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ABSTRACT  

The pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Notodontidae) is the 

main pine defoliator in the Mediterranean region. Its urticating larvae cause severe human 

and animal health concerns in the invaded areas. This species shows a high phenotypic 

variability for various traits, such as phenology, fecundity, and tolerance to extreme 

temperatures. This study presents the construction and analysis of extensive genomic and 

transcriptomic resources, which are an obligate prerequisite to understand their underlying 

genetic architecture. Using a well-studied population from Portugal with peculiar 

phenological characteristics, the karyotype was first determined and a first draft genome of 

537 Mb total length was assembled into 68 292 scaffolds (N50=164 kb). From this genome 

assembly 29 415 coding genes were predicted. To circumvent some limitations for fine scale 

physical mapping of genomic regions of interest, a 3X coverage BAC library was also 

developed. In particular, 11 BACs from this library were individually sequenced to assess the 

assembly quality. Additionally, de novo transcriptomic resources were generated from 

various developmental stages sequenced with HiSeq and MiSeq Illumina technologies. The 

reads were de novo assembled into 62 376 and 63 175 transcripts, respectively. Then, a robust 

subset of the genome-predicted coding genes, the de novo transcriptome assemblies and 

previously published 454/Sanger data were clustered to obtain a high quality and 

comprehensive reference transcriptome consisting of 29 701 bona fide unigenes. These 

sequences covered 99% of the CEGMA and 88% of the BUSCO highly conserved eukaryotic 

genes and 84% of the BUSCO arthropod gene set. Moreover, 90% of these transcripts could 

be localized on the draft genome. The described information is available via a genome 

annotation portal (http://bipaa.genouest.org/sp/thaumetopoea_pityocampa/). 
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INTRODUCTION 

The pine processionary moth (hereafter PPM) Thaumetopoea pityocampa (Denis & 

Schiffermüller) is a main pest of Mediterranean pine forests and is widespread in southern 

Europe and North Africa where it develops at the expense of most Pinus and Cedrus species 

(Battisti et al., 2015). The PPM has received increasing attention in the last decades because 

it is a human and animal health concern, as the highly urticating setae carried by the larvae 

can cause severe allergic reactions (Battisti, Holm, Fagrell, & Larsson, 2011; Battisti, 

Larsson, & Roques, 2017; Vega et al., 2014). Moreover, this species is expanding its 

geographical range due to climate warming, colonizing new, populated areas (Battisti et al., 

2005; Robinet et al., 2012; Robinet, Rousselet, & Roques, 2014).  

The pine processionary moth is univoltine, and its larvae develop during winter by feeding on 

needles of several native or introduced conifer species, in forest, agricultural or urbanized 

areas (Rossi, Garcia, Roques, & Rousselet, 2016). Host preference and larval performance 

were found to differ between regions (Hodar, Zamora, & Castro, 2002; Zovi, Stastny, 

Battisti, & Larsson, 2008). The capacity of its larvae to cope with extreme temperatures was 

also proved experimentally to be a variable adaptive trait (Santos, Paiva, Tavares, Kerdelhué, 

& Branco, 2011). The timing of sexual reproduction varies as a function of local conditions, 

adults emerging and mating earlier in colder environments (northern range and high altitudes) 

compared to warmer places. It has recently been hypothesized that evolution of local 

phenology as a response to climate change should be taken into account to anticipate future 

expansion of the PPM (Robinet, Laparie, & Rousselet, 2015). Finally, a population showing 

an aberrant phenology with adults reproducing in spring and larvae developing during the 

summer – thus reported as the "summer population" (SP) - was discovered in 1997 in 

Portugal (Pimentel et al., 2006). This very unique population has been thoroughly studied in 

the past 10 years. It has been suggested that it probably emerged from a relatively recent 
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phenological shift, and that gene flow between the SP and the sympatric "classical" winter 

populations is strongly reduced (Burban et al., 2016; Santos, Burban, et al., 2011).  

 

Although many ecological and phenotypic studies have been conducted so far for the PPM, 

very little is known about the genomic evolution of its populations. Molecular studies have 

mostly involved sequencing of mitochondrial or nuclear DNA fragments to unravel 

phylogeographic patterns at various spatial scales (Kerdelhué et al., 2009; Rousselet et al., 

2010), or neutral population genetics approaches using a handful of microsatellite markers to 

study geographical structure (El Mokhefi et al., 2016), or allochronic differentiation (Santos, 

Burban, et al., 2011) and introgression patterns (Burban et al., 2016). Recently, 

transcriptomic resources were developed using Sanger and Roche 454 sequencing 

technologies (Gschloessl et al., 2014), to provide a first reference of PPM expressed genes 

with a particular focus on genes potentially involved in phenology. Although incomplete, this 

reference transcriptome was already useful to compare sets of transcripts between two 

allochronic populations. New resources were later released to identify associated viral 

sequences, but most probably corresponded to the sister species T. wilkinsoni (Jakubowska et 

al., 2015). Recent advances in high throughput sequencing technologies now allow to obtain 

valuable resources for non-model organisms, and to fill the gap between genomic and 

phenotypic evolution (Mueller, Kuhl, Timmermann, & Kempenaers, 2016). Availability of a 

reference genome eases large-scale analyses of genetic variation and the development of 

population genomic approaches to identify genomic regions prone to selection via genome-

wide scans (Manel et al., 2016), to disentangle complex demographic histories, or to analyze 

mosaic of introgression in hybrid zones. In addition to a reference genome, a reference 

transcriptome further opens the possibility of differential expression studies, and can pave the 

way to find candidate genes involved in ecologically relevant traits. It represents a useful tool 
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to annotate genomic sequences, and to interpret polymorphism patterns (Du et al., 2015; 

Fitak, Mohandesan, Corander, & Burger, 2016). Such resources are urgently needed for 

various on-going studies concerning the PPM and implying the development of pan-genomic 

markers to disentangle complex demographic scenarios (Leblois et al., 2018) or to improve 

the identification (and annotation) of loci subjected to adaptive constraints using genome-

wide scans which detect footprints of selection (Gautier et al., pers. comm.). They will also 

be essential to characterize the genetic architecture of phenology (see for instance Derks et 

al., 2015), of the urticating system (Berardi et al., 2017) or of traits involved in the adaptation 

to high temperatures (such as heat shock proteins). 

The aim of this study was to provide first insights into the genome and transcriptome of the 

PPM. Thus, the focus was set on the SP found in Portugal since genetic diversity is lower 

within this population (Santos, Burban, et al., 2011). This study reports the first karyotype 

description and de novo PPM genome assembly, using BAC sequencing as a quality 

assessment tool. Furthermore, coding genes predicted on the draft genome and de novo 

assembly of transcriptomic data were combined to obtain a robust and comprehensive 

reference set of expressed PPM genes that were in turn mapped on the genome.  

 

MATERIAL AND METHODS 

Sampling 

All the material used in the experiments described below was sampled between 2010 and 

2012 from the Mata Nacional de Leiria, Portugal (39°47’N, 8°58’W). T. pityocampa SP 

larvae were directly collected from the nests, pupae were dug out from the soil and males 

were caught using pheromone baited traps as detailed in Santos, Burban, et al. (2011). 

Samples from the main developmental stages (adults, eggs, L1, L3 and L5 larvae, freshly 

buried and metamorphosing pupae) were obtained from laboratory rearing as detailed in 
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Branco, Paiva, Santos, Burban, and Kerdelhué (2017). Samples used for genomic sequencing 

were preserved in 95% ethanol, while samples used for BAC construction or RNA extraction 

were flash-frozen in liquid nitrogen and preserved at -80°C. 

 

Karyotyping 

Karyotypes were obtained using fresh eggs washed with a physiological solution (NaCl 

0.9%) and following a protocol routinely used for cell lines (Popescu, Hayes, & Dutrillaux, 

1998). After centrifugation (400 g for 5 min) and elimination of the supernatant, eggs were 

placed in RPMI 1640 culture medium with colchicine (0.04 µg/ml final concentration), 

crushed with a piston pellet and incubated for 3h at room temperature. After centrifugation 

(400 g for 5 min), supernatant was eliminated and the pellet resuspended in hypotonic 

solution (KCl 0.075 M) and incubated for 10 min at room temperature. Mitotic chromosomes 

were then fixed twice with a methanol:acetic acid solution (3:1), spread on slides and counted 

under a fluorescent microscope following DAPI staining. 

 

BAC library construction 

High molecular weight DNA was prepared from 130 L1 larvae hatched in the laboratory from 

egg masses collected in the field. The protocol described in Peterson, Tomkins, Frisch, Wing, 

and Paterson (2000) and Gonthier et al. (2010) was applied with the following modifications: 

(1) Sucrose based Extraction Buffer (SEB) was 0.01 M Tris, 0.1 M KCl, 0.01 M EDTA pH 

9.4, 500 mM sucrose, 4 mM spermidine, 1 mM spermine tetrahydrochloride, 0.1% w/v 

ascorbic acid, 0.25% w/v PVP 40 000, and 0.13% w/v sodium diethyldithiocarbamate, (2) 

lysis buffer was 1% w/v sodium lauryl sarcosine, 0.1 mg/ml proteinase K, 0.13% w/v sodium 

diethyldithiocarbamate, 6 mM EGTA and 200 mM L-Lysine dissolved in 0.5 M EDTA pH 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

9.1, (3) after lysis of the nuclei, agarose plugs were pre-washed 1h in 0.5 M EDTA pH 9.1 at 

50°C, 1h in 0.05 M EDTA pH 8 at 4°C, and then stored at 4°C. Partial digestion of high 

molecular weight genomic DNA with HindIII (Sigma-Aldrich, St-Louis, Missouri), elution 

and ligation to pIndigoBAC-5 HindIII-Cloning Ready vector (Epicentre Biotechnologies, 

Madison, Wisconsin) were performed according to Chalhoub, Belcram, and Caboche (2004). 

The BAC library was deposited at the Centre National de Ressources Génomiques Végétales 

(Toulouse, France). 

 

Sequencing and assembly of 11 BACs for assembly quality assessment 

DNA was isolated from 11 randomly-chosen BACs using the Nucleobond Xtra Midi Plus kit 

(Macherey Nagel) following the manufacturer instructions using 100 mL of LB media with 

12.5 µg/mL Chloramphenicol selective marker. Then, 15 µg of DNA were obtained for each 

BAC clone (ca. 150 ng/µL), of which 150 ng were digested with the fast NotI enzyme 

(Fermentas) and incubated 40 min at 37°C. After incubation, the enzymatic digestion was 

transferred on a 0.8% agarose gel (TBE 0.25X) for pulse field electrophoresis performed with 

a Chef Mapper XA CHILLER SYSTEM 220V (Bio-Rad) under the following conditions: 

voltage = 6 v/cm, included angle = 120°, initial switch time = 5 sec, final switch time = 15 

sec, run time = 16 hours, ramping = linear. Each insert size was estimated using the software 

GeneTools (Syngene). 

Libraries were constructed with the TruSeq Nano DNA sample preparation (low throughput 

protocol) kit from Illumina. 250 ng of BACs were fragmented through sonication on a 

Covaris S220 to produce fragments of ca. 900 bp. The DNA fragments went through an end 

repair process, and were purified and size selected on magnetic beads. Finally, a single 'A' 

base was added. The adapter and a molecular index were subsequently ligated. The DNA 

fragments were selectively enriched with 8 PCR cycles. The final DNA libraries were 
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validated with a DNA 1000 Labchip on a Bioanalyzer (Agilent) and quantified with a KAPA 

qPCR kit. After normalization, libraries were pooled in equimolar amounts and sequencing 

was performed on an Illumina MiSeq using the paired-end (PE) protocol and the Reagent Kit 

v3 (2x300 bp).  

The raw PE reads were cleaned with the Trimmomatic software (v0.33, Bolger, Lohse, & 

Usadel, 2014) to remove the Illumina adapter as well as the vector sequences, using the 

following parameters: ILLUMINACLIP:$adapterfile:2:28:10 

ILLUMINACLIP:$vectorfile:2:28:10 HEADCROP:15 LEADING:28 TRAILING:28 

SLIDINGWINDOW:5:30 MINLEN:30. Each BAC assembly (Fig. 1A) was established using 

Velvet (v1.2.10, Zerbino & Birney, 2008) on both the cleaned PE reads (applying an inner 

distance between read1 and read2 of 300 bp) and the Single-End (SE) reads reported as 

‘unpaired’ by Trimmomatic. Several assemblies were created using k-mer sizes from 31 to 

261 with steps of 10. The chosen assembly corresponded to the highest value of the product 

N50 [bp] x assembly size [bp] weighted by the number of contigs. The best assembly was 

aligned against NCBI NT (v07/2015, NCBI Resource Coordinators, 2016) to search for 

diverse contaminations (e.g. bacteria, nematodes) using blastn BLAST (Altschul, Gish, 

Miller, Myers, & Lipman, 1990) web-analysis via 

http://www.blast.ncbi.nlm.nih.gov/Blast.cgi. Contaminated contigs were identified and 

removed by analyzing manually all alignment results having e-values between e-14 and 0, 

high bit scores and corresponding to non-insect species sequences. Contaminated contigs 

matched mainly to Actinobacteria, Proteobacteria (both with e-values of 0) and flatworms 

(Platyhelminthes, e-value of e-14). Other contigs were identified as being artificial sequences 

(i.e. cloning vectors), uncultured bacteria (i.e. adhering to rumen of cows) and a sequence 

matching best to Physeter catodon (sperm whale). The remaining contigs for each BAC were 

then scaffolded with the program SSPACE (v3.0, Boetzer, Henkel, Jansen, Butler, & 
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Pirovano, 2011). Two independent scaffolding strategies were applied. The first scaffolding 

analysis included only the PE sequences (applying standard parameters: -k 5 –a 0.7 –x 0 –p 

1) while the second approach also took into account the Trimmomatic SE reads (same 

parameters). This allowed SSPACE to extend contigs when possible. Scaffolds shorter than 

1500 bp were removed from each assembly. Then, as above, the best of these two 

scaffoldings was chosen by calculating the (N50 [bp] x assembly size [bp] / contig number) 

criterion.  

The quality of the 11 assembled BACs was assessed by screening each BAC for the presence 

of duplicated regions. Thus, each assembly was aligned against itself by global alignment 

with LASTZ (v1.03.02, Harris, 2007) applying the following parameters: --notransition --

step=20 --gfextend --gapped --chain --matchcount=800 --identity=92 

--format=general:score,name1,zstart1,end1,strand1,size1,name2,zstart2+, 

end2+,strand2,size2.  

Read coverage was determined by mapping the Trimmomatic output reads against each BAC 

scaffold using Bowtie (v2.2.4, Langmead & Salzberg, 2012). In addition to default 

parameters and --reorder, only read pairs with mapping distances consistent with the specific 

library insert size were retained, i.e. applying the options --no-discordant and --maxins 1100. 

Subsequently, the aligned read percentage and the read per bp coverage were calculated for 

each BAC assembly using SAMtools (v1.2, H. Li et al., 2009), BAMtools (v2.3.0, Barnett, 

Garrison, Quinlan, Stromberg, & Marth, 2011) and BEDtools (v2.2.23, Quinlan & Hall, 

2010).  
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Construction and quality assessment of the Tpit-SP v1 genome assembly 

Genome library construction and sequencing 

Whole genomic DNA was isolated following a standard CTAB/phenol chloroform protocol 

from the head and thorax of 21 SP males caught by pheromone trapping. Six libraries, 

hereafter referred to as PE300i, PE600i, SE454, LJD3i, LJD8i and LJD20i, were further 

constructed. The PE300i and PE600i consisted of Illumina PE libraries with short-insert sizes 

of 300 and 600 bp respectively, and were constructed based on the genomic DNA from a 

single male. These two libraries were sequenced on a single lane of an Illumina HiSeq2000 in 

the Edinburgh Genomics sequencing facility (Edinburgh, Scotland). The four other libraries 

were constructed and sequenced by Eurofins MWG Operon (Ebersberg, Germany). In short, 

the SE454 library consisted in a whole genome SE library, built from a single male and 

sequenced on 3 runs of a Roche 454 GS FLX+. The LJD3i, LJD8i and LJD20i libraries were 

Long Jumping Distance (LJD) PE libraries with insert sizes of 3000, 8000 and 20 000 bp, 

respectively. LJDs were developed by Eurofins MWG Operon as an alternative to mate pair 

sequencing; they have larger insert sizes than mate pair libraries and are sequenced using the 

paired-end read protocol (https://www.eurofinsgenomics.eu/en/eurofins-genomics/product-

faqs/next-generation-sequencing.aspx). Each library was constructed using a pool of 4 to 8 

males. Pooling of DNAs was necessary to obtain enough DNA at the unwanted expense of 

increasing genetic diversity in the sequenced sample. These three libraries were sequenced on 

a single Illumina HiSeq2000 lane.  

 

De novo genome assembly and characteristics 

Assembly of all the resulting raw data was carried out by Eurofins MWG Operon. Briefly, 

the reads of all libraries were cleaned for quality and adapters were removed (Fig. 1B) with 
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the Trimmomatic software (v0.22, window size of 20 bp, minimum PHRED quality of 20, 

Bolger et al., 2014). PE reads were filtered if they were shorter than 70 bp, LJD reads if they 

were shorter than 30 bp and SE454 reads if they were shorter than 100 bp. Furthermore, reads 

mapping to a bacterial genome in the NCBI Genome database were considered as 

contaminations and removed. Please note that this procedure might have resulted in the 

potential removal of endosymbiont genes integrated in the nuclear genome. Subsequently, 

Eurofins MWG Operon applied their own assembly pipeline (CONVEY, 

http://www.conveycomputer.com) which ran multiple Velvet assemblies with all available 

Illumina and 454 data using a broad range of k-mer sizes and varying parameters. The best 

assembly (k-mer size 61) was selected on the basis of N50 size and maximal scaffold length. 

Scaffolds with a length of at least 1000 bp were retained to constitute the final genome 

assembly of T. pityocampa, named Tpit-SP v1 genome. The mitogenome was identified and 

isolated from the nuclear genome assembly. The AT-rich sequence of the mitochondrion was 

detected in a single genome scaffold of 15 717 bp, confirmed by blastn against the NCBI 

Nucleotide database and further manually edited. Furthermore, the circular structure of the 

mitogenome was verified. 

Classical scaffold length statistics (N50, N90, mean, etc.) and the GC content of the nuclear 

genome were calculated on the assembled scaffolds. In order to evaluate genome coverage, 

the PE reads of the three genomic libraries were mapped on the contigs and scaffolds with 

Bowtie (as described above for BAC coverage), applying --maxins 500 bp for PE300i and 

800 bp for PE600i, respectively. The SE454 reads were mapped in single-end mode (Bowtie 

parameter -U). In addition, to estimate in silico the expected full genome size of the Tpit-SP 

v1 genome, the frequencies of kmers of 61 bp length were counted within all Illumina paired-

end raw reads with the software Jellyfish (v1.1.11, Marcais & Kingsford, 2011) and the 
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results were subsequently analyzed with the web-software GenomeScope (parameters: 

kmer=61, max cov=80, read length=100bp; Vurture et al., 2017). 

Furthermore, the same LASTZ approach (see above) was applied as for the BAC analyses to 

identify duplicated regions and haplotypes possibly assembled in different scaffolds. Repeats 

in the genome assembly were identified with RepeatModeler (v1.0.8, Smit & Hubley, 2008-

2015) (parameter: -engine ncbi) and RepeatMasker (v4.0.6, Smit, Hubley, & Green, 2013-

2015) (parameters: -s xsmall -gff –norna –engine ncbi –poly –gff). The results of 

RepeatMasker were summarized by the tool “One code to find them all” (v03/2016, Bailly-

Bechet, Haudry, & Lerat, 2014) applying default parameters. 

 

Quality assessment of the Tpit-SP v1 genome assembly 

The completeness of the assembly was assessed by detecting well-conserved eukaryotic core 

genes, using (i) the CEGMA prediction pipeline (v2.5, default parameters, Parra, Bradnam, & 

Korf, 2007) which searches for 248 orthologous groups of proteins (KOGs, Tatusov et al., 

2003), and (ii) the recently developed BUSCO program (v1.2, Simao, Waterhouse, Ioannidis, 

Kriventseva, & Zdobnov, 2015), which was separately run to search for 429 conserved 

eukaryotic genes (parameters -l eukaryota -m genome --long) and 2675 conserved arthropod 

genes (parameters -l arthropoda -m genome --long).  

CEGMA and BUSCO protein sequences which were not identified in the T. pityocampa 

genome were extracted from the CEGMA (kogs.fa) and BUSCO (corresponding ancestral 

FASTA files for ‘eukaryota’ and ‘arthropod’ analyses) KOG sequences and subsequently 

aligned with tblastn (NCBI-BLAST+ v2.2.29; parameters: -evalue 1e-5 –outfmt 7 –

num_alignments 20) to the genome assembly. The corresponding KOGs were allowed to be 
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split over several T. pityocampa scaffolds, using an in-house Perl script. A KOG was counted 

as being present if at least 40% of the KOG sequence was aligned on two scaffold ends. 

To further assess the quality of the genome assembly, LASTZ was run to align the genome 

scaffolds (same parameters as mentioned above) as well as the genome contigs (parameter --

matchcount=400 in order to take into account the smaller size of contigs) against the 11 BAC 

assemblies. In addition the cleaned genomic shotgun reads from the libraries PE300i and 

PE600i were mapped with Bowtie on the BAC sequences in order to calculate the read per 

base coverage, applying the same protocol and parameters as described for the genome 

coverage analyses. The alignments of the Tpit-SP v1 scaffolds on the BAC assemblies were 

visualized separately for each BAC using the CIRCOS toolkit (v0.68, Krzywinski et al., 

2009). 

 

Construction and quality assessment of Tpit-SP transcriptomic resources 

Molecular procedures 

RNA was extracted from samples corresponding to various developmental stages (eggs, L1, 

L3 and L5 larvae, freshly buried and metamorphosing pupae, adults) using a Trizol extraction 

procedure. RNA quality and integrity was evaluated through migration on an agarose gel and 

nanodrop technology. Whenever the 260/280 OD ratio was below 1.7, samples were purified 

using the Qiagen RNeasy plant mini kit. RNA concentrations were estimated using the Qubit 

procedure (Quant-it RNA assay kit). RNAs from 2 to 5 individuals were pooled for each 

development stage in equimolar proportions before library preparation.  

Libraries were constructed using the TruSeq stranded mRNA sample prep kit (Illumina) 

according to the manufacturer instructions, both with a standard insert size of 450 bp and 

with a long insert size of 850 bp obtained by modifying the fragmentation time and beads 
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quantity. Briefly, poly-A RNAs were purified using oligo-d(T) magnetic beads. The poly-A+ 

RNAs were fragmented and reverse transcribed using random hexamers, Super Script II (Life 

Technologies) and Actinomycin D. During the second strand generation step, dTTP was 

substituted by dUTP. This prevented the second strand to be used as a matrix during the final 

PCR amplification. Double-stranded cDNAs were adenylated at their 3' ends before ligation 

was performed using Illumina's indexed adapters. Ligated cDNAs were amplified through 15 

PCR cycles and PCR products were purified using AMPure XP Beads (Beckman Coulter 

Genomics). 

Libraries were validated using a DNA1000 chip on an Agilent Bioanalyzer and quantified 

using the KAPA Library quantification kit (Clinisciences). The libraries obtained using 450 

bp inserts were pooled in equimolar amounts and sequenced in two lanes of an Illumina 

HiSeq2000 using the PE 2x100 bp protocol. Then, all libraries (both standard and long insert 

sizes) were pooled and sequenced using the MiSeq PE 2x300 bp protocol.  

 

Building a predicted gene set from the Tpit-SP v1 genome 

The AUGUSTUS program (Stanke & Waack, 2003) was used to identify potential coding 

regions in the genome. This program relies on Markov models to represent and predict the 

gene structure in a specific genome. Due to the lack of a Lepidoptera-specific coding region 

model, a de novo gene model for T. pityocampa was created. Thus, WebAUGUSTUS (Stanke 

& Morgenstern, 2005) was run in the ‘Training’ mode, providing the assembled genome 

scaffolds and 43 486 Lepidoptera protein sequences obtained from the UniRef50 database 

(redundancy removed at 50% identity at maximum, Suzek, Wang, Huang, McGarvey, & Wu, 

2015). The generated training model was retained for the gene prediction analysis. 

To optimize the identification of coding regions, the Illumina HiSeq RNAseq reads were 

included as extrinsic data (i.e. evidence from external sources) into the prediction process. 
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These reads were mapped with TopHat (v2.0.12, Kim et al., 2013), applying parameters -r 

100 and --no-discordant. Following the AUGUSTUS standard recommendations for 

eukaryotic genomes (Stanke, 2009), the genome-mapped RNAseq read clusters were 

identified as potential exons and the inter-exonic regions as potential introns. In order to 

obtain the most specific coding-gene structure annotation, two consecutive AUGUSTUS 

(v3.0.2) predictions (Fig. 1B) were applied with the following parameters as suggested in 

Stanke (2014): --species=$NEW_PPM_MODEL --extrinsicCfgFile=extrinsic.M.RM.E.W.cfg 

--alternatives-from-evidence=true --allow_hinted_splicesites=atac --protein=on --

exonnames=on --codingseq=on $GENOME_FASTA. The first prediction (Aug2.1, including 

the parameters --hintsfile=$ALL_HINTS --introns=on --genemodel=complete) identified 

only complete coding genes and detected introns and coding sequences (CDS). This gene 

prediction represented the most exhaustive set of coding genes for the present Tpit-SP v1 

draft genome. A second AUGUSTUS prediction (Aug2.2) was defined using more robust and 

conservative criteria before being included to build the T. pityocampa reference transcriptome 

(see below). In detail, the intron genome coordinates were extracted from the Aug2.1 gene 

structure file (GFF3 format) to retrieve the FASTA sequences of the exon-exon junctions by 

taking 100 bp of each flanking exon. The HiSeq RNAseq reads were then mapped with 

Bowtie on these junctions as SE reads (‘-U’ option) to optimize the exon border 

reconstruction. Uniquely mapped exon-exon reads retrieved by SAMtools were combined 

using BAMtools with the uniquely exon-mapped reads previously aligned by TopHat 

(excluding exon-exon mapping reads). The intron structure coordinates file was updated 

(bam2hints tool provided with AUGUSTUS) and applied as input for the Aug2.2 prediction 

(including the parameter --hintsfile=$INTRON_HINTS).  

Finally, the CDS sequences of the Aug2.1 and Aug2.2 predictions were extracted by applying 

the AUGUSTUS tool getAnnotFasta.pl.  
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De novo assembly of HiSeq and MiSeq transcriptomes 

The HiSeq and MiSeq reads were independently analyzed by Trimmomatic for quality 

filtering and adapter trimming with the following parameters: ILLUMINACLIP: 

$adapterfile:2:40:15 HEADCROP:12 SLIDINGWINDOW:4:15 MINLEN:30). Subsequently, 

prinseq-lite (v0.20.2, Schmieder & Edwards, 2011) (-trim_tail_left 5, -trim_tail_right 5, -

min_len 30, -out_format 3) was applied to remove polyA and polyT ends longer than 5 bp. 

HiSeq and MiSeq data were assembled separately (Fig. 1C) in order to avoid creating 

chimeric transcripts or artefacts related to the different sequencing technologies. In each case, 

overlapping reads were combined with the program FLASH (v1.2.11, Magoc & Salzberg, 

2011). Merged as well as unmerged FLASH output reads were retained for the assembly 

process. To decrease computation time and to facilitate the assembly process for the HiSeq 

reads, redundancy was removed using the BBNorm (v35.21, Bushnel, 2014) normalization 

tool. Subsequently, Velvet (v1.2.08, default parameters) was run followed by Oases (v0.2.08, 

default parameters, Schulz, Zerbino, Vingron, & Birney, 2012). Odd k-mer values ranging 

from 27 to 81 were applied for HiSeq, and from 51 to 101 for MiSeq data, using a step size of 

4. In both cases Velvet tool velvetg (parameters -amos_file yes -read_trkg yes) was run to 

determine the insert length to be used in Oases, leading to 220 bp for HiSeq data and 210 and 

460 bp for the two MiSeq libraries, respectively. Interestingly, for both MiSeq libraries the in 

silico-estimated insert sizes were shorter than expected from the wet laboratory procedures. 

This could be due to the relatively wide and flat curve of DNA fragment insert sizes obtained 

from the Agilent Bioanalyzer quality check (data not shown), which most probably resulted 

in the over-representation of smaller fragments in the libraries. A comparative analysis (not 

shown) between Velvet/Oases assemblies established with the wet lab insert sizes further 

showed that the in silico-based insert sizes returned better transcript assemblies. The best 
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transcriptome for each data set was chosen based on the highest ratio of identified CEGMA 

core genes, including partial ones. Then, transcripts were filtered on their abundance with the 

RSEM (v1.2.8, B. Li & Dewey, 2011) program which was run by the tool 

align_and_estimate_abundance.pl (--est_method RSEM) embedded in the Trinity package. 

Each read was aligned with Bowtie (v2.2.4, default parameters) on the reconstructed 

transcripts of the corresponding transcriptome. Guided by these alignments, RSEM estimated 

the abundance of each transcript. For this purpose, the metric, `fragments per kilobase 

transcript length per million fragments mapped` (FPKM) was chosen to further exclude 

transcripts with low coverage (i.e. FPKM ≤ 2). The read per base coverage and the remapping 

percentage were calculated for each transcriptome as described in the BAC coverage 

calculation section.  

 

Establishing a reference transcriptome from the de novo transcriptomes and the predicted 

gene set 

To generate a consistent reference set of protein-coding transcripts, first the coding regions of 

the assembled transcripts were identified. FrameDP (v1.2.2, default parameters, Gouzy, 

Carrère, & Schiex, 2009) was applied on each of the MiSeq and HiSeq transcripts, on the 

previously published 454/Sanger transcriptome resource obtained for the SP (Gschloessl et 

al., 2014) and on the CDS of the Aug2.2 subset of coding genes. For each sequence including 

a coding region identified by FrameDP, only the longest peptide was retained to limit 

redundancy in the final data set. This set of protein sequences was then clustered by CD-HIT 

(CD-HIT package, v4.5.4, Fu, Niu, Zhu, Wu, & Li, 2012) using an identity of 90% 

(parameters -c 0.90 -l 20), and the results were visualized by a Venn diagram using the R 

package VennDiagramm (v1.6.17, H. Chen & Boutros, 2011). Again, only the longest protein 

sequence of each CD-Hit cluster was retained to build the final set of coded reference 
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proteins. Then, the reference Tpit-SP transcriptome was obtained by retrieving the coding 

nucleotide sequence corresponding to each protein. 

 

Quality assessment of the two de novo and the reference transcriptomes 

The completeness of the HiSeq and MiSeq transcriptome assemblies as well as the reference 

transcriptome was assessed by running CEGMA and BUSCO (using the eukaryote and the 

arthropod sets) analyses as described above except that the parameter --long was omitted and 

-m trans was applied as the analysis was done on a transcript set. The ortholog hit ratio 

(OHR, O'Neil et al., 2010) was also calculated, which estimates the completeness of an 

assembled transcript based on its blastx alignment length compared to the best match within a 

protein reference set. The HiSeq, MiSeq and reference transcripts were aligned with blastx 

(outfmt 5 -evalue 1e-5 -gapopen 11 -gapextend 1 -word_size 3 -matrix BLOSUM62) against 

a reference set corresponding to 471 938 protein sequences extracted from the lepidopteran 

genome database Lepbase (v4, Challis, Kumar, Dasmahapatra, Jiggins, & Blaxter, 2016). The 

OHR values were then calculated on the best hit sequence as described in Gschloessl et al. 

(2014). 

 

Reference transcript localization in the Tpit-SP v1 genome and functional annotation 

Mapping the reference transcripts onto the genome assembly 

The transcripts from the three established transcriptomes (HiSeq, MiSeq and reference) and 

the published 454/Sanger resource obtained from the same population were aligned to the de 

novo genome assembly using BLAT (v35, default parameters, Kent, 2002). As proposed by 

Stanke (2009), only those transcripts which were aligned to the genome with at least 80% of 

the transcript length at a 92% sequence identity were kept. Furthermore, transcripts 
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potentially split over several scaffolds were searched for, applying the same approach as for 

the quality assessment of genome assembly. The reference transcripts were aligned with 

blastn (parameters: -soft_masking true –evalue 1e-5 –outfmt 7 –show_gis –perc_identity 70) 

against the Tpit-SP v1 assembly. Then, these transcripts were declared as being split on two 

scaffolds if at least 40% of the transcript was aligned on two scaffold termini. 

 

Functional annotation  

The proteins corresponding to the reference transcripts were predicted using FrameDP 

(default parameters). If multiple proteins were identified for a specific transcript, only the 

longest peptide sequence was kept. Then, the retained PPM proteins were aligned against the 

NCBI NR database (v5 june 2017) with blastp (v2.5.0, minimum e-value=1e-8, maximum 

target sequences=20). An InterProScan (v5.13-52.0, Zdobnov & Apweiler, 2001) was 

conducted on the same dataset. Subsequently, Blast2GO (v2.5, database vOct2016, Conesa et 

al., 2005) assigned Gene Ontology (GO) terms to proteins, taking into account the blastp and 

InterProScan results. Finally, the OrthoMCL package (L. Li, Stoeckert, & Roos, 2003) 

(blastp 2.5.0 parameters: -evalue 1e-5, orthomcl v2.0.9 parameters: percentMatchCutoff=50 

evalueExponentCutoff=-5, mcl v14-137 with parameters: --abc -I 1.5) was used to identify 

potential orthologs between the FrameDP-predicted proteins corresponding to the reference 

transcript set and the protein sets of Drosophila melanogaster (version dmel-all-translation-

r6.03), Danaus plexippus (version Danaus_plexippus.DanPle_1.0.25), Bombyx mori (version 

http://sgp.dna.affrc.go.jp/ComprehensiveGeneSet) and the noctuoid Spodoptera frugiperda. 

For this latter species, the transcript set published by Legeai et al. (2014) was retrieved which 

is available in LepidoDB (http://bipaa.genouest.org/data/public/lepidodb/TR2012b.fa), and 

the corresponding predicted protein set was generated with FrameDP (default parameters). 
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Finally, the longest protein sequence was kept for each transcript with a predicted CDS and 

these 22 253 S. frugiperda proteins were included into the OrthoMCL ortholog analysis. 

 

Public release of the T. pityocampa SP resources in LepidoDB database 

The genomic and transcriptomic resources developed in the present study were integrated 

into LepidoDB, a public database hosting genomic resources for several lepidopteran species, 

which can be accessed via http://bipaa.genouest.org/sp/thaumetopoea_pityocampa/. In detail, 

all predicted genes (Aug2.1 and Aug2.2 sets) and the reference transcripts along with their 

corresponding functional annotations were loaded into a Chado database (v1.31, Mungall & 

Emmert, 2007). The available data for the reference transcript set were gathered in specific 

web pages using an in-house J2EE application. For visualization purposes, a JBrowse 

(v1.12.1, Skinner, Uzilov, Stein, Mungall, & Holmes, 2009) genome browser was set up. To 

facilitate analyses of the PPM resource data, a search engine as well as a BLAST and a 

Galaxy server (Blankenberg et al., 2010) can be accessed from the web page.  

 

RESULTS AND DISCUSSION 

 

Karyotyping 

A diploid number of 98 chromosomes was observed in 6 of the 8 detected metaphases (Fig. 

S1 Supporting Information), and slightly smaller diploid numbers in the 2 others. Because of 

the difficulty in spreading the small chromosomes of T. pityocampa, it was considered that 

the actual number was likely 2n=98, while the observations of lower counts possibly 

reflected incomplete spreading. The small number of observed metaphases may be due to the 

use of a protocol primarily developed for cell line cultures. Yet, the results were sufficient to 
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provide a first estimate of chromosome number for the studied species, and to compare them 

with other Lepidoptera. Indeed, in Lepidoptera, chromosome numbers range from n=5 to 

n=223 haploid chromosomes, with a majority of taxa showing a constant number of n=31 

(i.e. chromosomal conservatism) (Ahola et al., 2014; Lukhtanov, 2014), which is supposed to 

correspond to the ancestral Lepidoptera karyotype. As in other lepidopteran species, the 

relatively large number of small chromosomes (n=49) in the pine processionary moth is 

probably due to chromosomal rearrangements and high levels of repetitive elements (Ahola et 

al., 2014; Lukhtanov, 2014).  

 

Characteristics and quality of the Tpit-SP v1 genome  

The T. pityocampa SP genome was assembled into 675 934 contigs representing 507 Mb 

(Table 1). N50 and N90 contig lengths of the assembly were 1424 and 320 bp, respectively. 

These contigs were further assembled into 68 292 scaffolds. The Tpit-SP v1 scaffold lengths 

ranged from 1 kb to 2.1 Mb and the corresponding N50 and N90 scaffold lengths were 164 

kb and 1951 bp, respectively. Overall statistics of the genome assembly are listed in Table 1. 

More details on all libraries shotgun and LJD libraries can be found in Table S1 (Supporting 

Information). Relatively high scaffold numbers have also been reported most recently for 

other de novo lepidopteran genome assemblies which resulted in 142 to 80 479 scaffolds, and 

N50 lengths ranging from 5.2 kb to 10.7 Mb (Table 2). The Tpit-SP v1 genome size was 537 

Mb, which is close to the maximum documented for Notodontidae (estimated range 323 – 

587 Mb, Gregory et al., 2007). It is larger than the genome of the Fall armyworm (corn strain: 

438 Mb, rice strain: 371 Mb), S. frugiperda (Gouin et al., 2017), which is a main pest of rice 

and corn and the closest Noctuoidea species for which a genome was previously available. 

The size of the Tpit-SP v1 assembly lies in between the ones published for the silkworm 

Bombyx mori (482 Mb) and the winter moth Operophtera brumata (638 Mb). Yet, using 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

GenomeScope, the expected full genome size was estimated to range between 432 and 452 

Mb, which suggests that the actual T. pityocampa genome size is probably shorter than the 

Tpit-SP V1 assembly size. The mean coverage in the Tpit-SP v1 genome assembly was 84 

reads/bp (see Table S2 for average coverage per scaffold). All positions of the draft genome 

assembly (excluding positions with Ns) had a read per base coverage of at least 1. Moreover, 

98% of the Tpit-SP v1 assembly had a coverage of at least 10, 85% of at least 30 and 39% of 

at least 100 reads per base pair. These findings confirmed the high quality assembly of the 

genome contigs. The Tpit-SP assembly also had a GC content of 37% which is very close to 

the other Noctuoidea species, S. frugiperda (36% for both strains, Gouin et al., 2017). 

However, the proportion of repeated elements of 45% (Table 3) was higher than those found 

for S. frugiperda (29% for both strains, Gouin et al., 2017) and closer to the values found for 

B. mori (44%) and O. brumata (54%) (Derks et al., 2015; International Silkworm Genome, 

2008). Furthermore, 605 duplicated regions (average length: 1348 bp, range 809 - 8509 bp) 

were identified in 540 scaffolds. Lepidoptera with a larger number of chromosomes are 

supposed to have shorter chromosomes and a higher level of repeated elements than their 

counterparts with lower chromosome numbers (Ahola et al., 2014), which is consistent with 

the T. pityocampa genome characteristics of the present study.  

Furthermore, the quality of the Tpit-SP v1 genome assembly was evaluated by localizing the 

scaffolds on the reconstructed BACs. In short, the BAC library was composed of 19 968 

clones with a mean insert size of 75 kb and represented 3 genome equivalents. Details on the 

paired-end libraries can be found in Table S3. The randomly chosen 11 sequenced BACs 

were assembled into 1 to 9 scaffolds (on average 3 scaffolds). Assembly sizes were consistent 

with the size estimates obtained during the library construction process. The read coverage of 

the BAC assemblies varied from 921 to 2148 reads/bp (Table 4). When aligning the T. 

pityocampa genome scaffolds against the assembled BACs, all BACs could be recovered on 
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average at 56% of their length (min. 14%, max. 83%). Between 5 and 32 genome scaffolds 

(on average 20 scaffolds) were aligned to each BAC sequence (Fig. 2: 4 chosen BACs, Fig. 

S2: all 11 BACs). On the other hand, the Tpit-Sp v1 contigs covered on average 74% of the 

BAC sequences. In addition, 71 to 93% of the BAC lengths were covered by at least 10 reads 

per base pair when genomic cleaned reads were mapped (Table 4). Once more, these results 

illustrated that the Tpit-SP v1 genome assembly was of good sequence quality but remained 

fragmented. At last, the number of conserved eukaryotic and arthropod genes being recovered 

in the assembly was determined. Among the 248 conserved eukaryotic genes searched by 

CEGMA, 145 (59%) were identified in the genome assembly, including 87 genes at full-

length. Interestingly, when allowing the CEGMA proteins to be split over two scaffolds, the 

ratio raised to 91% (226 out of 248 genes). In comparison, most of the published lepidopteran 

genomes available in Lepbase contain more than 94% of the corresponding conserved 

CEGMA genes at least partially. This proportion is lower in four species, namely ca. 93% for 

Heliconius erato demophoon, 92% for Plutella xylostella, 84% for Melitaea cinxia and 62% 

for Chilo suppressalis (Table 2). As for the BUSCO analyses, 34% and 47% of the conserved 

eukaryote and arthropod, respectively, were identified in the Tpit-SP v1 genome assembly. 

These proportions rose to 57% (eukaryotes) and 72% (arthropods) when genes were allowed 

to be split on two scaffolds. In comparison, in the high quality genome assemblies of S. 

frugiperda strains 87% (corn) and 92% (rice) of the BUSCO arthropod gene set were 

identified (Gouin et al., 2017). 

All genome characteristics obtained in the present study indicated that the Tpit-SP v1 genome 

assembly is of acceptable completeness and that the contigs are of good quality. Yet, the 

scaffolding is not optimized and the assembly is still fragmented. However, the generated 

data permitted to develop a range of population genomics approaches such as RADseq or 

SNP identification from genome-wide resequencing (e.g., Leblois et al., 2018, Gautier et al., 
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pers. comm.), and therefore represents a valuable resource. The high fragmentation still does 

not allow analyses of linkage disequilibrium, haplotypic data and comparative analyses over 

large scale (e.g. synteny). Hence, the genome still needs to be improved in the future, with a 

particular focus on scaffolding and thus the generation and the integration of long reads. 

 

Construction and quality assessment of Tpit-SP transcriptomic resources 

Building a predicted gene set from the Tpit-SP v1 genome  

In the genome assembly 29 415 predicted coding genes (Aug2.1) were identified which is 

close to the 26 329 predicted genes for the rice variant of S. frugiperda (Table 2). Within the 

available lepidopteran nuclear genomes, the average number of predicted coding genes is 17 

157, with a minimum of 10 117 and a maximum of 26 329 genes (Table 2). In Aug2.1, 

30 860 transcripts (CDS) were predicted. Furthermore, 89 225 exons were identified with an 

average length of 176 bp. On average, a gene was composed of 3 exons, with a maximum of 

22 exons. The CDS of the predicted coding genes were on average 511 bp long, and summed 

up to 15.8 Mb. The cumulated length of the Aug2.1 introns was 220.8 Mb and the cumulated 

length of the intergenic regions was 301 Mb. The predicted Aug2.2 subset of high quality 

coding genes consisted of 8 232 CDS which were retained to build the reference 

transcriptome. 

 

De novo assembly of HiSeq and MiSeq transcriptomes 

Regarding the de novo transcriptomes, the best assemblies (highest percentage of identified 

CEGMA genes) were obtained with k-mer values of 61 and 51 for the HiSeq and MiSeq 

transcriptomes, respectively. These two transcriptomes were thus kept and named HiSeq61 

and MiSeq51, respectively. Around 86% (HiSeq61) and 70% (MiSeq51) of the set of 
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cleaned, merged and extended (FLASH) RNAseq reads were used to establish the final 

assemblies. The average read per base coverage was 72 for HiSeq61 and 37 for MiSeq51. 

The HiSeq61 transcriptome covered 128 Mb (including alternative transcripts) and held 62 

376 sequences which were grouped into 31 648 unigenes (Table 5). The MiSeq51 assembly 

had a total size of 152 Mb and consisted of 63 175 transcripts regrouped into 22 412 

unigenes. The N50 values of the assembled HiSeq61 and MiSeq51 transcripts were 4177 and 

3930 bp, respectively.  

 

Reference transcriptome from the de novo transcriptomes and predicted gene set: 

construction, quality assessment and localization 

The identification of coding sequences in transcripts with FrameDP resulted in 31 415 

HiSeq61, 36 547 MiSeq51 de novo transcripts and in 6486 Aug2.2 genes with predicted 

CDS. This set was complemented by a previously published 454/Sanger SP transcriptome 

(Gschloessl et al., 2014) which had 5830 transcripts with predicted CDS, summing up to a 

total of 80 278 transcripts with CDS. Then, the longest FrameDP-peptide to each transcript 

was recovered and all protein sequences were subsequently clustered with CD-HIT into a 

reference protein set of 29 701 peptides. Of these reference sequences 20 465 (69%) had a 

full-length predicted CDS. Most reference proteins, i.e. 19 518 (66%) sequences, were only 

present in one set, i.e. specifically reconstructed by a sequencing or prediction methodology, 

while 261 (1%) of these reference peptides were present in all four input protein sets, 4172 

(14%) in three sets and 5750 (19%) in two sets (Fig. 3). Surprisingly, the HiSeq and MiSeq 

transcript assemblies showed a relatively low overlap of the corresponding protein sets. 

Precisely, 6606 HiSeq and 9540 MiSeq protein clusters contained sequences that were 

obtained by one of these technologies only, while 8754 clusters were shared among HiSeq 

and MiSeq results. While we did not clearly identified the cause of this low overlap, we 
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suggest that sequencing specificities of HiSeq and Miseq technologies might explain these 

differences. These results emphasize the necessary cautions in future studies before 

combining data issued from different sequencing technologies. Yet, the filtering procedure 

we applied to various data sets prior to the construction of the reference transcriptome was 

meant to lower potential biases and to retain only highly reliable transcripts and genes. This is 

underlined by the high quality of the final reference transcriptome, which identified 246 out 

of 248 CEGMA eukaryotic core genes as being at least partially present and 238 at full length 

(Table 5). Concerning the 429 BUSCO conserved eukaryotic genes, 378 (88%) genes were 

found of which 350 were present at full length. The number of identified BUSCO arthropod 

genes within the reference transcriptome was 2236 out of 2675 (84%), 1938 being recovered 

at full-length. 24 648 (83%) reference transcripts matched with the Lepbase reference protein 

set. Of these, 13 802 reference transcripts had OHR values of at least 0.6, while 9578 

reference transcripts had OHRs of at least 0.9, hence covering the respective best Lepbase 

protein sequence hits at least at 90% of their length. Overall, as can be seen in Table 5, 

compared to the three de novo transcriptomes and the Aug2.2 CDS set, the CD-HIT 

clustering approach generated a Tpit-SP reference transcriptome of higher quality than any of 

the four sets taken separately. Hence, by combining various approaches and sequencing 

technologies, the Tpit-SP transcript set was significantly optimized. When the 29 701 

reference transcripts were aligned against the Tpit-SP v1 genome assembly, 9604 (32%) 

transcripts were located with 92% sequence identity on one single genome scaffold. Among 

the other transcripts, 17 149 (58%) were identified as being split on two scaffolds. In total, 

26 753 (90%) reference transcripts could be located in the genome assembly. The structural 

and functional gene annotation of the genomic resource was greatly improved by positioning 

these actual (not predicted) transcripts. Hence, the reference transcriptome, along with the 

genome draft, will constitute an important resource to interpret e.g. outlier SNPs in the 
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population genomic studies, by providing valuable and annotated information in their 

vicinity. 

 

Functional annotation and orthology analyses 

Among the 29 701 reference transcripts, 71% (n=20 989) could be functionally annotated. 

This proportion is higher than those reported for S. frugiperda (42%), Spodoptera litura 

(38%) and Spodoptera exigua (40%) (Legeai et al., 2014; Pascual et al., 2012; Song et al., 

2016). Of the annotated reference transcripts 13 907 (47%) were associated to 3896 distinct 

GO terms. The category ‘biological process’ comprised 2053 GO terms (15 205 assignments, 

Table S4), whereas 1275 GO terms belonged to ‘molecular function’ (18 361 assignments, 

Table S5) and 568 to ‘cellular component’ (10 609 assignments, Table S6). The three most 

represented biological processes were oxidation-reduction process (n=723), proteolysis 

(n=502) and regulation of transcription (n=500). ATP binding (n=1385), metal ion binding 

(n=873) and zinc ion binding (n=827) were the most frequent molecular function 

assignments. Concerning the GO category cellular component, integral component of 

membrane (n=3355), nucleus (n=913) and membrane (n=776) were the most represented 

terms. 

The orthology study aimed to identify counterparts of T. pityocampa reference transcripts in 

the lepidopter species S. frugiperda, B. mori and D. plexippus as well as in the fruit fly D. 

melanogaster. Hence, this analysis contributed to the biological validation of the reference 

coding gene set and represented an essential indicator for its quality. In total, OrthoMCL 

identified 16 779 groups for the five species taken together (Fig. 4). 16 743 (56%) among the 

PPM reference transcripts with predicted proteins were assigned to 11 187 ortholog groups. 

This number of unique genes is lower than the 19 471 ortholog groups reported for the S. 
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frugiperda genome strains (supplementary data in Gouin et al., 2017). A majority of the PPM 

orthologs (93%, n=10 355) were shared with at least one of the other lepidopteran species. 

413 PPM orthologs (528 transcripts) were specific to both Noctuoidea species (S. frugiperda 

and T. pityocampa) and 774 orthologs – corresponding to 2675 protein-coding transcripts - 

were highly divergent from the other four insect species.  

 

 CONCLUSIONS 

This study provides the first genome assembly of a Notodontidae species, and the second for 

the species-rich Noctuoidea super-family which is currently underrepresented in the public 

databases. Right now (October 2017), the majority (n=13) of the 21 lepidopteran genomes 

publically available in Lepbase belong to the Papilionoidea super-family. 

In addition to the Tpit draft genome, a high-quality reference transcriptome for this species is 

released. Thus, the resources developed in this study for the PPM will be of prime importance 

for Lepidoptera comparative genomics and transcriptomics which will shed light on this 

neglected taxonomic clade. In the case of the PPM and in particular the evolution of the 

phenologically shifted SP in Portugal, the availability of this draft genome will allow 

genome-wide analyses of genetic diversity to disentangle its recent evolutionary history 

(Leblois et al., 2018), and to gain knowledge on the genetic architecture of major adaptive 

traits such as phenology or tolerance to high temperature, even though the so far limited 

scaffolding still impedes some applications requiring additional genomic information. The de 

novo transcriptomic resources will permit a thorough analysis of major gene families 

involved in adaptation to climatic conditions (e.g., heat shock proteins) or biotic interactions 

(e.g., P450 involved in host use, immune reactions linked to interactions with natural 

enemies). They will also allow comparative transcriptomics and differential expression 
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studies using RNAseq approaches across developmental stages or populations and contribute 

to annotate functionally identified SNPs. 

As shown by several quality measurements, the obtained contigs were characterized by good 

coverage and completeness values, while the scaffolding is still to be improved. One of the 

main limitations for building a genome-wide assembly in PPM is that inbred lines were not 

available due to heavy mortality in rearing conditions (Branco M.R., pers. comm.) and the 

very urticating L5 larval stage. The samples considered here, although originating from a 

population with a depleted genetic diversity, still remained sub-optimal for genome assembly 

because of its intrinsic heterozygosity. Yet, molecular and algorithmic alternatives can be 

developed to improve future genome assemblies. For example, adding long-fragment 

sequences, such as those produced by PacBio or MinIon technologies (Flusberg et al., 2010; 

Giordano et al., 2017) in the assembly process has been proven to facilitate the scaffolding 

process and hence raise the overall quality of a de novo genome (Rhoads & Au, 2015). In 

addition, as shown in the current Tpit-SP v1 assembly, around 58% (n=17 149) of the 

established reference transcripts were split on two separate genome scaffolds and 2 948 

(10%) transcripts could not be localized at all on the genome. Recent studies (M. Chen et al., 

2015; Xue et al., 2013) proposed to embed transcriptomic data into the assembly to improve 

recovery of coding regions and hence to increase the quality of scaffolds and coding regions. 

Last, building a linkage map could further contribute to associate and order BACs, genes and 

other markers to specific super-scaffolds. A future, improved T. pityocampa reference 

genome would allow to establish and refine studies of genetic diversity either to identify 

signature of selections through genomic scans (Gautier, 2015; Vitalis, Gautier, Dawson, & 

Beaumont, 2014) or to develop powerful analyses of demographic scenarios using a large 

amount of neutral SNPs and linkage disequilibrium data. 
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FIGURE LEGENDS 

 

Fig. 1 Workflow summarizing the bioinformatics analyses to generate the genomic and 

transcriptomic resources for Tpit-SP. A. Reconstruction of the 11 BAC sequences used for 

genome quality assessment; B. Assembly of the Tpit-SP v1 draft genome; C. Generation of 

the HiSeq, MiSeq and reference transcriptomes. 

Fig. 2 Four chosen assembled BAC sequences and the corresponding aligned Tpit-SP v1 

nuclear genome scaffolds. 

Fig. 3 Venn diagram showing all reference transcripts and their coverage among the three 

transcriptome assemblies and the Aug2.2 CDS predictions. 

Fig. 4 Venn diagram showing all OrthoMCL ortholog groups among the predicted Tpit-SP 

reference proteins (TPIT) and the proteomes of S. frugiperda (SFRU), B. mori (BMOR), 

D. plexippus (DPLE) and D. melanogaster (DMEL). 
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TABLES  

Table 1 Features of the contigs and the scaffolds (≥ 1 kb) retained in the assembly of the nuclear T. pityocampa genome. The coverage is 

defined as the average read count per assembled bp. 

 
 Contigs Large scaffolds  

Total length [Mb] 507 537 

Sequence count 675 934 68 292 

Mean [bp] 750 7870 

Median [bp] 402 1757 

N50 [bp] 1424 163 589 

N50 sequence count 100 209 728 

N90 [bp] 320 1951 

N90 sequence count 379 839 29 439 

Minimum length [bp] 51 1000 

Maximum length [bp] 19 793 2 148 522 

Second largest length [bp] 18 371 1 877 510 

Total coverage  121 84 

PE300i – coverage 76 52 

PE600i – coverage 45 31 

SE454 – coverage 0.9 0.5 

GC content [%] 38.0 37.2 

Count base N 0 116 266 296 

N content in assembly [%] 0 21.6 
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Table 2 Characteristics of Lepidoptera genome assemblies available in Lepbase v4. Genome characteristics for Spodoptera frugiperda were 

taken from the corresponding publications Gouin et al. (2017) and Legeai et al. (pers. comm.). a) Counts refer to genes/transcripts predicted on 

the assembled genomes (Aug2.1 for T. pityocampa). b) The CEGMA % for Melitaea cinxia were missing in Lepbase and were therefore 

obtained from the corresponding genome paper (Ahola et al., 2014). c) In brackets the percentage of CEGMA genes is shown, including the 

genes which were split on two Tpit-SP v1 nuclear genome scaffolds. 

Part A 

Species Super family; family Common name Version Accession Date Size (Mb) Scaffold count 

Amyelois transitella Pyraloidea; Pyralidae Navel orangeworm v1.0 GCA_001186105.1 2015-07-22 406 7301 

Bicyclus anynana Papilionoidea; Nymphalidae Squinting bush brown v1.2 N/A 2015-10-28 475 10 800 

Bombyx mori Bombycoidea; Bombycidae Silkworm v1.0 GCA_000151625.1 2008-04-28 482 43 463 

Calycopis cecrops Papilionoidea; Lycaenidae Red-banded hairstreak v1.1 GCA_001625245.1 2016-04-21 729 60 049 

Chilo suppressalis Pyraloidea; Crambidae Rice striped stem borer v1.0 GCA_000636095.1 2014-04-22 372 80 479 

Danaus plexippus Papilionoidea; Nymphalidae Monarch butterfly v3.0 N/A 2012-11-07 249 5397 

Heliconius erato 

demophoon 

Papilionoidea; Nymphalidae Crimson-patched 

longwing 

v1.0 N/A 2016-03-11 383 196 

Heliconius erato 

lativitta 

Papilionoidea; Nymphalidae Crimson-patched 

longwing 

v1.0 N/A 2016-09-12 418 142 

Heliconius melpomene 

melpomene 

Papilionoidea; Nymphalidae Postman butterfly v2.0 N/A 2015-07-17 275 795 

Junonia coenia Papilionoidea; Nymphalidae Buckeye v1.0 N/A 2017-05-13 586 1136 

Lerema accius Hesperioidea; Hesperiidae Clouded skipper v1.1 GCA_001278395.1 2015-09-02 298 29 988 

Manduca sexta Bombycoidea; Sphingidae Tobacco hornworm v1.0 GCA_000262585.1 2012-05-24 419 20 871 

Melitaea cinxia Papilionoidea; Nymphalidae Glanville fritillary v1.0 GCA_000716385.1 2015-04 390 8261 

Operophtera brumata Geometroidea; Geometridae Winter moth v1.0 GCA_001266575.1 2015-08-11 638 25 801 

Papilio glaucus Papilionoidea; Papilionidae Eastern tiger v1.1 GCA_000931545.1 2015-03-20 376 68 029 
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swallowtail 

Papilio machaon Papilionoidea; Papilionidae Old world swallowtail v1.0 GCA_001298355.1 2015-09-28 278 63 186 

Papilio polytes Papilionoidea; Papilionidae Common Mormon v1.0 GCA_000836215.1 2015-02-02 227 3873 

Papilio xuthus Papilionoidea; Papilionidae Asian swallowtail v1.0 GCA_001298345.1 2015-09-28 243 15 362 

Phoebis sennae Papilionoidea; Pieridae Cloudless sulphur v1.1 GCA_001586405.1 2016-03-10 345 20 800 

Plodia interpunctella Pyraloidea; Pyralidae Indian meal moth v1.0 N/A 2015-04-03 382 10 542 

Plutella xylostella Yponomeutoidea; Plutellidae Diamondback moth v1.1 GCA_000330985.1 2014-10-02 393 1794 

Spodoptera frugiperda 

(corn strain) 

Noctuoidea; Noctuidae Fall armyworm v3.1 PRJEB13110 2017-09-25 438 41 577 

Spodoptera frugiperda 

(rice strain) 

Noctuoidea; Noctuidae Fall armyworm v1.0 PRJEB13834 2017-09-25 371 29 127 

Thaumetopoea 

pityocampa 

Noctuoidea; Noctuidae Pine processionnary 

moth 

v1.0 PRJNA344465 2018-01 537 68 292 
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Part B 

Species N50 (kb) N90 (kb) CEGMA 

complete (%) 

At least 

CEGMA 

partial (%) 

GC% N% Gene count 
a)

 Transcript count 
a)

 

A. transitella 1587.0 45.4 78.2 95.2 35.7 14.5 15 208 19 808 

B. anynana 638.3 99.3 81.0 97.2 36.5 1.2 22 642 22 642 

B. mori 4008.4 61.1 76.6 96.8 37.7 10.4 15 488 22 061 

C. cecrops 233.5 4.8 70.6 94.8 37.1 5.5 16 456 16 456 

C. suppressalis 5.2 2.4 41.5 61.7 35.7 12.5 10 117 10 132 

D. plexippus 715.6 160.5 90.3 96.0 31.6 2.7 15 130 15 130 

H. erato demophoon 10 689.0 2670.1 81.1 93.2 33.2 1.4 13 676 20 118 

H. erato lativitta 5483.8 1432.2 N/A 95.0 33.5 1.3 14 613 14 613 

H. melpomene 

melpomene 

2102.7 273.1 88.7 96.8 32.8 0.4 20 102 21 661 

J. coenia 1571.1 261.6 N/A N/A 34.5 0.0 19 234 19 234 

L. accius 525.3 60.3 83.9 95.2 34.4 2.9 17 411 17 411 

M. sexta 664.0 46.4 85.9 96.0 35.3 4.7 15 451 27 403 

M. cinxia 119.3 29.6 77.0 b) 83.9 b) 32.6 7.4 16 751 16 790 

O. brumata 65.6 13.6 64.1 94.0 38.6 2.1 16 912 16 912 

P. glaucus 230.3 2.0 84.3 96.0 35.4 3.6 15 692 15 692 

P. machaon 1174.3 1.1 87.9 94.8 33.8 4.5 15 497 15 497 

P. polytes 3672.3 930.4 83.9 94.0 34.0 3.9 12 244 12 244 

P. xuthus 3432.6 22.4 91.5 96.4 34.1 5.4 15 322 15 322 

P. sennae 256.7 19.6 82.3 96.0 33.0 3.2 16 117 16 492 

P. interpunctella 1270.7 18.7 85.1 96.4 35.1 4.6 23 136 24 497 

P. xylostella 737.2 154 78.2 92.3 38.3 14.4 19 386 23 907 

S. frugiperda (corn 

strain) 

52.8 3.5 N/A N/A 36.0 2.6 21 700 21  779 

S. frugiperda (rice 28.5 6.4 N/A N/A 36.0 0.0 26 329 26 357 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

strain) 

T. pityocampa 163.6 2.0 35.1 23.4 (91.1) c) 37.2 21.6 29 415  30 860  

         

 

 

 

Table 3 Number of repeated elements found in the Tpit-SP v1 genome and corresponding percentage of genome length. 

 
Family Fragments Total length [Mb] % of genome 

LTR 702 636 105.3 19.6 

LINE 364 879 58.9 11.0 

SINE 331 115 50.4 9.4 

DNA 174 994 28.7 5.3 

Total 1 573 624 243.3 45.3 
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Table 4 Characteristics of the 11 sequenced and assembled BACs. The estimated and assembled sizes are given, as well as the k-mer length used 

for the assembly, the number of scaffolds, N50 lengths, BAC read coverages and the % of BAC sequence lengths covered by Tpit-SP v1 genome 

scaffolds, contigs and genomic reads. 

 

 

 

 

 

 

 

 

 

 

 

 

PE BAC library 

Estimated 

BAC size 

[kb] 

Velvet + 

SSPACE 

[kb] 

Best 

assembly 

(k-mer) 

Scaffold 

count 

N50 

[kb] 

Average 

coverage 

(reads/bp) 

# 

Aligned 

Tpit-SP 

scaffolds 

% 

covered 

by 

genome 

scaffolds 

 % 

covered 

by 

genome 

contigs 

% 

covered 

by ≥ 10 

genome 

reads/bp 

 

Tpi21J02_S14_L001 40 49.4 181 2 26.4 1386 15 83.3 94.8 92.6  

Tpi21G16_S15_L001 90 88.2 171 5 55.9 1249 24 41.4 67.4 88.2  

Tpi21F03_S16_L001 85 95.8 171 1 95.8 1553 23 65.5 78.0 84.3  

Tpi21A08_S17_L001 55 64.8 181 1 64.8 1398 15 73.5 84.4 89.7  

Tpi21H19_S18_L001 70 102.6 181 2 98.1 1456 30 65.0 78.8 91.2  

Tpi21L11_S19_L001 50 60.1 161 3 36.3 1484 21 52.2 74.6 86.7  

Tpi21C18_S20_L001 75 83.4 171 2 63.8 1297 19 55.4 71.3 81.9  

Tpi21D23_S21_L001 128 100.0 181 9 14.6 1202 11 14.1 33.6 71.1  

Tpi21P07_S22_L001 65 46.8 181 2 42.5 2148 5 27.1 60.5 84.3  

Tpi21K05_S23_L001 95 94.7 171 1 94.7 921 32 72.4 82.5 86.1  

Tpi21M24_S24_L001 68 81.2 181 1 81.2 1541 22 68.9 83.2 92.0  
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Table 5 Characteristics of the various Tpit- SP transcriptome assemblies and the robust CDS subset (Aug2.2) of the coding-genes predicted from 

the genome. a) Reference transcriptome obtained by CD-HIT clustering: only unigenes are present (compared to presence of alternative 

transcripts in other transcriptomes) b) Including alternative transcripts. c) For Augustus Aug2.2 predictions the CDS lengths were considered. d) 

N50: contig length for which half of the assembly is represented by contigs of this size or longer. 

 

 

 

Reference 
a)

 Aug2.2 454/Sanger SP HiSeq  SP MiSeq (MiSeq1+2) 

Raw number of NGS reads  N/A N/A 467 082 559 510 744 44 533 734 

Read number after cleaning N/A N/A 465 703  514 941 496 39 613 596 

Read number after FLASH N/A N/A N/A 457 553 121 30 669 751 

Read number after BBNORM (only HiSeq) N/A N/A N/A 119 171 986 N/A 

Mean NGS trimmed read length [bp] (min–max) N/A N/A 308 (220–593) 91.1 (30-168) 273.4 (30-568) 

Number of Sanger reads N/A N/A 5290 N/A N/A 

Mean Sanger trimmed read length [bp] (min–max) N/A N/A 515 (334–1832) N/A N/A 

Size of transcriptome [Mb] 67.7 3.1 9.4 b) 128.3 b) 151.9 b) 

Number of mapped cleaned (and FLASH+BBNORM) reads N/A N/A 309 200 102 164 686 21 300 953 

Coverage (mean read count per bp) N/A N/A 17.1 b) 72.4 b) 37.3 b) 

Number of unigenes 29 701 8232 6696 31 648 22 412 

Number of transcripts  29 701 8232 8119 b) 62 376 b) 63 175 b) 

Mean transcript length [bp] 2279 378 c) 1156 2057 2404 

Median transcript length [bp] 1564 294 c) 1001 1130 1504 

N50 transcript length [bp] d) 3632 420 c) 1386 4177 3930 

Located on Tpit-SP v1 genome [count] (%) 9604 (32.3) 8232 (100) 3100 (38.2) 22 824 (36.6) 19 854 (31.4) 

Split on two Tpit-SP v1 scaffolds [count] (%) 17 149 (57.7) 0 (0) 4196 (51.7) 31 845 (51.1) 36 476 (57.7) 

CEGMA identified [%] (count of 248) 99.2 (246) N/A 66.9 (166) 96.0 (238) 95.2 (236) 
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CEGMA full-length [%] (count of 248) 96.0 (238) N/A 60.5 (150) 89.5 (222) 82.3 (204) 

BUSCO euk identified [%] (count of 429) 88.1 (378) N/A 52.4 (225) 86.9 (373) 86.0 (369) 

BUSCO euk full-length [%] (count of 429) 81.6 (350) N/A 43.1 (185) 80.0 (343) 72.3 (310) 

BUSCO arthropod identified [%] (count of 2675) 83.6 (2236) N/A 31.5 (843) 81.7 (2186) 80.0 (2141) 

BUSCO arthropod full-length [%] (count of 2675) 72.4 (1938) N/A 25.9 (692) 70.4 (1882) 60.5 (1618) 

Transcripts with FrameDP peptide [count] (%) 29 701 (100) 6486 (78.8) 5830 (71.8) 31 415 (50.4) 36 547 (57.9) 

Transcripts with FrameDP full-length peptides [count] (%) 20 465 (68.9) 2655 (32.3) 3987 (49.1) 24 651 (39.5) 27 314 (43.2) 
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