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The impact of global dietary guidelines on 1 

climate change 2 
 3 

 4 

Abstract 5 

The global food system faces an ambitious challenge in meeting nutritional demands whilst 6 

reducing sector greenhouse gas emissions. These challenges exemplify dietary 7 

inequalities—an issue countries have committed to ending in accord with the Sustainable 8 

Development Goals (by 2030). Achieving this will require a convergence of global diets 9 

towards healthy, sustainable guidelines. Here we have assessed the implications of dietary 10 

guidelines (the World Health Organization, USA, Australian, Canadian, German Chinese and 11 

Indian recommendations) on global greenhouse gas emissions. Our results show a wide 12 

disparity in the emissions intensity of recommended healthy diets, ranging from 687 kg of 13 

carbon dioxide equivalents (CO2e) capita-1yr-1 for the guideline Indian diet to the 1579 14 

kgCO2e capita-1yr-1 in the USA. Most of this variability is introduced in recommended dairy 15 

intake. Global convergence towards the recommended USA or Australian diet would result in 16 

increased greenhouse gas emissions relative to the average business-as-usual diet in 2050. 17 

The majority of current national guidelines are highly inconsistent with a 1.5°C target, and 18 

incompatible with a 2°C budget unless other sectors reach almost total decarbonisation by 19 

2050. Effective decarbonisation will require a major shift in not only dietary preferences, but 20 

also a reframing of the recommendations which underpin this transition. 21 

 22 
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 29 

1. Introduction 30 

The global food system is currently failing to meet basic nutritional needs (Haddad et al. 31 

2016), and is placing increasing pressure on planetary boundaries and resources (Alexander 32 

et al. 2016; Foley et al. 2011). Agriculture and food production systems are estimated to 33 

contribute more than one-quarter of global greenhouse gas (GHG) emissions (Edenhofer 34 

2014; Tubiello et al. 2014)—a contribution which is projected to increase through population 35 

and economic pressures (Alexandratos & Bruinsma 2012). United Nations (UN) projections 36 

of global population growth to 9.8 billion by 2050 (United Nations: Department of Social and 37 

Economic Affairs 2017) will place increasing pressure on the intensification of agricultural 38 

systems. Economic growth is also expected to drive dietary change towards more GHG-39 

intensive diets (Alexandratos & Bruinsma 2012). Business-as-usual (BAU) pathways are not 40 

only expected to exceed global climate targets for 2°C scenarios (Wellesley et al. 2015), but 41 

will also place unsustainable resource pressures on land (Alexander et al. 2016; Wirsenius 42 

et al. 2010), freshwater supplies (Mekonnen & Hoekstra 2016), and marine resources.  43 

 44 

Despite continued improvements in agricultural output (Foley et al. 2011), poor nutritional 45 

health remains a widespread, and in some cases, a growing issue (FAO et al. 2015). More 46 

than 800 million people are defined as undernourished, an estimated two billion suffer from 47 

micronutrient deficiencies, and 40 percent of adults globally are classified as overweight or 48 

obese (with increasing links to the incidence of non-communicable diseases—NCDs—such 49 

as cancer, stroke and heart disease)(FAO 2017b). This ‘triple burden’ of malnutrition is 50 

reflective of the large dietary inequalities which exist both between and within countries.  51 

 52 

To simultaneously meet the 2nd and 13th Sustainable Development Goals (SDGs), of ending 53 

malnutrition, and combating climate change (United Nations 2016) (in addition to meeting 54 

the international climate change mitigation target of 2°C (Wollenberg et al. 2016)), a 55 
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convergence of global diets towards more healthy and sustainable patterns is of pressing 56 

importance. The average diet across most high-income countries (FAO) is well in excess of 57 

WHO recommendations for caloric, meat and sugar consumption, with increased risk of 58 

NCDs and obesity (WHO 2015).  Conversely, the typical diet across many low and middle-59 

income nations (FAO) falls below quantity, quality and diversity requirements—increased 60 

intake of commodities such as meat, dairy, and fish are likely to improve health and social 61 

outcomes (FAO 2011; Rivera et al. 2003; Zotor et al. 2015). Agricultural production is also 62 

likely to become increasingly important for countries in meeting their climate change 63 

mitigation commitments (Elbehri, A. et al. 2017; The World Bank 2017)—a constructive 64 

means of defining and monitoring demand-side progress in the food sector will be essential 65 

for this. Convergence of national dietary patterns towards a healthy global recommended 66 

level may contribute to a significant reduction in the GHG emissions intensity and NCD risks 67 

of average high-income diets, and a healthy, sustainable improvement in low-income diets.  68 

 69 

There are currently no internationally agreed guidelines for what a simultaneously nutritious 70 

and environmentally sustainable mainstream human diet constitutes. A number of studies 71 

have shown that a transition towards pescetarian, vegetarian or vegan diets would result in 72 

significant GHG savings relative to meat-intensive diets (Tilman & Clark 2014; Springmann, 73 

Godfray, et al. 2016; Van Dooren et al. 2014; Scarborough et al. 2014). While the incidence 74 

of vegetarianism has shown some increase in developed economies (Beverland 2014), the 75 

adoption of more flexitarian or meat-reduction based dietary transitions have shown greater 76 

uptake and social acceptance (Dagevos & Voordouw 2013; De Boer et al. 2014). 77 

Convergence guidelines which recommend a reduction rather than elimination approach to 78 

meat may therefore be more effective in increasing dietary transition rates. Convergence 79 

towards a moderate mixed diet—rather than wholly plant-based diets—may also be 80 

important in balancing environmental concerns with health outcomes in low-income nations 81 

(where dietary diversity is often poor, and high-quality alternative protein products are often 82 

unavailable or expensive). Relative to sustainability-focussed dietary advice, dietary health 83 



 

4 
 

guidelines are better-established, with WHO global-level recommendations (WHO 2015), 84 

and national-level nutritional plans in more than 100 countries (Fischer & Garnett 2016). 85 

Despite international guidelines, significant variations in national recommendations remain 86 

(ibid). 87 

 88 

Here, for the first time, we have attempted to assess the degree to which convergence of 89 

global average diets to a defined set of guideline levels could simultaneously achieve 90 

improved human health and significant reductions in GHG emissions from global agriculture. 91 

This analysis comprised several steps. First, all available country-level dietary guidelines 92 

(FAO 2017a) were reviewed to assess their clarity in providing clear, quantitative 93 

recommendations for an average healthy diet. Next, a range of representative national 94 

dietary guidelines were assessed for their resultant per capita GHG emissions using 95 

commodity-specific GHG-intensities derived through life-cycle (LCA) meta-analyses (Tilman 96 

& Clark 2014). National guidelines—including the USA, China, Germany, Australia, Canada 97 

and India—were compared relative to income-dependent dietary projections (Tilman & Clark 98 

2014) and WHO healthy diet guidelines (WHO 2015). This analysis revealed wide disparity 99 

in the GHG-intensity of national recommended diets—with some showing a minimal 100 

reduction in GHG emissions relative to the average projected income-dependent diet in 101 

2050. Global agricultural GHG emission pathways were then assessed based on the 102 

assumption that average diets converged on each of these global or national 103 

recommendations by 2050—such a convergence would allow for both nutritional and GHG 104 

mitigation targets to be addressed simultaneously.  105 

 106 

Finally, we assessed the compatibility of current dietary trends with national and WHO 107 

guidelines, and the likelihood of their convergence in the near (2030, the end date of the 108 

SDGs) and longer (2050) term. Annual rates of change in food consumption were estimated 109 

for three exemplar countries which together cover a full range of dietary compositions—the 110 



 

5 
 

USA, China and India—based on extrapolation from current FAO consumption figures for 111 

the period 2000-2013 (the latest full dataset available). (FAO). This provides some indication 112 

of the magnitude of change in dietary patterns necessary for these and similar nations to 113 

meet dietary guidelines relative to current trends. 114 

 115 

A number of publications have assessed the GHG intensity of dietary choices, as well as the 116 

reduction potential of dietary changes. Several such studies have looked at the global 117 

comparison between business-as-usual (or income-dependent) projected diets towards 2030 118 

and 2050 alongside the World Health Organization (WHO) healthy diet guidelines (Tilman & 119 

Clark 2014; Springmann, Godfray, et al. 2016). These studies attempt to address the diet-120 

sustainability-health trilemma through GHG and health benefit quantification. Other analyses 121 

have looked more regionally or nationally at the potential mitigation impact of dietary 122 

change—either in terms of meat reduction, substitution, or adoption of Mediterranean, 123 

vegetarian or vegan diets (Berners-lee et al. 2012; Westhoek et al. 2014; Stehfest et al. 124 

2013; Scarborough et al. 2014). It is well-established within the literature that an overall 125 

reduction in meat (particularly red meat) products is synonymous with GHG reduction and 126 

health benefits. 127 

 128 

However, no analysis to date has attempted to quantify the suitability or impact of adoption 129 

of current national dietary guidelines with respect to climate mitigation, and the more recently 130 

established SDG targets.  Fischer & Garnett (2016), of the UN FAO, to our knowledge have 131 

produced the only large-scale assessment of sustainability within national dietary guidelines. 132 

However, this work, does not attempt any quantification of impacts of guideline adoption and 133 

instead focuses on a qualitative assessment of which countries have made reference to 134 

sustainability within their recommendations. 135 

 136 
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Our work therefore attempts to provide the first comparison of national dietary guidelines in 137 

terms of GHG emissions. This was carried out through the adoption of similar methods 138 

utilised in global-level assessments of diet-environment-health links by Tilman & Clark 139 

(2014) and Springmann et al. (2016), but applied within the context of national-level 140 

recommendations. Assessment of the relative impact of countries switching from their 141 

current average diet to nationally recommended intake across greenhouse gas, 142 

eutrophication and land use metrics has been previously assessed, with a focus on the 143 

impact of this transition rather than the comparison of national recommended diets or their 144 

compatibility with climate targets (Behrens et al. 2017). 145 

 146 

2. Methods 147 

National food-based dietary guidelines were reviewed based on those publicly available in 148 

FAO repositories. These cover 86 countries across all regions, with countries at all stages of 149 

development. A qualitative assessment of the suitability of national guidelines for 150 

sustainability has been previously published by the FAO (Fischer & Garnett 2016).  We 151 

attempt to build upon this work through a quantitative assessment of the compatibility of 152 

these guidelines with climate targets. 153 

 154 

2.1  Quantifying emission footprints of recommended diets 155 

The average diets of six national guidelines—India, China, Germany, Canada, Australia and 156 

the USA, in addition to the WHO healthy (WHO 2015) and income-dependent 2050 diet 157 

(Tilman & Clark 2014)—were quantified in terms of annual GHG emissions per capita based 158 

on commodity-specific life-cycle analysis (LCA) meta-analyses carried out by Tilman & Clark 159 

(2014). This meta-analysis reviewed 555 LCAs across 82 food items. These LCAs were 160 

sourced based on a criteria of complete ‘cradle to farmgate’ boundary scope, including 161 

emissions from pre-farm activities such as fertilizer, feed production and infrastructure 162 
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construction. This footprint does not include post-farmgate activities such as transport, 163 

processing and consumer use. For reference, analysis suggests that this post-farmgate 164 

component of the overall footprint would approximately add a further 20% to total emissions 165 

(Weber & Matthews 2008; Tilman & Clark 2014). Due to the large uncertainties involved in 166 

calculating levels of land-use change (LUC), and the resultant GHG emissions, LUC has 167 

also not been included. This study therefore focuses only on emissions related to agricultural 168 

production.  169 

 170 

Tilman & Clark (2014) derived their income-dependent 2050 diet based on eight economic 171 

groups – six groupings plus China and India independently (aggregated based on per capita 172 

gross domestic product; GDP); GDP-consumption relationships and modelled using the 173 

Gompertz 4p curve function. The income-dependent diet differs from recommended diets in 174 

terms of its total caloric content. Despite small variability in the energy composition of the 175 

average recommended diet between national and WHO guidelines, all fall within the range of 176 

2000 to 2500 kcal person-1 day-1. Since the income-dependent diet is based on projected 177 

food demand rather than healthy, recommended intakes, average caloric supply across 178 

economic groups is notably higher (ranging from 2250 kcal in the lowest economic group to 179 

3590 kcal person-1 day-1 in the highest).  Whilst this represents a large difference in caloric 180 

intake between the income-dependent and recommended diet scenarios, this gap provides 181 

an important indication of the level of dietary change required by 2050 to reduce average 182 

levels of consumption to match healthy dietary guidelines. The impact this has on resultant 183 

GHG-intensity of diets also provides an important comparison—the impact of caloric 184 

overconsumption relative to recommended consumption. We have therefore not adjusted the 185 

income-dependent diet to attempt to reach parity in caloric intake. 186 

 187 

Average diets were quantified in terms of (gday-1, and subsequent kgyear-1) across nine key 188 

food groups: staples, pulses, sugar, oils, fruit and vegetables, dairy, fish, poultry and red 189 
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meat. Due to the nuances of dietary preferences both within and between countries, a finer-190 

resolution breakdown of guidelines beyond these nine categorisations is not possible. Food 191 

consumption (in gday-1) across each of these food categories for each of the analysed diets 192 

are provided in Supplementary Table 1.  193 

 194 

Whilst national dietary guidelines are based on recommendations of actual consumption (i.e. 195 

the quantity finally eaten), Tilman & Clark’s 2050 income-dependent diet is based on final 196 

household food demand which refers to the quantity eaten, plus the amount wasted at the 197 

consumption level. The predominant aim of our analysis is to illustrate the differences in 198 

national guidelines – not the impact of actual waste and consumption patterns across the 199 

world. Including emissions related to food wastage may hide the key conclusions in relation 200 

to the suitability and comparability of national guidelines. In our results we therefore present 201 

the breakdown of emissions related to dietary guideline intakes (in the absence of waste), 202 

but additionally show the impact that correction for household waste would have on final 203 

emissions. This latter correction allows for direct comparison with the 2050 income-204 

dependent diet. 205 

 206 

Our adjustments for food wastage at the household level are based on the ‘consumption’ 207 

percentage figures published by the FAO (Gustavsson, J. et al. 2011). These estimate the 208 

percentage losses at each stage of the supply chain by commodity group (e.g. meat, milk, 209 

cereals) by region. For national guidelines, our waste figures reflect the regional figures of 210 

the given country (for example, North American figures have been used for the USA and 211 

Canada). Global average percentage figures have been used for the WHO Healthy Diet 212 

scenario.  213 

The terminology of dietary guidelines can vary, especially between approaches for different 214 

food groups. For food groups, such as staples, where a range of values (in grams per day) is 215 

given, we have assumed the median intake of this range. Guidelines for dairy, fish, fruit and 216 
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vegetables tend to work on a minimum basis (e.g. “consume at least 1 portion of dairy per 217 

day”); for these groups we have assumed consumption meets (but does not exceed) this 218 

recommendation. Guidelines for meat, oils and sugars tend to work on a maximum 219 

‘recommended’ limit (i.e. limit sugar consumption to 25 grams per day). For these food 220 

groups we have assumed that—since current intake in many high-income countries tends to 221 

greatly exceed these maximum guidelines—people would consume up to (but not exceed) 222 

this upper threshold. 223 

 224 

Per capita dietary emissions were calculated using average emission factors (EFs) derived 225 

based the LCA meta-analyses explained above. The EFs applied in this study are detailed in 226 

Supplementary Table 3. Dietary guidelines are typically defined based on recommended 227 

levels of total red meat consumption—this incorporates bovine, pig, and mutton meat, for 228 

which there are significant differences in EFs. To account for this, we have assumed a 229 

dietary consumption ratio between red meat products in line with 2013 global FAO 230 

production figures—58% of red meat production was in the form of pigmeat (108Mt), 35% 231 

bovine (66Mt), and 7% mutton meat (13Mt)(FAO n.d.). EFs for red meat consumption have 232 

therefore been weighted based on this ratio of consumption. An obvious limitation of this 233 

methodology therefore lies in its assumption that future red meat consumption preferences 234 

are in line with current trends.  235 

 236 

This analysis is primarily focused on demand-side (rather than supply-side) mitigation. The 237 

EFs applied in this study make no assumptions on changes in the GHG-intensity of 238 

production. Our income-dependent and WHO healthy diet results are therefore closely in line 239 

with the results of Tilman & Clark (Tilman & Clark 2014). Springmann et al. (2016), who 240 

assess the impact of constant reductions in GHG-intensity through to 2050 on the footprint of 241 

WHO, Mediterranean, vegetarian and vegan dietary preferences (Springmann, Godfray, et 242 
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al. 2016), therefore present slightly different results. Fish and other seafood is also excluded 243 

from Springmann et al. (2016)’s analysis. 244 

 245 

 246 

2.2 Quantifying global agricultural emissions by national diet 247 

adoption 248 

Scenarios of total global agricultural emissions through dietary convergence were mapped 249 

based on calculated dietary per capita footprints, and UN population projections (United 250 

Nations: Department of Social and Economic Affairs 2017) from 2013 to 2050. These 251 

scenarios were mapped based on the assumption that the global average diet would 252 

converge on each respective dietary guideline. The nutritional requirements of individuals 253 

depends on a range of factors including age, gender, physiology and activity levels—in this 254 

analysis we assume that the distribution of intakes around the average dietary intake follows 255 

an approximate log-normal distribution.  256 

 257 

To account for the impact of food wastage in the household (i.e. corrected for food demand 258 

rather than direct consumption), we assume that under each dietary guideline scenario the 259 

commodity-specific household wastage percentage figures are the same, based on global 260 

average FAO figures (Gustavsson, J. et al. 2011). Our results present these pathways both 261 

with and without correction for food wastage to show this impact. We assume food wastage 262 

percentage figures remain constant throughout the assessed period (although future 263 

modelling of the impact of food waste scenarios would be a useful addition). 264 

 265 

 266 

 267 
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2.3 Assessing pathways for convergence on recommended diets 268 

In comparing required transition pathways which would be necessary to converge national 269 

consumption patterns on WHO or national dietary guidelines by 2030 or 2050, current (2013) 270 

and recent trends in red meat, poultry and dairy consumption were assessed in the USA, 271 

China and India using FAO Food Balance Sheet (FBS) data. Current consumption profiles 272 

were mapped from 2013 average per capita levels, with an annual change in intake defined 273 

based on the historic annual rates of change from 2000-2013. These profiles map the dietary 274 

pathways which would result if this rate of change was maintained through to 2030/50. 275 

Convergence pathways for WHO and national guidelines were mapped based the annual 276 

rate of change needed to meet recommendations by 2030/50 from 2013 consumption levels. 277 

This analysis can be easily replicated at any level and for any country to assess the level of 278 

dietary shift which would be required to reach healthy and sustainable dietary intakes, and 279 

could be further utilised as an approach for tracking progress in this transition.  280 

 281 

Since FAO FBS data is based on food demand (which equates to food intake plus 282 

consumption waste), WHO and national guidelines have been adapted to reflect regional 283 

household waste percentage figures by commodity as derived from Gustavsson et al. 284 

(2011). 285 

 286 

2.4 Study limitations  287 

This study aims to assess the food-based GHG-intensity and sectoral emissions which 288 

would result from the adherence of average diets to a range of global and national dietary 289 

guidelines. This has the obvious limitation in its assumption that such dietary advice would 290 

be followed. As evidenced in our results, actual consumption trends in many countries lie far 291 

from recommended values. For this reason, we have provided some examples of dietary 292 

transition requirements to meet these guidelines by 2030/50. 293 
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 294 

In the calculation of dietary GHG-intensity, we have applied EFs based on global average 295 

commodity-specific LCA figures. Actual emissions-intensity of agricultural production will 296 

have significant regional variations—appropriate weighting of these values would strongly 297 

depend on future global trade scenarios which have not been accounted for in this analysis.  298 

 299 

The LCAs included in this study, as explained, have been defined based on a ‘cradle-to-300 

farmgate’ scope, which excluded post-farmgate and land-use change emissions. Depending 301 

on future trade and land-use scenarios, emissions from these components (LUC, in 302 

particular) could form a significant portion of this sector’s emissions. The measurement of 303 

emissions from agricultural production alone does not therefore capture the full impact of the 304 

global food system. It does, however, incorporate CO2 and the majority of non-CO2 305 

(methane and nitrous oxide) emissions, which typically dominate the sector’s total GHG 306 

impact. The EFs related to such LCAs will likely change over time if progress is made on 307 

SDG7 of transitioning towards lower-carbon energy sources; decarbonisation of the energy 308 

and transport sectors would reduce the GHG-intensity of some components of LCAs 309 

including agricultural inputs, on-farm machinery and transport. 310 

 311 

3. Results 312 

3.1 Global and national dietary guidelines 313 

We reviewed the 86 countries which have published food-based dietary guidelines within the 314 

FAO repository (FAO 2017a). While most national guidelines are based around the general 315 

recommendations published by the WHO (WHO 2015), there are notable differences 316 

between countries, not only with respect to advised dietary patterns, but also in terms of 317 

clarity, comprehensibility and quantification. Since national guidelines are typically adapted 318 

to the nutritional status, eating habits and food availability of a given country, some variation 319 
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in the average recommended diet is to be expected. However, many national guidelines 320 

appear to lack the level of quantitative detail or guidance necessary for stakeholders (e.g. 321 

health workers and members of the public) to clearly know and understand the need for the 322 

levels of intake they should be targeting. In Supplementary Table 2 we provide the 323 

breakdown of recommendations in grams per person per day across the nine commodity 324 

groups for a range of countries where national guidelines are insufficient. These data 325 

highlight for which commodities guidance is clear, and others where it is not quantifiable. For 326 

example, the UK guidelines clearly recommend consumption of “at least five portions of fruit 327 

and vegetables per day” (which provides a quantifiable amount), but states only to “eat less 328 

red and processed meat” (which provides no quantifiable guidance on safe or healthy 329 

intake). 330 

 331 

To assess country-to-country variations in terms of GHG-intensity of the average 332 

recommended diet, we quantified the footprint of six national guidelines which cover a range 333 

of dietary patterns—USA, Canada, Australia, Germany, China and India. This covers the 334 

spectrum from typically higher GHG-intensity nations (USA, Canada, and Australia), to one 335 

of the lowest expected dietary GHG footprints—India. Germany has been included as one of 336 

only four countries identified by the FAO as overtly including environmental considerations 337 

(which are typically oriented towards climate change impacts) within its dietary 338 

recommendations (Fischer & Garnett 2016).  339 

 340 

The estimated per capita annual GHG footprints of nationally recommended diets are shown 341 

in Figure 1, presented alongside the WHO’s healthy diet guidelines (WHO 2015), and global 342 

average income-dependent diet in 2050. The income-dependent diet was based on 343 

projected regional economic growth trends and its relationship to dietary transitions (both in 344 

quantity and composition).  345 

 346 
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Climate change mitigation targets and indicators as established within the SDG framework 347 

reflect those agreed upon within the United Nations Framework on Climate Change 348 

(UNFCCC) and 2015 Paris Agreement (United Nations 2017). Within the Paris Agreement, 349 

UN parties have committed to “holding the increase in the global average temperature to 350 

well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature 351 

increase to 1.5°C above pre-industrial levels” (UNFCCC 2015). To meet a global target of 352 

2°C under median emissions pathways would require a reduction of GHG emissions to 23 353 

GtCO2e per year in 2050 (Climate Action Tracker 2017). To maintain a 66% chance of 354 

keeping temperatures below 1.5°C, annual emissions are likely to have to reduce to 13 355 

GtCO2e per year by 2050. Currently the sum of proposed national targets (Nationally 356 

Determined Contributions; NDCs)—if fulfilled—are estimated to take us well beyond both 357 

targets to a median temperature rise of 3.2°C (Climate Action Tracker 2017).  358 

 359 

Sectoral breakdown of how current NDCs will be increased at global or national levels to 360 

meet these targets is currently not clear. However, it’s clear that business-as-usual (BAU) 361 

projected emissions from agricultural production are incompatible with the level of reduction 362 

needed to keep temperatures below 1.5°C or 2°C. Published estimates of BAU emissions 363 

from agriculture range from 15.5 to 20 GtCO2e in 2050 (Tilman & Clark 2014; Wellesley et 364 

al. 2015)—either exceeding the total global budget for 1.5°C or consuming the majority (67-365 

87%) of a 2°C budget of 23 GtCO2e. This lack of determination of necessary GHG emissions 366 

reductions (on a total or per capita basis) makes it challenging to benchmark food-specific 367 

reduction scenarios relative to targets within the Paris Agreement (or the SDGs, by default) 368 

since its required contribution is dependent on mitigation progress within other sectors. 369 

However, here we benchmark per capita dietary food footprints relative to total economy-370 

wide average per capita emissions in 2050 to meet a 2°C budget of 23 GtCO2e (2365 371 

kgCO2e capita-1yr-1) or a 1.5°C budget of 13 GtCO2e (1337 kgCO2e capita-1yr-1). 372 

 373 
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Our results, shown as the average per capita food-related GHG emissions resultant from 374 

income-dependent, WHO healthy diet and national dietary guidelines are seen in Figure 1. 375 

These figures are also summarised in Table 1, with and without adjustment for household-376 

level waste. In line with previous studies (Tilman & Clark 2014; Springmann, Godfray, et al. 377 

2016), our results indicate that a transition from the average income-dependent diet in 2050 378 

to the WHO’s global recommended healthy diet would reduce per capita dietary GHG 379 

emissions. At the national level, there is significant variability between dietary GHG 380 

intensities; this range extends from the recommended vegetarian Indian diet (at 687 kgCO2e 381 

capita-1yr-1) to the USA diet guidelines (at 1579 kgCO2e capita-1yr-1). Once food wastage 382 

estimates are included, this difference increases to 702 kgCO2e capita-1yr-1 in India, relative 383 

to 1837 kgCO2e capita-1yr-1 in the USA.  384 

Figure 1: Per capita greenhouse gas emissions across income-dependent, WHO and national dietary guidelines. 385 

Annual breakdown of per capita food production (cradle-to-farmgate) emissions across the average income-dependent diet in 386 

2050, WHO healthy diet, and national dietary guidelines by commodity group. Dashed lines are used to represent the additional 387 

GHG emissions resultant from food wasted at the household level, where the income-dependent diet has already been 388 

corrected to food demand (rather than intake). Animal-based products have been highlighted by black outline shading. Also 389 

shown are the average per capita GHG emissions (across all sectors) for 1.5°C and 2°C pathways. 390 
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Our results (Figure 1) demonstrate the need for dietary transition when compared to average 391 

per capita GHG budgets for 1.5°C or 2°C in 2050. With the exception of the recommended 392 

Indian diets, the average dietary footprint exceeds the total per capita 1.5°C budget under all 393 

national dietary scenarios, as indicated by the grey bar in Figure 1 which includes per capita 394 

GHG emissions from all sources. The WHO Healthy diet falls slightly below the 1.5°C 395 

budget, but would require almost total decarbonisation from all other sectors – relying on 396 

attainment of other SDGs, including SDG7 for which progress is tracked based on the share 397 

of renewables in the energy mix. All dietary footprints fall within the per capita budget of the 398 

average 2365 kgCO2e capita-1yr-1 budget for 2°C, however most of this budget would be 399 

consumed by agricultural production leaving little room for other sectors including energy 400 

and transport.  401 

 402 

Table 1: Per capita greenhouse gas emissions across income-dependent, WHO and national dietary 403 

guidelines. Annual per capita food production (cradle-to-farmgate) emissions across the average income-404 

dependent diet in 2050, WHO healthy diet, and national dietary guidelines by commodity group. Figures are 405 

provided as those with and without correction for regional household-level waste estimates. Tilman & Clark’s 406 

(2014) 2050 income-dependent diet is based on food ‘demand’ rather than ‘intake’ and therefore already includes 407 

food wastage estimates. 408 

Dietary scenario Per capita GHG emissions (prior to 

correct for household waste) 

(kgCO2e capita-1yr-1) 

Per capita GHG emissions 

(including household waste) 

(kgCO2e capita-1yr-1) 

Income-dependent 2050 diet - 1626 

WHO Healthy Diet 1197 1288 

India (vegetarian) 687 702 

India (non-vegetarian) 740 757 

Germany 1256 1403 

Canada 1395 1620 

China 1419 1552 

Australia 1551 1807 

USA 1579 1837 
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In Figure 1, animal-based commodities are highlighted by a black outline around the upper 409 

part of each bar. Note that while there is some degree of variation in the GHG-intensity of 410 

the plant-based component of the modelled diets, this deviation is typically small (ranging 411 

from 421kgCO2e to 560 kgCO2e capita-1yr-1). This is true across income-dependent, WHO 412 

and nationally recommended diets. The inter-dietary variability in GHG footprint is primarily 413 

introduced in the consumption of animal-based products. This ranges from 266 kgCO2e to  414 

1112 kgCO2e capita-1yr-1, a four- to five-fold difference. We may therefore approximate that 415 

the global average per capita GHG emissions associated with the plant-based component of 416 

both dietary trends and recommendations account for 490±70 kgCO2e yr-1, with the 417 

remaining variability introduced through the consumption of animal-based products.  418 

 419 

Of note in this analysis is the relatively low GHG emissions footprint of recommended diets 420 

in India – stemming from the unique nature of India’s guidelines. Most nations detail meat 421 

and fish products as a core pillar of their dietary guides, with a smaller subset of countries 422 

providing an optional substitution of pulses. This is an important distinction compared to 423 

Indian recommendations, which are predominantly vegetarian; here, a side-note is provided 424 

for non-vegetarians to replace one portion of pulses daily with either meat, fish or egg. As a 425 

result, even its non-vegetarian recommended diet has a comparably low carbon footprint. 426 

India’s recommended diet has an almost identical GHG-intensity to vegetarian diets 427 

analysed in previous studies (at 650-700 kgCO2e capita-1yr-1) (Tilman & Clark 2014; 428 

Springmann, Godfray, et al. 2016). 429 

 430 

In contrast, the currently recommended diet in the USA has a high GHG emissions footprint, 431 

being of the same magnitude as that of the income-dependent diet in 2050 prior to 432 

adjustment for wastage. With correction for household food wastage – which is significant in 433 

high-income countries – emissions exceed that of the income-dependent diet by greater than 434 

200 kgCO2e capita-1yr-1. Australian guidelines produce a similar result. Food sustainability 435 
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issues, especially within such higher-income nations, are often discussed in relation to 436 

dietary overconsumption (Blair & Sobal 2006). However, while excess consumption 437 

undoubtedly adds to resource pressures, our results suggest that the GHG-intensity of the 438 

average USA diet would still be very high even were it to converge with national nutritional 439 

guidelines (which are not excessive in caloric terms, suggesting dietary composition is more 440 

important than total energy intake). This means our evaluations of future income-dependent 441 

dietary pathways need to assess both dietary composition and excessive intake as sources 442 

of GHG emissions (and potential mitigation areas). As shown in Figure 1, the largest GHG 443 

contributor to this footprint is its recommendation of three dairy portions per day. This is 444 

three times that recommended in the WHO healthy diet, while the USA’s guidelines on other 445 

animal-based components - red meat, poultry and fish - are closely in line with WHO 446 

recommendations.  447 

 448 

The recommended intake of dairy products is a key differentiator across all modelled diets. 449 

This is in contrast to red meat, poultry and fish guidelines which (with the exception of India) 450 

typically reflect WHO advice. The upper limits on recommended meat intake result from the 451 

strong relationships between excessive red meat consumption and risk of Non-452 

Communicable Diseases (NCDs), including heart disease, stroke and cancer (Chen et al. 453 

2013; Micha et al. 2010; Lozano et al. 2012). In contrast, milk and dairy intake has been 454 

typically discussed in global nutritional guidance in terms of under-consumption and calcium 455 

deficiency (Legius et al. 1989; Kumssa et al. 2015). Therefore, while upper limits are often 456 

defined for meat (especially red and processed meat), recommendations for dairy products 457 

are based on minimum thresholds. This may be a sensible approach for health guidelines, 458 

however the lack of commonality on recommended dairy intakes (and the impact this has on 459 

GHG emissions) suggests that a redefinition of advice which meets climate change 460 

mitigation objectives as well as those for health could be important. 461 

 462 
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3.2 Converging global diets for health and sustainability 463 

guidelinesIf we are simultaneously to address SDG2 in ending all forms of malnutrition 464 

(including undernutrition, micronutrient deficiencies, and overconsumption), and SDG13 of 465 

mitigating climate change, a convergence of global diets towards a healthy, low carbon 466 

confluence will be necessary. To assess the level of GHG emissions which would result from 467 

global convergence to each of the recommended diets through 2030 to 2050, we have 468 

combined average per capita footprints shown in Figure 1, with UN population projections 469 

(United Nations: Department of Social and Economic Affairs 2017). These global emissions 470 

convergence scenarios from 2009 to 2050 are presented in Figure 2. These assume 471 

household food wastage percentages in line with global average figures to allow for 472 

comparability with the income-dependent 2050 scenario, which is given as food demand 473 

rather than intake. We provide these figures both prior to and after correction for household 474 

waste for comparison in our Supplementary Data. 475 

Figure 2: Global greenhouse gas emissions from food production if the global population adopted the average 476 

income-dependent, WHO healthy or national recommended diets. Global greenhouse gas emissions from 2009-2050 if 477 
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global diets converged on the WHO healthy or national recommended diets of exemplar countries, in comparison to the 478 

projected average income-dependent diet in 2050. 479 

 480 

As shown, business-as-usual income-dependent consumption would result in the highest 481 

level of global emissions, at 15.5-16 GtCO2e yr-1. Our results are in line with published 482 

estimates from Tilman & Clark (2014) of between 15-16 GtCO2eyr-1 in 2050. Convergence 483 

towards the WHO healthy diet would result in significant GHG reductions, reducing 484 

emissions in 2050 by approximately 4 GtCO2e yr-1 relative to the income-dependent 485 

scenario. As expected from per capita GHG footprint results, global emissions deriving from 486 

convergence on each of the national recommended diets vary significantly. Maximum GHG 487 

reductions in the agriculture sector would be realised if global diets were to converge 488 

towards Indian recommendations (totalling only 6.7 GtCO2e yr-1). The Indian diet 489 

recommendations strongly match the modelled results by Tilman & Clark (2014) of adoption 490 

of a vegetarian diet; they estimate global emissions of 6.5 GtCO2e yr-1 with global adoption 491 

of this diet.  The large differentiation between the emissions intensity of a vegetarian-492 

oriented Indian diet and higher meat iterations in income-dependent and national guidelines 493 

reiterates previous results which show large differences between meat-eater, Mediterranean, 494 

vegetarian and vegan diets (Berners-lee et al. 2012; Scarborough et al. 2014; Van Dooren 495 

et al. 2014; Westhoek et al. 2014).  496 

 497 

With the exception of India, GHG emissions from each of the national guidelines examined 498 

here exceed the WHO healthy diet. If global diets were to converge on the recommended 499 

USA or Australian diet, emissions would exceed that of a business-as-usual (income-500 

dependent) pathway when allowing for household wastage. Canadian guidelines would 501 

result in almost no emission savings relative to the income-dependent scenario. This result 502 

further suggests that dietary guidelines for these nations in particular—despite meeting 503 

health criteria—are wholly inadequate in terms of addressing climate change.  504 
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Our analysis has focused on demand-side impacts on production-phase GHG emissions 505 

only. These results may therefore be considered upper estimates of emissions in each 506 

scenario, assuming that supply-side measures will further reduce the GHG emissions 507 

intensity of global food production in the future. To contextualise supply-side mitigation 508 

potential, estimates suggest that a halving of food losses and waste could result in global 509 

reductions up to 1.8 GtCO2e yr-1 (Tilman & Clark 2014); and improved livestock management 510 

in the form of enhanced feed digestibility, use of feed additives, animal and manure 511 

management could mitigate a further 1.2 GtCO2e yr-1 (totalling 3 GtCO2e yr-1)(Herrero et al. 512 

2016).  513 

 514 

3.3 National requirements for convergent pathways 515 

While discussion of the suitability of national guidelines and exploration of dietary 516 

convergence points is timely, it is important to note that current (and projected) food 517 

consumption patterns lie far from both WHO and national recommendations (Alexandratos & 518 

Bruinsma 2012). Global inequalities in food intake mean that both under- and 519 

overconsumption with respect to guideline averages is widespread. 520 

 521 

To assess how rates of dietary transition across nations would have to change in order to 522 

reach WHO or national guidelines, we have mapped the convergence pathways of the USA, 523 

China and India, and compared these to recent (2000-2013) trends in average consumption.  524 

 525 

Defining a target convergence date by nation is difficult as no overt targets of this type have 526 

been set by governments. Here we have mapped pathways based on convergence by 2030 527 

(the end date of the SDGs), and 2050 (likely to be deemed as more realistic given the scale 528 

of change necessary). Our analysis indicates that the major variability in dietary climate 529 

impact lies in the consumption of animal-based products; we have therefore focused on 530 
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potential pathways in red meat, poultry and dairy consumption. Actual national trends (as 531 

opposed to convergence scenarios) have been extrapolated from 2013 per capita 532 

commodity-specific supply data as provided in the FAO’s Food Balance Sheet (FBS) (FAO). 533 

Current rates of transition are here defined as the annual average change (in kilograms per 534 

capita) from 2000-2013 reported for each nation.  535 

 536 

Table 2 presents results for the USA, China and India, summarising current food supply, 537 

WHO and national guideline figures and the annual rates of change needed to reach these 538 

guidelines by 2030 or 2050, assuming linear change. Actual rates of change are also shown 539 

for context. 540 

 541 

In the United States, the reduction pathways which would be necessary for convergence 542 

towards the WHO and USA recommended diet are closely matched for red meat and poultry 543 

intake. In the case of red meat, average per capita demand would have to consistently 544 

decrease by 3 kgyr-1 to converge with current guidelines by 2030, or 1.4 kgyr-1 by 2050. 545 

Average per capita demand for red meat in the USA has been declining since 2000, but at a 546 

much slower rate (0.3 kgyr-1). A more than ten-fold increase in reduction rates would 547 

therefore be necessary to reach the guideline levels by 2030, or a five-fold acceleration by 548 

2050. In contrast to red meat consumption, poultry demand has been slowly increasing over 549 

the last decade (at an average rate of 0.2 kgyr-1). This highlights a potential trade-off in 550 

dietary transition: the substitution of red meat with poultry is often recommended for both 551 

ecological and health reasons (Springmann, Mason-D’Croz, et al. 2016), however, to 552 

converge on a healthy and sustainable diet, total average meat consumption must be 553 

decreased in such nations. To maximise GHG mitigation and health impacts, the pathways 554 

of high meat-consuming nations may therefore follow a two-stage reduction process, firstly 555 

with a substitution of poultry for red meat (which will temporarily increase poultry 556 

consumption), before a subsequent reduction in poultry also. 557 
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Unlike meat recommendations, the convergence pathways for dairy consumption vary 558 

significantly between WHO and USA guidelines. Average dairy consumption in 2013 in the 559 

USA was 255 kgyr-1, approximately in line with the USA’s recommendations. Consumption 560 

has remained almost constant over the last decade (with a small average increase of 0.03 561 

kgyr-1). Therefore, no change in average intakes would be necessary to meet USA 562 

guidelines. This is strongly divergent from WHO recommendations; meeting these guidelines 563 

would require a consistent reduction rate of 8.6 kgyr-1 by 2030, or 3.9 kgyr-1 by 2050. 564 

 Food 
supply 
2013  

(kgyr-1) 

WHO 
guideline 
(kgyr-1) 

National 
guideline 
(kgyr-1) 

Current 
consumption 

trend 
(kgyr-1) 

Annual 
change to 

WHO 
guideline by 

2030 
(kgyr-1)  

Annual 
change to 
national 

guideline by 
2030  

(kgyr-1)  

Annual 
change to 

WHO 
guideline by 

2050  
(kgyr-1)  

Annual 
change to 
national 

guideline by 
2050  

(kgyr-1)  

USA  
(Red 
Meat) 

64.3 13.4 15.3 -0.3 -3.0 -2.9 -1.4 -1.3 

China  
(Red 
Meat) 

36 13 13.8 -0.01 -1.4 -1.3 -0.6 -0.6 

India 
(Red 
Meat) 

1.7 12.5 - -0.03 +0.6 - +0.3 - 

USA  
(Poultry) 

50.0 20.3 15.3 +0.2 -1.8 -2.0 -0.8 -0.9 

China  
(Poultry) 

38.6 19.7 13.8 +0.9 -1.1 -1.5 -0.5 -0.7 

India 
(Poultry) 

1.9 19.0 3.8 +0.08 +1.0 +0.1 +0.5 +0.1 

USA  
(Milkeq) 

255 109 290 +0.03 -8.6 +2.1 -3.9 +0.9 

China  
(Milkeq) 

33.2 99.6 115 +1.8 +3.9 +4.8 +1.8 +2.2 

India 
(Milkeq) 

84.5 95.8 111 +1.5 +0.7 +1.5 +0.3 +0.7 

Table 2: Dietary convergence trends from current food demand towards WHO or national dietary guidelines by 2030 565 

and 2050. Convergence pathways in red meat, poultry; and milkeq for the average USA, Chinese and Indian dietary supply in 566 

2013 to reach WHO healthy and national recommended diets by 2030, or 2050. Since food supply metrics are based on food 567 

demand (which equates to food intake plus household waste), WHO and national guidelines have been adjusted to reflect 568 

current regional household waste percentages from Gustavsson et al. (2011). Convergence patterns are given as the annual 569 

rate of change needed to reach guideline diets by the target year. The current (average trend since 2000) rate of change in 570 

intakes is also shown for comparison. 571 
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Similarly to the USA, China’s recent reduction in recommendations for red meat 572 

consumption now aligns its guidelines closely with the WHO healthy diet. Over the past 573 

decade, China’s average demand for red meat has approximately stabilised. However, to 574 

reach recommended levels, this would have to reduce at approximately 1.4 kgyr-1 to 575 

converge by 2030, or a reduced rate of 0.6kgyr-1 for 2050. In contrast, its average poultry 576 

demand has been increasing at approximately 0.9 kgyr-1. To converge on recommended 577 

levels, its annual rate of reduction would have to be between 1.1 and 1.5 kgyr-1 for 2030, and 578 

0.5 and 0.7 kgyr-1 for 2050 (depending on whether convergence is set by WHO or Chinese 579 

guidelines). China’s per capita dairy demand is particularly low relative to other transitioning 580 

and high-income nations at only 33 kgyr-1 in 2013. Intake has, however, been growing at an 581 

average rate of 1.8 kgyr-1. This rate of growth is well below ‘target-meeting’ growth rates of 582 

3.9 and 4.8 kgyr-1 which could be sustained to reach dairy recommendations by 2030. To 583 

converge on the healthy diet guideline by 2050, China’s average demand could increase at 584 

a rate of 1.8 and 2.2 kgyr-1. In other words, China could maintain its recent growth in dairy 585 

consumption and only just meet dietary guidelines by 2050.  586 

 587 

India’s pathways are notably different from those of the USA and China. Here, we have 588 

mapped the guidelines of India’s non-vegetarian diet (where one daily portion of pulses is 589 

replaced with a source of animal-based protein). Even in this case, a clear divergence 590 

between Indian and WHO recommended pathways in red meat and poultry consumption is 591 

overt. It should be noted that average per capita demand of all meats is very low, at only 3.5 592 

kgyr-1. Further still, average red meat demand has shown a slow downward trend over the 593 

last decade. Poultry consumption has been growing very slowly at an average of 0.08 kgyr-1; 594 

this growth could be maintained through to 2050 and still fall under WHO recommendations. 595 

In contrast, India’s growth in milk demand (1.5 kgyr-1) is higher than both WHO and national 596 

guidelines for convergence by 2030 or 2050. This is an important trade-off in India’s 597 

lactovegetarian preferences, with milk forming the key source of high-quality protein. Whilst 598 

this may raise concern over its ability to meet dietary GHG targets, even in the case that milk 599 
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consumption continued to grow to 140 kgyr-1, and poultry consumption accelerated to WHO 600 

recommendations of 18 kgyr-1, India’s per capita footprint would equate to 912 kgCO2e 601 

capita-1yr-1. This is still well below the 1200 kgCO2e capita-1yr-1 footprint of the WHO healthy 602 

diet. In other words, if we were to define an equitable per capita dietary budget at WHO 603 

healthy diet levels, India’s average diet is unlikely to exceed this, even under growth to 2050.  604 

 605 

4. Conclusion 606 

4.1 National dietary guidelines are incompatible with climate 607 

mitigation targets 608 

Our analysis highlights the incompatibility of current national dietary guidelines for long-term 609 

climate change commitments and our nearer-term SDG targets. This inadequacy occurs for 610 

multiple reasons. Firstly, many national guidelines are vague or difficult to follow in their 611 

recommendations—a lack of quantification in terms of numbers of portions and portion sizes 612 

(especially for animal-based products) makes it challenging for individuals to adopt. If, at a 613 

global level, we are to promote dietary habits which are both nutritious and sustainable, 614 

clearer and more explicit guidance on dietary choices, quantities and substitutions need to 615 

be adopted at national levels. 616 

 617 

Secondly, there is a clear lack of harmonisation in guidelines for both health and 618 

environmental sustainability outcomes. As previously reported, only a few contain any 619 

explicit mention of environmental considerations (Fischer & Garnett 2016). Upon 620 

quantification, we have shown that the national guidelines of several countries—the USA 621 

and Australia, in particular—are poorly aligned with GHG mitigation requirements. Global 622 

convergence on the USA’s recommended diet, for instance, while potentially meeting health 623 

criteria, would result in a large increase in global GHG emissions. In fact, the adoption of this 624 

recommended diet would provide minimal GHG savings relative to the high emissions 625 

scenario of our BAU pathway.  626 
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With the exception of Indian and WHO healthy diet recommendations, all per capita 627 

emissions resultant from dietary guidelines exceed the average per capita budget (for all 628 

sectors, including energy and transport) necessary to meet a 1.5°C target. All guidelines fall 629 

within the total per capita GHG budget for a 2°C target, but would leave little room for 630 

emissions from other GHG-emitting sectors. As such, we conclude that the majority of 631 

current national guidelines are highly inconsistent with a 1.5°C target, and incompatible with 632 

a 2°C budget unless other sectors reach almost total decarbonisation by 2050. Global 633 

convergence (which is necessary to meet SDG2 of ending malnutrition—inclusive of 634 

undernourishment, micronutrient deficiency, and overconsumption) on current national 635 

guidelines would therefore fail to meet requirements within the Paris Agreement, and SDG13 636 

of meeting these climate mitigation targets. If these are to be achievable, guidelines will have 637 

to be reframed to incorporate environmental and climate considerations. 638 

 639 

Whilst national guidelines are inadequate in providing clear guidance on nutritious, climate-640 

compatible diets, there may also be evidence that current WHO guidelines may need to be 641 

re-evaluated within context on their compatibility with health and climate targets. From a 642 

climate mitigation perspective, emissions from convergence on the WHO healthy diet would 643 

consume almost all of a global 1.5°C GHG budget. Under this dietary scenario agricultural 644 

and food production would dominate total GHG emissions within a global 2°C budget. Such 645 

guidelines are therefore only consistent with our climate commitments if rapid 646 

decarbonisation is achieved across other economic sectors. 647 

 648 

There may also be evidence that an adaptation of current WHO recommendations would 649 

achieve health benefits. The World Health Organization currently set guidelines for red meat 650 

consumption on a maximum threshold basis as a result of strong links to non-communicable 651 

disease prevalence and mortality. However, recent long-term cohort studies show links 652 

between both unprocessed and processed red meat consumption (increasing with intake, 653 
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but with no lower threshold) and cause-specific mortality from nitrate/nitrite and heme iron 654 

intake (Etemadi et al. 2017; Potter 2017; Pan et al. 2012). Etemadi et al. (2017) show that 655 

even when maintaining similar levels of total meat intake, the substitution of red with white 656 

(particularly unprocessed) meat shows notable reductions in mortality risk from cause-657 

specific factors. Pan et al. (2012) also show the link between red meat consumption and an 658 

increased risk of cardiovascular disease (CVD), and cancer mortality, and the ability of 659 

substitution with other high-quality protein sources to reduce mortality risk. Such results raise 660 

further contention on the optimality of current WHO guidance—further reduction of their 661 

current maximum guidelines for red meat intake could further improve health and nutritional 662 

outcomes whilst also promoting dietary habits with greater climate mitigation potential.  663 

 664 

4.2 Culture, social norms and drivers of change 665 

Despite the incompatibility of current dietary guidance with climate and SDG targets, our 666 

analysis shows that for many countries current consumption patterns still greatly exceed 667 

these recommendations—particularly in terms of red and processed meat intake. Although 668 

slowly decreasing across many Western countries in particular, our results suggest that 669 

rates of decline would have to increase between five- and ten-fold to reach recommended 670 

levels by 2030 or 2050. A dramatic shift in consumer attitudes to meat consumption would 671 

therefore be required. 672 

 673 

There are a number of important contributing factors to consumer food and meat choices 674 

(Bakker & Dagevos 2012). There is a strong positive relationship between income and meat 675 

consumption, which explains many of the large global inequalities in consumption (Kearney 676 

2010). However, even when corrected for income, we see differing patterns of meat 677 

consumption (ibid). 678 

 679 
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Culture has historically played, and continues to play, a crucial role in food and dietary 680 

patterns. Meat consumption in particular has strong cultural links to a number of values 681 

including prosperity, masculinity, heath and indulgence (Ruby & Heine 2011; Boer et al. 682 

2008). Religion has also had a large impact on meat trends; India’s largely lactovegetarian 683 

preferences (reflected in its national dietary guidelines presented in this paper) are strongly 684 

linked to cultural and religious values (Bonne, Karijn et al. 2007; Devi et al. 2014). 685 

The rise of “flexitarians” (or meat-reducers) across a number of countries provides a positive 686 

signal of cultural and social change with respect to meat consumption (Dagevos & Voordouw 687 

2013). Nonetheless, this cultural and social transition with regards to meat consumption in 688 

recent years—as profiles of current consumption show in our analyses—are proving too 689 

slow to achieve the rate of change needed to meet our climate mitigation targets. Such 690 

significant change will have to be achieved through the adoption of a range of economic and 691 

behavioural strategies. 692 

 693 

There have been a number of options proposed to accelerate reductions in meat (particularly 694 

red and processed meat) consumption. There continues to be a strong case for consumer 695 

education, not only with respect to the environmental impacts of meat, but combining these 696 

with education on health and nutrition. Consumer surveys have shown that a substantial 697 

obstacle for meat reduction with a high number of consumers is the image of meat as a 698 

healthy food product; many admit they are reluctant to substitute meat out of their diet 699 

through concerns of protein and nutritional imbalance (Bakker & Dagevos 2012). Consumer 700 

messaging strategies are likely to be more influential when they extend beyond the GHG 701 

benefits of reduced meat consumption, and instead focus on important co-benefits such as 702 

health and wellbeing (Wellesley et al. 2015). 703 

 704 

Economic drivers of change could also play a role in shifting diets. Springmann et al. (2016) 705 

show that substantial GHG reductions could be achieved through taxation and commodity 706 
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pricing based on carbon intensity of food products (Springmann, Mason-D’Croz, et al. 2016). 707 

If effectively designed, they show that both GHG reduction and health benefits can be 708 

achieved across high-income and most middle and low-income countries—however, this 709 

could require significant political backing. Meat substitute (such as mycoprotein, in-vitro 710 

meat, and soya-based) products could also play a role in shifting towards lower-carbon diets 711 

(Joshi & Kumar 2016; Smetana et al. 2015). To prove competitive to meat products, these 712 

substitutes will likely have to achieve notable price reductions, either through subsidy 713 

mechanisms, taxation or technologically-driven efficiency and cost cuts (Ritchie et al. 2017).  714 

 715 

We conclude that nutritional and climate goals are currently incompatible. Aligning nutritional 716 

goals and internationally agreed climate change targets will therefore require major 717 

reframing of social norms towards dietary preferences and consumption patterns, but also 718 

further evaluation of global and national-level guidance on recommended dietary intakes.  719 

 720 

  721 
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