aho,].E. Hopcroft, and J. Ullman. Data Structures and Algorithms.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st

edition, 1983.

S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,

M. Harman, M.]J. Harrold, and P. Mcminn. An orchestrated survey of

methodologies for automated software test case generation. J. Syst.

Softw, 86(8):1978-2001, Aug. 2013.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The

nas parallel benchmarks—summary and preliminary results.

In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,

Supercomputing ’91, pages 158-165, New York, NY, USA, 1991. ACM.

[5] A. M. Ben-Amram, S. Genaim, and A. N. Masud. On the termination

of integer loops. ACM Trans. Program. Lang. Syst., 34(4):16:1-16:24,
Dec. 2012.

[6] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul.

The polyhedral model is more widely applicable than you think. In

Proceedings of the 19th Joint European Conference on Theory and Prac-

tice of Software, International Conference on Compiler Construction,

CC’10/ETAPS’10, pages 283-303, Berlin, Heidelberg, 2010. Springer-

Verlag.

K. Bierhoff. Iterator specification with typestates. In Proceedings of the

2006 Conference on Specification and Verification of Component-based

Systems, SAVCBS 06, pages 79-82, New York, NY, USA, 2006. ACM.

[8] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and

D. Brooks. HELIX: Automatic parallelization of irregular programs for

chip multiprocessing. In Proceedings of the Tenth International Sym-

posium on Code Generation and Optimization, CGO 12, pages 84-93,

New York, NY, USA, 2012. ACM.

D. Cordes, H. Falk, and P. Marwedel. A fast and precise static loop

analysis based on abstract interpretation, program slicing and polytope

models. In 2009 International Symposium on Code Generation and

Optimization, pages 136—146, March 2009.

[10] K. Craft. Intel C++ Compiler 17.0 Release Notes. Intel.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
An Efficient Method of Computing Static Single Assignment Form. In
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’89, pages 25-35, New York, NY,
USA, 1989. ACM.

[12] R. Dekker and F. Ververs. Abstract data structure recognition. In
Proceedings of the 9th International Conference on Knowledge-Based
Software Engineering, KBSE’94, pages 133-140, Piscataway, NJ, USA,
1994. IEEE Press.

[13] R.v. Engelen. Efficient symbolic analysis for optimizing compilers. In
Proceedings of the 10th International Conference on Compiler Construc-
tion, CC ’01, pages 118-132, London, UK, 2001. Springer-Verlag.

[14] V. Escuder and R. Rico. Reduced input data sets selection for SPEC
CPUint2006. Technical Report TR-HPC-02-2009, Department of Com-
puter Engineering, Universidad de Alcala, Spain, April 2009.

E

—

[4

—

[7

—

[9

—

Generalized Profile-Guided Iterator Recognition

(15]

[16]

(17]

(18]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

B. Franke and M. O’Boyle. Array recovery and high-level transfor-
mations for DSP applications. ACM Trans. Embed. Comput. Syst.,
2(2):132-162, May 2003.

M. P. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction variables:
Detecting and classifying sequences using a demand-driven SSA form.
ACM Trans. Program. Lang. Syst., 17(1):85-122, Jan. 1995.

W. K. Giloi. Konrad Zuse’s Plankalkiil: The first high-level, "non Von
Neumann" programming language. IEEE Ann. Hist. Comput., 19(2):17—
24, Apr. 1997.

P. Ginsbach and M. F. P. O’Boyle. Discovery and exploitation of general
reductions: A constraint based approach. In Proceedings of the 2017
International Symposium on Code Generation and Optimization, CGO
’17, pages 269-280, Piscataway, NJ, USA, 2017. IEEE Press.

G. Goff, K. Kennedy, and C.-W. Tseng. Practical Dependence Testing.
In Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation, PLDI ’91, pages 15-29, New
York, NY, USA, 1991. ACM.

T. Grosser, A. Groesslinger, and C. Lengauer. Polly - Performing
polyhedral optimizations on a low-level intermediate representation.
Parallel Processing Letters, 22(04):1250010, Dec. 2012.

P. Havlak. Nesting of reducible and irreducible loops. ACM Trans.
Program. Lang. Syst., 19(4):557-567, July 1997.

J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and D. I. August.
Decoupled software pipelining creates parallelization opportunities.
In Proceedings of the 8th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’10, pages 121-130, New
York, NY, USA, 2010. ACM.

A. Jimborean, P. Clauss, J. M. Martinez, and A. Sukumaran-Rajam.
Online dynamic dependence analysis for speculative polyhedral par-
allelization. In Proceedings of the 19th International Conference on
Parallel Processing, Euro-Par’13, pages 191-202, Berlin, Heidelberg,
2013. Springer-Verlag.

N. P. Johnson, J. Fix, S. R. Beard, T. Oh, T. B. Jablin, and D. I. August.
A collaborative dependence analysis framework. In Proceedings of the
2017 International Symposium on Code Generation and Optimization,
CGO ’17, pages 148-159, Piscataway, NJ, USA, 2017. IEEE Press.

A. Ketterlin and P. Clauss. Profiling data-dependence to assist paral-
lelization: Framework, scope, and optimization. In Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-45, pages 437-448, Washington, DC, USA, 2012. IEEE
Computer Society.

M. Kim, N. B. Lakshminarayana, H. Kim, and C.-K. Luk. Sd3: An
efficient dynamic data-dependence profiling mechanism. IEEE Trans.
Comput., 62(12):2516-2530, Dec. 2013.

M. H. Kim. A new iteration mechanism for the C++ programming
language. SIGPLAN Not., 30(1):20-26, Jan. 1995.

F.Li, A. Pop, and A. Cohen. Automatic extraction of coarse-grained
data-flow threads from imperative programs. IEEE Micro, 32(4):19-31,
July 2012.

S. P. Midkiff. Automatic Parallelization: An Overview of Fundamental
Compiler Techniques. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2012.

N. Murphy, T. Jones, R. Mullins, and S. Campanoni. Performance im-
plications of transient loop-carried data dependences in automatically
parallelized loops. In Proceedings of the 25th International Conference
on Compiler Construction, CC 2016, pages 23-33, New York, NY, USA,
2016. ACM.

E. M. Nystrom, R. D.-C. Juy, and W.-M. W. Hwuz. Characterization of
repeating data access patterns in integer benchmarks. In Proceedings of
the 28th International Symposium on Computer Architecture, September
2001.

G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread ex-
traction with decoupled software pipelining. In Proceedings of the 38th

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

CC’18, February 24-25, 2018, Vienna, Austria

Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 38, pages 105-118, Washington, DC, USA, 2005. IEEE Computer
Society.

V. Packirisamy, A. Zhai, W.-C. Hsu, P. C. Yew, and T. F. Ngai. Explor-
ing speculative parallelism in SPEC2006. In 2009 IEEE International
Symposium on Performance Analysis of Systems and Software, pages
77-88, April 2009.

P. Pirkelbauer, D. Dechev, and B. Stroustrup. Source code rejuvenation
is not refactoring. In Proceedings of the 36th Conference on Current
Trends in Theory and Practice of Computer Science, SOFSEM ’10, pages
639-650, Berlin, Heidelberg, 2010. Springer-Verlag.

B. Pottenger and R. Eigenmann. Idiom recognition in the Polaris
parallelizing compiler. In Proceedings of the 9th International Conference
on Supercomputing, ICS *95, pages 444-448, New York, NY, USA, 1995.
ACM.

W. M. Pottenger. Induction variable substitution and reduction recog-
nition in The Polaris parallelizing compiler. Master’s thesis, University
of Illinois at Urbana-Champaign, 1995.

D. Quinlan, M. Schordan, Q. Yi, and B. R. de Supinski. Semantic-
driven parallelization of loops operating on user-defined containers.
In L. Rauchwerger, editor, Languages and Compilers for Parallel Com-
puting: 16th International Workshop, LCPC 2003, College Station, TX,
USA, October 2-4, 2003. Revised Papers, pages 524-538, Berlin, Heidel-
berg, 2004. Springer Berlin Heidelberg.

G. Ramalingam. Identifying loops in almost linear time. ACM Trans.
Program. Lang. Syst., 21(2):175-188, Mar. 1999.

R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decou-
pled software pipelining with the synchronization array. In Proceedings
of the 13th International Conference on Parallel Architectures and Com-
pilation Techniques, PACT 04, pages 177-188, Washington, DC, USA,
2004. IEEE Computer Society.

T. Reps. Undecidability of context-sensitive data-dependence analysis.
ACM Trans. Program. Lang. Syst., 22(1):162-186, Jan. 2000.

M. C. Rinard and P. C. Diniz. Commutativity analysis: A new analysis
technique for parallelizing compilers. ACM Trans. Program. Lang. Syst.,
19(6):942-991, Nov. 1997.

R. E. Rodrigues, P. Alves, F. Pereira, and L. Gonnord. Real-World Loops
are Easy to Predict: A Case Study. In Workshop on Software Termination
(WST’14), Vienna, Austria, July 2014.

L. Torczon and K. Cooper. Engineering A Compiler. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2011.

G. Tournavitis, Z. Wang, B. Franke, and M. F. P. O’Boyle. Towards
a holistic approach to auto-parallelization: integrating profile-driven
parallelism detection and machine-learning based mapping. In PLDI,
pages 177-187. ACM, 2009.

N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I August. Speculative decoupled software pipelining. In Proceedings
of the 16th International Conference on Parallel Architecture and Compi-
lation Techniques, PACT ’07, pages 49-59, Washington, DC, USA, 2007.
IEEE Computer Society.

T.J. K. E. von Koch and B. Franke. Variability of data dependences and
control flow. In 2014 IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2014, Monterey, CA, USA,
March 23-25, 2014, pages 180-189. IEEE Computer Society, 2014.

R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. In Proceedings
of the 9th International Conference on Compiler Construction, CC 00,
pages 1-17, London, UK, UK, 2000. Springer-Verlag.

F. J. Winterstein, S. R. Bayliss, and G. A. Constantinides. Separation
logic for high-level synthesis. ACM Trans. Reconfigurable Technol. Syst.,
9(2):10:1-10:23, Dec. 2015.

H. Yu and Z. Li. Fast loop-level data dependence profiling. In Proceed-
ings of the 26th ACM International Conference on Supercomputing, ICS
’12, pages 37-46, New York, NY, USA, 2012. ACM.

	Abstract
	1 Introduction
	1.1 Motivating Examples and Use Cases
	1.2 Contributions

	2 Background
	3 Methodology
	3.1 Definitions
	3.2 Static Analysis
	3.3 Incorporating Profiling Information
	3.4 Implementation

	4 Evaluation
	5 Related Work
	6 Summary and Conclusions
	References

