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ABSTRACT

Acoustic source localization (ASL) is an important problem.
Despite much attention over the past few decades, rapid and
robust ASL still remains elusive. A popular approach is to
use a circular array of microphones to record the acoustic
signal followed by some form of optimization to deduce the
most likely location of the source. In this paper, we study
the impact of the configuration of microphones on the accu-
racy of localization. We perform experiments using simula-
tion as well as real measurements using a 72−microphone
acoustic camera which confirm that circular configurations
lead to higher localization error, than spiral and wheel config-
urations when considering large regions of space. Moreover,
the configuration of choice is intricately tied to the optimiza-
tion scheme. We show that direct optimization of well known
formulations for ASL yield errors similar to the state of the
art (steered response power) with 6× less computation.

Index Terms— 3D acoustic source localization, micro-
phone array configuration

1. INTRODUCTION
The problem of estimating the 3D position of objects is called
localization. There has been tremendous advancement in ro-
bust localisation of objects using visual features. The use of
audio sensing has important advantages such as reliability un-
der poor illumination conditions, relatively inexpensive sens-
ing equipment and the prevalence of signal processing (1D)
tools. There have been attempts to use audio localization ex-
amples include: in the automotive industry [1], in robotics [2]
and in scene understanding [3]. Acoustic source localization
(ASL) is typically achieved by leveraging known discrepan-
cies in measurements of the emitted signal at multiple loca-
tions. ASL algorithms may exploit differences in time, am-
plitude or in both time and amplitude.

Some approaches to ASL, such as steered response
power [4, 5], directly solve for the most likely position of
the source amongst a grid of candidate locations. ‘‘Indirect”
methods, on the other hand, first estimate the times of arrival
(TOA) at the sensors (microphones) or time differences of
arrival (TDOA) across pairs of microphones and then use
this information to deduce the most likely position of the

source via multilateration [6, 7]. Although indirect methods
are simpler to express as a least squares optimization [8],
the resulting objective function is non-convex and often does
not lend itself to analytical solution. Various reformulations
of these using weighted least squares, linear correction least
squares, constrained least squares. convex constrained least
squares [9], total weighted least squares [10] and weight
constrained total least squares [11] have been analyzed. Di-
rect methods are believed to be more robust to noise and
reverberation [4].

A uniform circular array of microphones[12, 13] along
with a ring configuration [14] is a common choice for taking
measurements since azimuthal angles to sources are consid-
ered more important than elevation. The advantage of acous-
tic cameras with such arrays is that they can focus on specific
targets [15, 16], which is useful for speech processing. The
resolution in elevation has recently shown to be improved by
using a 2.5D circular array [17]. While there have been a few
results on the use of spherical arrays, multiple spheres [18],
randomly placed microphones [19, 20] and spiral configura-
tions [21], there is surprisingly little analysis of the impact of
the geometric structure of the measurement array on particu-
lar optimization algorithms for ASL.

In this paper, we adopt an optimization (sequential least
squares programming) approach for indirect ASL. We focus
on the core problem of localizing a single source. Other work
towards estimating TDOA for multiple sources are directly
applicable. Although the objective function we choose is non-
linear and non-convex, we show using simulation as well as
real data that the method is robust to noise and reverberation.
Our experiments verify that it is comparable to SRP for real
data while being 6× more efficient to compute. Using this
optimization scheme, we study the localization error result-
ing from different geometric structure for the microphone ar-
ray. Our results show that circular arrays produce the highest
errors (across space) and are therefore least desirable.

2. OBJECTIVE FUNCTION AND OPTIMIZATION

Consider a source at location s that emits an acoustic signal at
some arbitrary time t∗. Let the measurements of the emitted
sound be recorded by an array of M microphones located at
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chirp 14.7 (25.9) 3 (0.2) 14.2 (25.9) 0.5 (0.01) 12.1 (23.2) 4.5 (0.03)
gunshot 11.0 (13.3) 2.58 (0.2) 9.6 (12.8) 0.4 (0.02) 6.4 (3.5) 2.4 (0.02)
dogbark 16.0 (28.5) 2.49 (0.1) 58.9 (38.8) 0.4 (0.02) 48.5 (44.6) 2.4 (0.02)
speech 13.2 (21.1) 2.63 (0.1) 15.2 (23.5) 0.4 (0.02) 12.9 (22.5) 2.5 (0.02)

(a) Setup (b) Errors and computation time comparison across all microphone configurations

Fig. 1. (a) Our setup and coordinate system. (b) Table comparing errors and time for SRP with TDOA optimization using 100
of the C72

2 mic pairs (middle) and using all pairs. Standard deviations are shown within parantheses.

mi, i = 1, 2, ...,M and the times taken by the signal to travel
from s to mi be ti. If the distance between the source and the
ith microphone is di ≡ ‖mi − s‖, then ti = di/c+ t∗ where
c is the speed of sound in air and t∗ is not generally known.
Time of arrival In the case that the times of arrival at the
microphones are measured as t̃i, we pose the ASL problem
as one of jointly determining s and t∗ as

O1 : arg min
s,t∗

√√√√ M∑
i=1

(t̃i − ti)2 (1)

Time Difference of Arrival (TDOA) Another possibility is
to note the difference in measured times between a pair of mi-
crophones, τ̃ij ≡ t̃i− t̃j , or TDOA. The literature is rich with
methods to estimate TDOA. We choose the popular General-
ized Cross-Correlation Phase Transform (GCC-PHAT) [22].
Then, we perform ASL by optimizing [8]:

O2 : arg min
s

√√√√ M∑
i=1

M∑
j=1

(
τ̃ij − τij

)2
, (2)

where τij = (ti − tj).
For both formulations O1 and O2, since we know that the

solution is constrained by the dimensions of the room, we
supply these constraints as linear inequalities. We solve the
constrained non-linear optimization using Sequential Least
Squares Programming (SLSQP) which is an interative proce-
dure. In each iteration, a constrained quadratic programming
sub-problem is constructed so that the chain of solutions con-
verges to a local mininum [23]. Each subproblem replaces
the objective function with a local, quadratic approximation
subject to local affine approximations of the constraints. We
used a Broyden-Fletcher-Goldfarb-Shanno (BFGS) approxi-
mation to update the Hessian matrix required for the local
quadratic approximation and chose the step length using an
L1 test function. The optimizer used to solve each subprob-
lem is a modified version of NNLS [24]. We used the follow-
ing parameters as inputs to the optimizer: iterations = 1500,
accuracy = 1e-20, epsilon = 1.49e-08.

2.1. Experiments

We performed experiments using simulation as well as real
measurements using an gfai tech AC Pro Acoustic Camera
system consisting of 72 reconfigurable microphones sampling

at 192kHz. We used three different microphone configura-
tions: ring, wheel and spiral. Using each configuration, we
measured recorded sounds played by a Bose Soundlink Blue-
tooth Mobile Speaker II, Model 404600 in five different cali-
brated positions within a room of size 12m× 7m× 3m. The
speaker was positioned, using a tripod, to be on the plane
y = −0.32 for all five positions A, B, C, D and E. For
each position we acquired three recordings. Fig. 1 illustrates
the setup. We repeated the experiments for 4 different audio
signals [25]: chirp, gunshot, dogbark and speech.
Simulation: noisy TOA and TDOA We tested the robust-
ness of the proposed optimization by evaluating the relative
error in localization for different simulated degrees of noise σ
in the estimated TOA and TDOA values. To enable compar-
ison across multiple sources locations, we express σ for each
source location as a percentage of the time taken for sound to
travel from s to the center of the microphone array O. We use
a Gaussian model for the noise in simulated TOA t̃i = ti + η
and for TDOA τ̃ij = τ + η where

η ∼ N
(
0,

σ

100

‖s−O‖
c

)
. (3)

We measure relative error, expressed as a percentage of the
distance from the source to the camera, as the evaluation met-
ric for the accuracy of localization:

error(%) =
‖s− s̃‖
‖s−O‖

∗ 100, (4)

where s̃ is the source location estimated by the optimization.
We compared optimizations for TOA and TDOA with

multilateration [7]. Fig. 3 depicts plots of relative localiza-
tion error (Y-axis) as the noise in the simulation is increased
(X-axis). We performed two versions of the experiment:
First, assuming that microphone and the sound source are
synchronised (t∗ = 0 in Fig. 3a), then without that assump-
tion by setting t∗ = 0.01s.
Simulation: microphone configuration We estimated the
localization error at different points in space. Since it would
be rather tedious to repeat real measurements over a dense
grid of source locations, we obtained this via simulation.
For each source position on a dense grid, we estimated the
localization errors for three microphone configurations. The
three configurations were identical to those used for real
measurements with our acoustic camera, consisting of 72
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Fig. 2. The plots show simulated relative localization error (Y-axes) for increasing degrees of noise (X-axes) observed at three
source locations: P1: (-2,-1,4), P2: (-1,0.5,3), P3: (0.4,0.7,1.05).
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Fig. 3. Plots comparing relative localization errors using
O1 (TOA), O2 (TDOA) and multilateration [7] (a) when the
speaker is synchronized with microphones and (b) when the
time of emission is unknown.
microphones. Each configuration results in different TOA
and TDOA values, due to the different microphone posi-
tions. When noise is added to these TOA and TDOA val-
ues, each configuration reveals a characteristic heat-map
for localization error over space. Fig. 4 visualizes these
heatmaps for σ = 100% simulated error, along with the
corresponding error histograms. The errors were averaged
over 100 trials for each grid point. We chose a grid over
x = [−2, 2], z = [0, 4] and y = −0.32, with a resolution of
10 cm, so that it matches our experiments with real data. For
three positions P1 ≡ (−2,−1, 4), P2 ≡ (−1, 0.5, 3) and
P3 ≡ (0.4, 0.7, 1.05), we plotted error as a function of noise
for four different microphone configurations (fig. 2).
Real Data: Comparison with SRP We used optimiza-
tion scheme O2 to localize a speaker placed in five po-
sitions A ≡ (2.0,−0.32, 0.5), B ≡ (1.5,−0.32, 2.0),
C ≡ (0.0,−0.32, 1.5), D ≡ (−1.5,−0.32, 1.0) and E ≡
(−1.5,−0.32, 3.5). Fig. 5 plots relative errors (Y-axes) for
three different microphone configurations (X-axes) at the
chosen five locations (columns). The three rows of plots cor-
respond to results obtained using SLSQP, SRP and Bayesian
optimization respectively. Errorbars (standard deviation) are
shown with black lines on top of the bars.

2.2. Results and discussion

Microphone configurations Our results overwhelmingly
suggests that circular (ring configuration) arrays are worse
than spiral or wheel configurations when considering relative

localization error over a wide range of positions. Although
slightly exaggerated (100% noise), our simulation results
(fig. 4) show regions (top view) that are error prone when
using circular arrays. This is also true for our real measure-
ments (fig. 5), where the results obtained for position C are
worse for ring than for wheel or spiral using any of the three
localization techniques. The yellow bars in the first row show
that the errors observed with real data correspond to errors
obtained with about 10% noise in our simulation.
Comparison with multilateration Our experiments revealed
that both optimization strategies O1 and O2 result in lower
relative errors than state of the art multilateration [7]. This
is particularly true when the time of emission of the signal is
unknown and when the emitter is not synchronized with the
microphones (t∗ 6= 0). When t∗ = 0, we observed that our
implementation of the multilateration algorithm has similar
accuracy to optimizing O1 (TOA). Our proposed approach to
optimizing O2 (TDOA) has the least relative errors and re-
mains unaffected by t∗.
Comparison with SRP A common criticism that is faced by
indirect methods is that the optimization is not as robust as
direct methods such as SRP. However, our results (Table 1)
show that our localization error is comparable to SRP but is
more efficient. For this comparison, we used an efficient im-
plementation of SRP that leverages stochastic region contrac-
tion [5] and a naiv̈e implementation of our optimization in
python. Just as with their method, the accuracy of the pro-
posed optimization may also be traded for performance.
Accuracy vs performance One way to approximate the lo-
calization is to modify the nested summation in O2 to only
consider some of the microphone pairs. We studied conver-
gence plots of localization error for different source positions,
as the number of microphone pairs is increased from just 1
pair to all pairs (C72

2 ). We observed that the error generally
drops below 10% for 100 mic pairs (see Table 1 for the corre-
sponding computation times), except for the dogbark signal.
Figure 6a plots relative error averaged across spatial locations
for all four test signals using only 100 microphone pairs.
Bayesian optimization We tested a Bayesian optimizer with
O2 as its loss function (κ = 1). This took an order of magni-
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Fig. 5. Localization Error using SQLP and simulation with 10% noise (top row) SRP (2nd row) and Bayesian Optimization
with exploitation (3rd row)
tude longer than SQLSP and the resulting errors were larger.
We tested with various degrees of the κ parameter to trade-off
exploitation versus exploration, speculating that the poor per-
formance was due to the presence of multiple local minima.
However, the plot (fig. 6b) shows that exploitation (κ = 1)
performs better than exploration (κ = 10) in most cases. The
number of iterations and tolerance were set so that optimizer
converged to the reported solutions, suggesting that the prob-
lem is not due to multiple local minima.
Limitation One of the drawbacks of indirect localization
achieved by minimizing O2 is its dependency on the esti-
mated TDOA values. Although our results show that GCC-
PHAT is accurate enough to yield localization errors compa-
rable to SRP, the former performs worse when dealing with
signals with repeating patterns such as the barking of a dog
(red bar in fig. 5). Interestingly, our localization was more
robust to reverberation (when the source was placed at room
boundaries) than to repetitive macro-structures. Perhaps us-

ing full signal correlation matrices, as adopted by spectral
estimation techniques, would resolve this problem.
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