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ABSTRACT 

Piezoresistive microsensors are considered to be essential components of the future wearable 

electronic devices. However, the expensive cost, complex fabrication technology, poor stability, 
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 2

and low yield have limited their developments for practical applications. Here we present a cost-

effective, relatively simple, and high-yield fabrication approach to construct highly sensitive and 

ultra-stable Piezoresistive sensors using a bio-inspired hierarchically structured 

graphite/polydimethylsiloxane (PDMS) composite as the active layer. In the fabrication, a 

commercially available sandpaper is employed as the mold to develop the hierarchical structure. 

Our devices exhibit fascinating performance including an ultra-high sensitivity (64.3 kPa-1), fast 

response time (< 8 ms), low limit of detection (LOD) of 0.9 Pa, long-term durability (> 100,000 

cycles) and high ambient stability (> 1 year). The applications of these devices in sensing radial 

artery pulses, acoustic vibrations, and human body motion are demonstrated, exhibiting their 

enormous potential use in real-time healthcare monitoring and robotic tactile sensing. 
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 3

INTRODUCTION 

Flexible Piezoresistive sensors with high sensitivity, excellent stability, and low operating 

voltage have attracted tremendous attention due to their potential applications in medical 

diagnostics, artificial skin, and touch-on displays.1-6 In general, most of the reported 

Piezoresistive sensors are based on assessing changes in capacitance,2,7-14 resistivity,15-26 and 

piezoelectricity27,28 in response to external pressure. Among these three configurations, 

piezoresistive device, which transduces the external pressure into corresponding output electrical 

resistance, has been widely investigated because of its simple device structure and required 

circuit for data acquisition. Recently, great efforts have been paid to enhance the responsivity, 

sensitivity, frequency response, and workable pressure range of Piezoresistive sensors through 

material optimization and excellent structural design.6,13,19,24,29-37 Remarkably, it has been 

demonstrated that, in the fabrication of Piezoresistive sensors, patterning the surface of the 

sensing layer with microstructures is an effective approach to obtain a high sensitivity and a low 

detection limit.2,15,25,38-41 For example, the sensitivity of a capacitive pressure sensor based on 

microstructured PDMS film exhibited about 30 times higher than that of the unstructured one in 

the same pressure range.2 Additionally, the relaxation time of the Piezoresistive sensor with 

microstructured PDMS film was about 1000 times faster than that fabricated on unstructured 

film.2 However, the microstructures were mainly obtained by photolithography process, which is 

expensive and time-consuming. To solve the problem mentioned above, developing a simple, 

cost-effective, yet efficient method to get the microstructures is necessary. 

Nature has developed various materials with different microstructures in the process of 

evolution, which can motivate scientists’ inspiration for materials design. Among these 

structures, those with hierarchical structures usually present advantageous properties. For 
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 4

example, hierarchical structures on the tentacles of the octopus are of vital importance for the 

survival of this mollusc: the hierarchical structures on the tentacles are used to catch prey and for 

locomotion. Hierarchical structures on the inside surface of the intestine of animals increase the 

surface area and realize an easy absorption of nutrition. These hierarchical microstructures in 

biological materials have inspired the design of artificial hierarchically microstructured materials 

with superior properties. For example, artificial microstructured materials with superhydrophobic 

surfaces have been developed by mimicking the hierarchical microstructures from lotus leaves.42 

Recently, these hierarchical microstructures from nature have inspired the design of artificial 

hierarchical structures in the fabrication of Piezoresistive sensors. For example, bio-inspired 

hierarchical microstructure based Piezoresistive sensor with a linear and high sensitivity of 14 

kPa-1 has been reported.15 However, in this technique, the patterning procedure is sophisticated 

and expensive, requiring multi-steps including photolithography, selective wet etching, and high-

temperature thermal oxidation. In 2015, Su et al. demonstrated a bio-inspired pressure sensor 

with an ultra-high sensitivity of 50.17 kPa-1 using natural leaves of plants as the modeling 

template,39 but the fabrication process was demonstrated only in a small scale and costly electric 

beam evaporation was required to deposit the Ti/Au active layer. For future industrial 

applications, it is in demand for developing a simple, large-area-compatible, and cost-effective 

approach for patterning procedure to fabricate hierarchically microstructured sensing layer for 

high performance Piezoresistive sensors.  

In line with this need, herein, we present a cost-effective and large-area-compatible strategy to 

fabricate graphite/PMDS composite (denoted as GPC) conducting film with bio-inspired 

hierarchically structured microdomes for piezoresistive pressure sensors. Commercially available 

sandpapers with hierarchical surface structures are introduced as the molding template to 
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 5

fabricate hierarchically structured GPC film which is subsequently incorporated into pressure 

sensors. Compared with conventional approaches,9,11 our proposed method is simple, cost-

effective, environmental-friendly, and suitable for mass-production. The pressure sensors based 

on hierarchically structured GPC film exhibit a phenomenal sensitivity of 64.3 and 12.4 kPa-1 in 

the pressure range of 0-1 and 1-10 kPa, respectively. Additionally, the pressure sensors show 

negligible loading-unloading output signal variations after 100,000 cycles, a response time as 

fast as 8 ms, a low LOD of 0.9 Pa, and an excellent ambient stability of more than 1 year, which 

is crucial for practical applications. The high sensitivity and fast response time enable our 

sensors to record transient pulse waves non-invasively in real time. The pulse waves obtained by 

our sensors clearly reveal the widely used parameter for arterial stiffness diagnosis, 

demonstrating their potential for prognostication of cardiovascular diseases. As proof of concept, 

we further demonstrate their excellent performance in detecting acoustic vibrations, spatial 

pressure distribution, and subtle motions of human body. 

EXPERIMENTAL SECTION 

Materials. Polydimethylsiloxane (PDMS, Sylgard 184) was purchased from Dow Corning. 

Graphite powder with a diameter of 10-25 µm was ordered from Beijing Jinglong Tetan 

Technology Co., Ltd. Indium-tin oxide (ITO) coated poly(ethylene terephthalate) (PET) sheets 

(200 µm thick) were obtained from Sigma Aldrich. Sandpaper (120#, Flying Parrot Brand, 

Korea) was from supermarket. All materials were used as received without further purification. 

Preparation of graphite/PMDS ink. PDMS prepolymer was prepared by mixing the base 

monomer with the curing agent (the weight ratio of base monomer to curing agent was 5:1), 

followed by thoroughly stirring with a mechanical agitator for 5 min. To prepare GPC inks with 
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 6

different concentrations (5, 15, 25, 35, 45 and 55 wt%) of graphite powder, various masses of 

graphite powder were slowly added to 5 g PDMS prepolymer, followed by mechanical agitation 

for 30 min. 

Fabrication of GPC film and pressure sensors. Firstly, the surface of sandpaper and PET 

substrate were cleaned with ethanol followed by drying with nitrogen gas. Secondly, two PET 

stripes (thickness ~240 µm) were attached to the edges of the sandpaper with assistance of 

polyimide (PI) tape to define the thickness of GPC film. Thirdly, GPC ink was casted onto 

sandpaper mold template and ITO-coated PET (ITO/PET) film was laminated on top (the ITO 

side faced the ink). Then, roller-bar-assisted pressing was carried out to help to form a uniform 

film between sandpaper and ITO/PET film. After that, the sample was sandwiched between two 

steel plates and thermally annealed at 90 oC for 1 h to solidify the composite film. The steel 

plates were employed to avoid the deformations of PET and sandpaper in the process of thermal 

annealing. The hierarchically structured GPC film on ITO/PET film was obtained after careful 

peeling off from sandpaper. Finally, the composite film was cut into proper size and two pieces 

of the composite films with hierarchical structures were placed face-to-face, with copper wires 

connecting to the edge of ITO-coated side to form the electrodes, achieving flexible pressure 

sensors. The overall fabrication procedure was depicted in Figure 1a. The fabrication procedure 

of flat GPC film and pressure sensor based on flat GPC film was similar with the hierarchically 

structured ones except that the flat GPC film was fabricated on a PET sheet instead of sandpaper 

mold.  

Fabrication of the pressure sensor arrays. Firstly, the as prepared GPC conductive film was 

cut into small pieces (5 × 5 mm2), followed by transferring to clean ITO/PET stripes (60 × 5 

mm2) with tweezers. Then copper wires were connected to every bar of the ITO/PET with 
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 7

conductive tape and a conventional crossbar configuration was employed to form the pressure 

sensor arrays (Figure 7). 

Characterization of the GPC film. The morphology of graphite powder was characterized by 

scanning electron microscopy (SEM, 15 kV, JEOL, JSM-6490), and the crystal structures were 

characterized by X-ray diffractometer (XRD, Bruker, D8 Phaser) using Cu Kα radiation (λ 

=1.5418 Å) and Raman Spectroscopy (Reishaw 2000). The surface microstructures and cross-

section of hierarchically structured graphite/PDMS films, and the cross-section of pristine PDMS 

were observed with SEM.  

Performance measurements of the pressure sensor and arrays. The current responses to 

pressure were recorded with a computer controlled testing system including a force gauge (Mark-

10) and motorized test stand (Mark-10). For the long-term durability measurement of devices, 

the current changes are measured for every 20,000 loading/unloading cycles and a dataset of 200 

cycles are presented in every recording under a pressure of 1 kPa and a frequency of 1 Hz. For 

monitoring the wrist pulses before (normal condition) and after physical exercise, the pressure 

sensor has been fixed on the wrist artery of a volunteer with the assistance of PI tape. For data 

collection, the sensor was attached on the wrist during the whole process and then stopped to 

measure the signals of wrist pulses without rest. For the acoustic vibration pressure sensing, the 

sensor was affixed onto the speaker which was connected to a laptop. For the ambient stability 

measurement, the sensor was exposed in ambient condition without any capsulation for 1 year, 

and then the sensor was attached to the same volunteer’s wrist to measure the pulse signals. The 

applied voltage between two electrodes was 1 V and all the current-time characteristics were 

recorded by the Agilent 4155C Semiconductor Parameter Analyzer in ambient condition. 
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 8

RESULTS AND DISCUSSION 

Device Fabrication 

Commercially available graphite powder and sandpaper are employed as the conductive 

component and molding template, respectively, for fabrication of the bio-inspired, hierarchically 

structured GPC film. The optical image and the characterization of the graphite powder are 

depicted in Figure S1 (Supporting Information). The overall fabrication procedures of a 

hierarchically structured GPC film and pressure sensor are illustrated in Figure 1a. First, the 

PDMS elastomer and its corresponding curing agent are mixed thoroughly with a mass ratio of 

5:1. Second, the graphite powder is slowly added into the PDMS solution with a graphite 

concentration of 45 weight percent (wt %) and stirred for 30 minutes by mechanical agitation. 

Third, the mixed composite ink is then drop-casted onto the sandpaper to create hierarchically 

structured surface. Fourth, an indium-tin oxide (ITO) on poly(ethylene terephthalate) (PET) film 

is laminated above the ink (the ITO side faced the ink) consisting of two thin PET strips as 

spacers for defining the thickness of the fabricated GPC film. Fifth, a roller-bar-assisted pressing 

is carried out to ensure the formation of a uniform film, sandwiched between the sandpaper and 

the ITO/PET film. Sixth, the sample is thermally annealed at 90 oC for 1 h to solidify the 

composite film. Seventh, the hierarchically structured GPC film on ITO/PET film is obtained 

after carefully peeling off from the sandpaper (see the optical image in Figure 1b). Finally, the 

hierarchically structured GPC films on ITO/PET substrate are assembled into pressure sensors 

(see the optical image of the pressure sensor in inset of Figure 1b). The scanning electron 

microscopy (SEM) images of the sandpaper template are shown in Figure 1c and d, indicating 

the hierarchical structures of the template. Figure 1e shows the cross-sectional SEM image of the 

GPC film. In contrast with the pristine PDMS film, the graphite fillers are well confined by the 
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 9

PDMS elastomer and the GPC film has a thickness around 282 µm (Figure 1e and 

Supplementary Figure S2). Moreover, the top-view of the GPC film is also observed to  

 

Figure 1. (a) Schematic illustration showing the fabrication procedure of GPC pressure sensor. 

(b) Photograph of the flexible GPC film on PET substrate. Inset: a flexible pressure sensor on 

PET substrate. (c), (d) SEM images showing the surface morphology of the sandpaper mold 

template in different magnifications. (e) Cross-sectional view of the GPC film showing the 

thickness. (f), (g) SEM images showing the hierarchically structured surface of the GPC film 

molded from the sandpaper. 
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 10

investigate the surface morphologies (Figure 1f and g). Notably, the GPC film could well 

replicate the surface structures of the sandpaper template. It is also observed that the diameter of 

the large caverns is approximately 150 ± 50 µm and the diameter of the observed subtle caverns 

on surface is approximately 10 ± 5 µm. In consideration of the diameters of the subtle and large 

caverns, the microstructure could be modeled as a hierarchical structure. The piezoresistive 

pressure sensor device is then formed from two pieces of hierarchically structured GPC film as 

shown in Figure 1a. Two pieces of GPC film (the area of GPC film is 1 × 1 cm2) on ITO/PET 

substrate are placed face-to-face into an interlocked construction. The copper wires are anchored 

onto the top and bottom ITO electrodes to form the external electrical connections. The GPC 

film is designed to deform due to the external pressure eventually the contact area between the 

top and bottom GPC films are increased. The increased contact area decreases the overall 

resistance, therefore the current flowing through the GPC films increases due to the applied 

external pressure at a given voltage. For comparison, the control pressure sensor device based on 

the planar GPC film is prepared and the details are described in the experimental section. 

Additionally, the conductivity of the composite film can be well controlled by varying the mass 

concentration of graphite powder in the composite film, and the related control devices have also 

been fabricated (see the Experimental Section) and tested. 

Sensing Mechanism 

The mechanism of our pressure sensor is ascribed to the pressure-dependent contact between the 

top and bottom hierarchically microstructured surfaces (Supplementary Figure S3). Notably, 

unlike the films with regular-patterned surface,2 both the contact area and the contact pathways 

of these hierarchically structured GPC films increased when applied an external pressure. 

Without pressure, very few humps make the contact between the top and bottom layers (see 

Page 10 of 31

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 11

Supplementary Figure S3a), resulting in a high contact resistance between the two layers. A 

related equivalent circuit scheme diagram is depicted (see Supplementary Figure S3b). The total 

resistance (RTot) of the circuit is equal to the sum of the resistance of the top film (RTF), resistance 

of the bottom film (RBF), and the contact resistance (RC). In comparison with the previous results 

on the regularly patterned structures,2,3 without pressure, the contact area is significantly 

decreased and RC is high, resulting in a small initial current, which is ideal for enhancing the 

sensitivity of the pressure sensors. The contact area between the top and bottom layer increases 

quickly when an external pressure is applied to the device, and in turn a significant resistance 

change is obtained (Supplementary Figure S3c and d). With a much larger external pressure, 

more bumps on the top and the bottom layers closely contact with each other to form more 

pathways, resulting in further reduced resistance and corresponding current enhancement. On 

unloading, these deformed structures would recover to their original shapes, and the resistance 

simultaneously increases to the initial value. 

Sensitivity, limit of detection, and operational stability 

To measure the resistance responses of our pressure sensor to the static and dynamic forces, a 

computer controlled testing system containing a force gauge connected to a motorized test stand 

and a semiconductor parameter analyzer has been used (Supplementary Figure S4). The force 

loaded on the sensor is preciously placed by the computer controlled force gauge and the 

electrical signals of the device are collected by the semiconductor parameter analyzer. As shown 

in Figure 2a, using the testing system (Inset of Figure 2a is the photograph of the testing system), 

the pressure sensitivity of the device has been measured under a wide range of applied pressures. 

The sensitivity S can be defined as: S = (∆I/Ioff)/∆P, where ∆I = (Ip-Ioff) is the current change, Ioff 

is the current at the initial stage without external loaded pressure, and ∆P is the change due to 
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 12

external pressure. As shown in Figure 2a, it is observed that the applied pressure influences the 

sensitivity and the curve could be divided into two regions based on the difference in sensitivity. 

In the low-pressure region (0 to 1 kPa), the sensitivity of the sensor is 64.3 kPa-1, and a 

sensitivity of 12.4 kPa-1 is realized at the region of high-pressure (1 to 10 kPa). The sensitivity of 

our hierarchically structured sensor is higher than most of the previously reported records in 

flexible piezoresistive pressure sensor devices.15,21,26 The relatively high sensitivity in this 

pressure range enables our proposed pressure sensors to detect the wrist pulses, acoustic 

vibrations, and subtle human body motions effectively. Compared with the sensors based on this 

type of hierarchical structure, those established on planar GPC films have a very poor sensitivity 

(Supplementary Figure S5a). For the control device based on the planar GPC film, more 

conductive pathways have been formed even without an external pressure, therefore a large Ioff 

and a limited change in contact area, resulting in a poor sensitivity. Furthermore, the effect of the 

concentration of the conductive component on sensitivity is also investigated (Supplementary 

Figure S5b). When the concentration of the conductive component is less than 25 wt%, the 

graphite fillers are isolated from each other by the PDMS elastomer, resulting in a very high 

resistance and low sensitivity to the external pressure. When the concentration of the conductive 

fillers is 45 wt%, the pressure sensor shows the highest sensitivity. It is also observed that the 

sensitivity of the device decreases when the concentration of the graphite powder is further 

increased. This phenomenon can be explained by the increased Young’s modulus of the sensing 

layer and correspondingly reduced flexibility when the concentration of the conductive 

component is further increased. Because of this, the pressure sensors are all based on 45 wt% 

GPC, unless otherwise stated.  
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Figure 2. (a) Current responses to the pressures in the range of 0-10 kPa, showing a sensitivity 

of 64.3 kPa-1 within 1 kPa and 12.4 kPa-1 in larger pressure region. Inset: photograph of the test 

stand and the force gauge. (b) The current response of the sensor to the pressure generated by the 

leaf (9 mg). Inset: photograph of the leaf on pressure sensor. (c) The durability test under a 

pressure of 1 kPa at a frequency of 1 Hz for 100,000 loading/unloading cycles. The changes in 

current are recorded after each 20,000 cycles and a dataset of 200 cycles are presented in each 

recording. (d) A part of the I-t curve is enlarged from figure c after 100,000 loading/unloading 

cycles. 

To prove the LOD of the sensor, the current responses are measured by loading/removal a small 

piece of plant leaf (9 mg; Figure 2b and inset of Figure 2b). Attractively, the device immediately 

responses to the subtle pressure change (~0.9 Pa) at 1 V as a supply voltage; and the LOD is 

comparable with that in previously reported studies. For example, the sensor with a sensing layer 
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of carbonized silk nanofiber membrane36 achieved a LOD of 0.8 Pa, and another one with 

microstructured conducting composites displayed a LOD of 1 Pa.15  

The long-term durability of the pressure sensor was investigated at 1 Hz under a loaded pressure 

of 1 kPa (Figure 2c). A high signal to noise ratio is observed and the current amplitude scarcely 

changed upon a prolonged process of 100,000 loading-unloading cycles. Figure 2d shows the 

magnified curves of the loading-unloading cycles at the ending stage of the long-term testing, 

and a negligible hysteresis is observed, indicating an excellent durability and fast response to the 

applied pressure. We may attribute the excellent durability to the stronger adhesion force 

between graphite and PDMS in the composite film than the previously reported structure with a 

conductive layer coated on a microstructured PDMS.25,43 In our experimental design, the graphite 

fillers are well dispersed inside the liquid PDMS and are tightly confined by the PDMS 

elastomer after the composites are cured. 

Frequency responses and relaxation time 

To evaluate the current responses of the pressure sensor devices to the dynamic forces with 

different frequencies, their sensing performance has been further characterized under a pressure 

of 3 kPa at different frequencies of 0.5, 1, and 2 Hz. As shown in Figure 3, the output electrical 

signals remain stable with negligible change in magnitude at frequencies from 0.5 to 2 Hz. To 

know the response rate, scarce hysteresis is observed and the result indicates that the pressure 

sensor can monitor ultrafast pressure signals in real time. For an abrupt unloading process, the 

relaxation time is only 8 ms (Supplementary Figure S6) from 200 to 0 Pa, which is even smaller 

than that of human skin (~30 to 50 ms).15,28 The fast response time may be attributed to the 

reduced viscoelastic effect and the hierarchical structures on the surface of the GPC film.44 
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Figure 3. (a), (b) and (c) Measurements of the output signals under 3 kPa at the frequency of 0.5, 

1 and 2 Hz, respectively. 

Real-time healthcare monitoring 

Atherosclerotic cardiovascular disease is one of the most serious diseases nowadays and can 

cause human death and disability. It is typically a consequence of blood vessel wall thickening 

and arterial stiffness change, which can be detected with the sensor by measuring the magnitude 

difference between the percussion waves (P-wave) and the tidal waves (T-wave). For the 

detection, a sensor is affixed over the radial artery of wrist with assistance of adhesive tape to 

demonstrate its potential applications for dynamic monitoring of human cardiovascular system 

(Figure 4a and Supplementary Movie 1). Figure 4b and c show the pulse waves sensed under 

before (normal condition) and after exercise, respectively. Under normal conditions, the wrist 

pulse for a person shows a regular pulse shape of 70 beats per minute (bpm). Following physical 

exercise, the pulse increases to 100 bpm with a change of pulse shape. As shown in Figure 4d, 

the radial artery pulse wave under normal condition is composed of three components: P-wave, 

T-wave, and D-wave (diastolic wave), where P-wave is the incident wave from the heartbeat, T-

wave is the reflected wave from the hand, and D-wave the reflected wave from the lower part of 

human body.45 The systolic augmentation index (AI) in the central arteries is used to diagnose 

arterial stiffness and is obtained from the P-wave and T-wave. The systolic AI in the central 
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Figure 4. (a) Photograph of the sensor device fixed on the wrist. (b) and (c) Arterial pulse waves 

of 28-year-old male measured under normal and exercise conditions, respectively. (d) Single 

signal waveform extracted from (b) and (c). 

arteries has direct relation with the age of people: a small AI indicates healthy blood vessels with 

a low stiffness. The detailed information to calculate the systolic AI is described in 

Supplementary Figure S7. An average AI value of a 28-year-old male volunteer is 59% from the 

pulse waveforms measured by our pressure sensor.  This value indicates the man does not have a 

vascular aging problem.46 By virtue of the good durability, fast response speed, and ultra-high 

sensitivity, our hierarchically structured GPC based pressure sensors are potential candidates for 

applications in the digital watch for noninvasive and real-time healthcare monitoring. 

Detection of acoustic vibrations 

Next, we further demonstrate that the hierarchically structured GPC based pressure sensors are 

able to detect acoustic vibrations. For this, we affix the sensor to a speaker that is connected to a 
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laptop (Supplementary Figure S8 and Supplementary Movie 2 and 3). Interestingly, tiny acoustic 

vibrations from the music could be clearly resolved (Figure 5a, b, and c). When different pieces 

of Chinese classical music, “CunZai” (denoted as Music 1), “ChunTianLi” (denoted as Music 2), 

and “JuHuaTai” (denoted as Music 3) are played, well-defined current waves have been 

obtained. Each piece of music is repeated for three times to investigate the reliability of the 

sensor.  

 

Figure 5. (a), (b),and (c) Current responses to three different pieces of Chinese classical music. 

Every piece of music played for three times.(d) Current responses to Music 1 and four different 

voice volumes (100, 70, 50, and 30%) were tested. (e) Photograph showing pressure sensor 

attached at the throat with assistance of woundplast for monitoring muscle movement and 

vibrations during speech. (f), (g), and (h) Current responses to the vibrations from different 

words, “Hello”, “Nature”, and “Pressure Sensor”. 
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Notably, the current response curves to the same music exhibit similar patterns, indicating an 

excellent reliability. Even when the voice volume of the music is reduced to 30%, the acoustic 

vibrational forces are still well detected, indicating the high sensitivity (Figure 5d and 

Supplementary Movie 3). For another demonstration in speech recognition, the sensor is attached 

to a volunteer’s throat for detecting the complicated epidermis/muscle movements and acoustic 

vibrations during speaking. When the volunteer speaks different words and phrase, such as 

“Hello”, “Nature”, and “Pressure Sensor”, distinct and repeatable patterns are obtained (Figure 

5e-h). As shown in Supplementary Figure S9, these test signals are made possible by two 

processes: epidermis/muscle movements and acoustic vibrations, indicating that our pressure 

sensors could be used for voice recognition and phonation rehabilitation exercise. 

Detection of subtle human body motions 

The potential applications of our pressure sensors in the machine/human interface interactions 

are further verified by affixing the sensor to different parts of human skin (finger and face) with 

PI tape (Figure 6). When the pressure sensor is attached on an index finger, and a pressure is 

applied to the pressure sensor while the volunteer bent her index finger. Once the index finger is 

moved to the flat state, the pressure applied to the sensor disappears and the resistance of the 

sensor goes back to its initial state. Figure 6a shows the continuous current responses by 

repeatedly changing the states of the finger from flat to bending state, revealing that our sensor 

could effectively detect the states of the finger. Figure 6b illustrates the current responses of the 

pressure sensor attached to the face. With expansion or relaxation of the facial muscle, a pressure 

is loaded or unloaded, respectively, resulting in a low or high resistance simultaneously. As a 

consequence, the duration of expansion and relaxation of the facial muscle movement is 

effectively distinguished. Although the human body motion is subtle, a very high signal-to-noise 
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pattern is detected by our pressure sensor, which indicates the potential application in biomedical 

rehabilitation. 

 

Figure 6. (a) Current responses to repetitive finger bending motion. The photograph (left) shows 

the states of the index finger. (b) Current responses to continuous relaxation and expansion of the 

facial muscle. The left photograph shows the relaxation and expansion of the facial muscle. 

Detection of spatial distribution of pressure 

For the practical applications of touch display and electronic skin (e-skin), there is an urgent 

demand to fabricate sensing arrays in large scale with a low cost. To demonstrate this, we have 

fabricated GPC film with hierarchical structures on PET substrate with a size of 12 × 12 cm2. 

Then the film has been cut into small pieces (5 × 5 mm2) and attached to the ITO/PET strips to 

form a 25 pixels sensor array using conventional crossbar configuration. Copper wires are 
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connected to each pixel for measurement. As shown in Figure 7a and b, without any external 

pressures to the pixels, all sensors show high resistance and low currents. When three different 

weights (1, 2, and 5 g), which are similar with gentle finger touch on human skin, are loaded on 

the sensor arrays (Figure 7c), the spatial distributions of pressure are clearly revealed by current 

mapping of sensor arrays (Figure 7d), indicating the great potential applications for e-skin. 

 

Figure 7. (a) Photographic image of large-area sensor arrays with 5 × 5 pixels. The scale bar is 5 

mm. (b) The current mapping for pressure distributions in (a). (c) Photograph of the pressure 

sensor array with different weights (1, 2, and 5 g) distributed on the pixelated sensor arrays. (d) 

The current mapping for pressure distributions for the weights in (c). 

Stability of hierarchically structured GPC-based pressure sensors 

For practical applications in wearable electronics, an excellent stability for the pressure sensor is 

desired. The stability of the pressure sensor device under extreme moisture environment was 
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studied. The pressure sensor devices were placed in ambient condition without encapsulation 

package measures for 1 year (humidity > 70%) and attached to human wrist for healthcare 

monitoring test. As shown in Figure S10 (Supporting Information), the P-wave and D-wave 

could be still clearly distinguished by the sensor, indicating an excellent ambient stability of the 

pressure sensors. Above results indicate that our hierarchically structured GPC-based pressure 

sensor has the outstanding stability in moisture condition. 

CONCLUSIONS 

In summary, we have developed a simple, cost-effective, and large-area-compatible approach to 

fabricate bio-inspired, hierarchically structured GPC conducting film for highly-sensitive, fast-

responsive and ultra-stable pressure sensor. These novel pressure sensors exhibit spectacular 

sensitivity, a rapid response time, a low LOD under a low operation voltage of 1 V. More 

importantly, the pressure sensors demonstrate a long-term durability of over 100,000 loading-

unloading cycles and an excellent ambient stability of over 1 year. Due to outstanding sensing 

performance, the novel sensor is able to detect real-time human wrist pulses to monitor the 

cardiovascular system, which is attractive for wearable healthcare electronics applications. 

Additionally, they could detect force signals from acoustic vibrations, and subtle human body 

motions and could be integrated to make pixels sensor arrays to map spatial pressure 

distributions. Notably, no expensive materials and complicated equipment are required in the 

entire device fabrication process. We believe this work could effectively inspire the development 

of low-cost and high performance pressure sensors that could be integrated into various wearable 

and consumer electronics, such as medical diagnosis devices and e-skin.  
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Figure S2. Cross-sectional SEM image of (a) 45 wt% GPC film and (b) the pristine 

PDMS film. The scale bar is 50 µm. 

  



 

Figure S3. Sensing mechanism of the GPC pressure sensor. (a,b) Cross-sectional 

diagrams of the GPC pressure sensor without loading (a) and with loading (b). (c,d) 

are equivalent circuit diagrams of the pressure sensor without loading (a) and with 

loading (b). RTF, RBF and RC are corresponding to the top film resistance, bottom film 

resistance, and the contact resistance, respectively. 

Supplementary Note: Further description of the sensing mechanism. 

The total resistance RTot of the circuit can be expressed as following: 

RTot = RTF + RC + RBF, 

It should be noted that the value of contact resistance RC is much larger than that of 

the film resistance (RTF, RBF), so the total resistance is dominated by RC. Without 

pressure, there is high Rc between the top and bottom films, therefore a high RTot and 

small current when applied a voltage. With the external pressure, the beforehand 

contacted humps deform to obtain a larger contact area and the short humps begin to 

contact with each other to form more pathways, resulting in a low total resistance. 

Therefore, a significant resistance change is realized in comparison with that without 

pressure.   



 

Figure S4. Schematic illustration of the measurement setup. 

 

  



 

Figure S5. (a) Current responses to the loading-unloading cycles under a pressure of 

1 kPa for the device based on the flat GPC film (graphite powder~45 wt%). (b) The 

current responses for the pressure sensors with different graphite concentrations. The 

loading pressure is 1 kPa. 

  



 

Figure S6. Current response to the abrupt unloading process from 200 to 0 Pa and the 

right figure shows a relaxation time within 8 ms. 

  



 

Figure S7. Calculation of AI. 

Supplementary Note: 

The systolic augmentation index (AI) is one of the important parameters that can 

suggest the health conditions of the cardiovascular system. The value of AI can be 

extracted by the following expression: 

Radial	AI 	
SBP2 � DBP

SBP1 � DBP
�%� 

where SBP2 and SBP1 are two systolic blood pressure peaks, and DBP is the diastolic 

blood pressure. 

  



 

Figure S8. Photograph of the pressure sensor attached on a speaker.The pressure 

sensor was attached to a louder speaker with assistance of PI tape. 

  



 

Figure S9. Detection of vocal vibration and muscle movement while speaking. 

Supplementary Note:  

The black curves are the measurement results while speaking “Hello”, “Nature”, and 

“Pressure Sensor”, respectively. The recorded curves (black) are supposed to be 

composed of two processes: muscle movement (red) and acoustic vibration (blue), 

indicating the potential of our sensor for the applications in voice recognition and 

phonation rehabilitation exercise.  



 

Figure S10. Arterial pulse waves under normal condition measured with the pressure 

sensor device stored in ambient condition for 1 year. The right figure is the enlarged 

view of one single pulse waveform. 

Supplementary Note: 

The sensor device was stored in ambient condition for 1 year without further 

encapsulation protection (humidity > 70%). The device was attached to the wrist of 

the same volunteer for the wrist pulse measurement. As shown in Figure S10,  The 

calculated AI was 60%, which indicated that the cardiovascular system of the 

volunteer kept a healthy condition in the past 1 year. 
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