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ABSTRACT 

We experimentally studied the spreading dynamics of binary alcohol mixtures (and 

pure liquids for reference) deposited on a heated substrate in a partially wetting 

situation, under non-isothermal conditions. We show that the spreading mechanism of 

an evaporating droplet exhibits a power law growth with early-stage exponents that 

depend strongly and non-monotonically on substrate temperature. Moreover, we 

investigated the temporal and spatial thermal dynamics in the droplet using infrared 

thermography revealing the existence of unique thermal patterns due to thermal and/or 

solutal instabilities which lead to surface tension gradients, namely Marangoni effect. 

Our key findings are that the temperature of the substrate drastically affects the early-

stage inertial-capillary spreading regime owing to the non-monotonic surface 

tension/temperature dependence of the self-rewetting liquids. At later stages of wetting, 

the spreading dynamics enters the viscous-capillary dominated regime with the 

characteristic low kinetics mirroring the behaviour of pure liquids.  
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INTRODUCTION   

Spreading and evaporation behaviour when a droplet impinges on a solid substrate are 

phenomena encountered in a wide number of physical processes  and are of relevance 

to many technological fields such as microfluidics, coating, ink-jet printing 

technologies, material processing 1–8. Indeed, droplet wetting, spreading and 

evaporation are of key importance for many applications and the underlying 

mechanisms of these phenomena are still under investigation and are recognised as 

crucial in a wide range of biological, natural and industrial processes 9–12. The spreading 

and evaporation of a liquid over a solid surface is a complicated free-boundary problem 

characterized by the presence of a moving contact line involving three phase (liquid, 

vapour, and solid) interactions through coupling by conduction with the substrate, 

convection/conduction within the liquid drop and convection/diffusion in the vapour 

phase. When the fluid impacts on a solid surface, it is initially in a transient, capillary 

flow and the wetted contact area moves until the liquid-solid-vapour system reaches an 

equilibrium state with a minimum energy configuration. The first moments of spreading 

behaviour tend to be rapid and the nature of the boundaries governing the dynamics on 

how the drop reaches a stationary state vary depending on parameters such as surface 

chemistry, liquid physicochemical properties and environmental conditions 1,3,6,13.  

 

Many experimental and theoretical studies have been devoted to understanding the 

evolution of the internal flows generated within a spreading and evaporating liquid 

droplet, and have a drastic effect on the wetting kinetics. These generated flows within 

the droplets are significantly affected by liquid viscosity, surface tension forces, density 

and the wettability of the substrate surface, hence influencing the spreading behaviour 

of the liquid. However, applying heat (by e.g. a heated substrate) to a liquid phase, the 
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evaporation rate is increased inducing high temperature imbalances within the drop and 

in turn generating variations of the physical properties.  Temperature variation at the 

interface induces non-uniform thermal energy exchanges influencing significantly the 

evaporation mechanism and in turn affecting the wetting state. These interactions 

between wetting transitions and surfaces have been one of the most active sub-

disciplines in the field of liquid phase transitions over the last two decades 14–16.  

 

In the case of single-component droplets, the characteristic flow within the droplet is 

found to be an outward flow raised from mass conservation to replenish fluid 

evaporating preferentially at the outer edge of the droplet 9,17,18. During the evaporation 

of volatile droplets, thermocapillary instabilities, known as Marangoni instabilities, are 

developed when the system is subjected to sufficiently strong surface tension gradients. 

The origin of this fluid flow, in volatile liquid droplets, is the Marangoni flow which is 

driven by surface tension instabilities along the surface of the liquid due to temperature 

gradients 10,18. Bénard 19 and later Pearson 20 presented a theoretical investigation about 

the role of surface tension in this phenomenon. Ghasemi et al. reported that the flow in 

an evaporating water droplet which is in a reduced pressure environment is driven 

mainly by thermocapillary convection i.e. temperature gradients 21. This pointed out the 

important role of the Marangoni flow in the energy transport mechanism, as the 

evaporation rate increased in the case of reduced pressure conditions. The significant 

contribution of Marangoni stresses, i.e. intensity and orientation of the generated flows, 

in a single-component system depends on the relative thermal properties of the substrate 

and the liquid, the experimental conditions and liquid geometry 22–25. Generally, 

surface-tension-driven flows in single-component volatile droplets, e.g. water, are 

essentially thermocapillary in nature.  
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For binary and generally multicomponent droplets the physical behaviour poses many 

challenges as it can be more complex. Previous studies with droplets formed from 

binary mixtures of water with alcohol (methanol 26, ethanol 27–30 and 1-propanol 31) 

showed a rather complicated behaviour during the evaporation process compared to 

those of pure liquids. The evaporation mechanism of these binary mixtures in particular 

involves three distinct stages; a first stage, where the more volatile component (alcohol) 

migrates to the liquid interface and in principal evaporates first, a second stage which 

is transitional and involves evaporation from both components (mixed stage) and a last 

stage which mainly consists of the evaporation of the less volatile component of the 

mixture although residual amounts of the alcohol phase may still exist in the solution 

26–28,32,33. Moreover, it is thought that the final stage of evaporation mirrors the 

behaviour of pure liquids.   

 

Previous studies investigating the first seconds of an spreading droplet evaporating on 

a solid surface revealed that the underlying causes of the observed mechanism are 

related to inertia, capillary and viscous forces 1,3,6,34. More specifically, during 

spreading, the contact line moves radially outwards from the contact point and the 

droplet wets a circular area of radius 𝑟(𝑡). The unbalanced horizontal Young force: 

𝛾(cos 𝜃 − cos 𝜃𝑒𝑞) drives the droplet to spread on the substrate until it reaches the final 

equilibrium contact angle 𝜃𝑒𝑞, where 𝛾 is the liquid-vapour interface surface tension 

and θ the instantaneous contact angle. Numerous experimental and theoretical studies 

of spreading droplets have shown that an inertial regime exists ahead of the viscous 

regime 35–41. This rapid early stage of wetting lasts only a few milliseconds and, for 

completely wetting surfaces, it is well described by an exponential power law, 𝑟 ~ 𝑡
1

2⁄ . 
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Here, the characteristic inertia time scale 𝜏𝜌 for the early stage of spreading is 

𝜏𝜌 ~ √𝜌𝑅3/𝛾, where 𝑅 is the initial droplet radius before contact and 𝜌 is the liquid 

density 37–40,42. Bird et al. found that the short-time spreading dynamics depends 

strongly on surface wettability due to capillary wave generation, leading to a non-

universal exponent that varies with the equilibrium contact angle 𝜃𝑒𝑞 38. The authors 

demonstrated that the initial contact line dynamics was affected by the surface 

chemistry and the volume of the liquid droplet, whereas the fluid viscosity was not a 

crucial factor. Interestingly, more recent investigations for droplets spreading on 

partially wetting surfaces revealed that the early times dynamics (immediately after 

initial contact) are independent of the surface wettability, with an exponent ~0.5 (best 

fit exponent: 0.48) consistent with the inertia [~ 𝜌(𝑑𝑟
𝑑𝑡⁄ )

2

] and the capillary 

(~  𝛾 ∙  𝑅 𝑟2⁄ ) pressure balance 40. Additionally, in the final stage of spreading, it is well 

known that the spreading dynamics is governed by the Tanner’s law which emerges by 

balancing capillary and viscous forces and relates the radius of the wetted area with 

time as 𝑟 ~ 𝑡1/10 6,39,43. The spreading dynamics in this regime is characteristically 

slow; if the capillary forces driving the flow are primarily hindered by viscosity, the 

natural timescale is 𝜏𝜇 ~ 𝜌𝑅 𝛾⁄ .  

 

Vochten and Petre were the first to report that for dilute aqueous solutions of high 

carbon alcohols (number of carbon atoms  4), the temperature dependence of the 

surface tension showed a minimum at certain temperatures and the surface tension 

dependence turned to be positive in the higher temperature region beyond the bounds 

of the minimum 44. This behaviour leads to a non-linear thermocapillary effect which 

was studied by Oron et al. 45 and later by Slavtchev and Miladinova 46. Dilute aqueous 
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solutions of alcohols such as butanol, pentanol, hexanol etc. can be considered ‘‘self-

rewetting” fluids because of the anomalous (non-monotonic) dependency of the surface 

tension with temperature in a range of concentration 47–50. These solutions experience a 

well-defined minimum in surface tension dependence on the temperature i.e. (quasi-

parabolic) non-linear behaviour, where the surface tension increases as the temperature 

rises above a certain point. Thus, for evaporation based applications (such as heat pipes) 

in which the temperature will rise as the outbreak of dry-out occurs, these alcohol 

mixtures ‘‘self-rewet” by moving towards the hot spots where the surface tension is 

increased and enhance the heat transport rate and the thermal performance of the 

systems 51.  These binary fluids have recently been investigated by many researchers 

and are proposed as new innovative operating fluids for advanced heat transfer 

technologies, e.g. heat pipes or heat spreaders for terrestrial and space applications 51–

58. Figure 1 gives an illustrative plot of the behaviour of ordinary liquids and self-

rewetting aqueous alcohol solutions as a function of temperature. Since these solutions 

contain a water fraction in excess of the azeotropic composition, the alcohol-rich 

component preferentially migrates in the course of liquid/vapour phase change and 

evaporates first. In turn, this results in concentration gradients in the liquid/vapour 

interface. The presence of liquid–vapour gradients (concentration and/or temperature) 

at the vicinity of the triple contact line leads to spontaneous liquid inflows directed from 

the colder region to the hotter side, for temperatures above the minimum of the surface 

tension (Figure 1). In this case, the convection mechanism is driven by the reverse 

Marangoni effect 59,60. Therefore, the induced Marangoni convection flows may play 

an important role in energy transport phenomena 21,61,62.  
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Figure 1. Ordinary liquids (black line) and binary alcohol mixtures (blue line) surface tension 

dependence with temperature and schematic view of the Marangoni effect for self-rewetting 

droplets on a heated substrate as surface tension gradients are induced at the liquid/vapour 

interface.  

 

Multiphase flows coupled with heat transfer mechanisms still pose many experimental 

and theoretical challenges. In this work, we study for the first time the spreading 

dynamics of self-rewetting droplets which partially (90o > 𝜃𝑒𝑞  > 0o) wet a flat 

uniformly heated substrate under non isothermal conditions. We particularly focused 

on the first seconds of the wetting behaviour for two cases of alcohol mixtures: water – 

1-butanol 5% vol. and water – 1-pentanol 2% vol. We also experimentally investigated 

for the first time, using IR thermography, the flow patterns in the spreading evaporating 

droplet arising from the contact with different heated substrates and the non-uniform 

evaporation which drastically affect the wetting ability and thus the spreading 
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mechanism. The nature and the evolution of the complex thermal patterns (internal 

flows) generated within the spreading binary droplets were discussed in terms of 

contact line dynamics, heat transfer phenomena and the contribution of Marangoni 

convection. 

 

EXPERIMENTAL METHOD 

The first step in our experiments was to prepare solutions using pure alcohols: 1-butanol 

(Sigma-Aldrich Co. LLC. 360465) and 1-pentanol (Sigma-Aldrich Co. LLC. 398268) 

with specific concentrations: water – 1-butanol 5% vol. and water – 1-pentanol 2% vol. 

For each measurement a binary droplet with constant concentration, temperature and 

with a volume in the range from 1 μL to 5 μL was placed onto an ethanol-cleaned 

borosilicate glass microscope coverslip (dimensions: 24 mm × 50 mm × 100 μm 

purchased from TAAB Laboratories Equipment Ltd, U.K.). Borosilicate glass is a type 

of glass with silica and boron trioxide as the main glass-forming components and it is 

characterised by varying hydrophilic nature depending on the chemical composition of 

the used glass family. It has a very low thermal expansion; 3.3 × 10−6 K−1 at 20oC – 

300oC, and low thermal conductivity; 1.14 W/mK at 20oC and 1.2 W/mK at 90oC. 

Moreover, a corrosion-resistant ceramic (AlN) substrate (Valley Design Corp.®) was 

used to perform experiments regarding self-rewetting droplets. The aluminium nitride 

substrate (25.4 mm sq. × 127 μm thk.)  is characterised by a low thermal expansion (4.5 

× 10−6 K−1 up to 700oC) and relatively high thermal conductivity for an electrically 

insulating ceramic, around 175 W/mK (polycrystalline material). A surface roughness 

tester, SURFTEST SJ-410 series (Mitutoyo Corporation, Japan), was used to measure 

the height surface profiles of the substrates. Then, the roughness values Ra (average) 

of the samples were calculated. Ra is the arithmetic average value of the departure of 
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the profile above and below the mean line throughout the specified sampling length. 

The surface sampling length selected in this evaluation was 15 mm while the scan speed 

was 0.1 mm/s. The surface roughnesses of the borosilicate glass and AlN substrates 

were 0.21 μm and 0.26 μm, respectively. A flexible silicone rubber heater SRGF-203/5-

P-230V (Silicone Rubber Fiberglass Insulated Heaters), provided from OMEGALUX®, 

was placed underneath the glass coverslip and the ceramic (AlN) substrates for uniform 

heating. The heater was connected to a dedicated proportional–integral–derivative 

(PID) controller purchased from Cole-Parmer®. A digital camera and a diffuse light 

source was placed on either side of the recording droplet during the whole spreading 

process. The substrates were placed horizontally and care was taken to reduce the 

convective air currents around the droplet due to the light source. The syringe pump 

was set at a constant volume rate of 1 μL/min and a pendant droplet was grown at the 

needle tip, until it touched the heated substrate. Digital images of the sessile spreading 

droplets were recorded at 0.0167-second intervals and analysed using the FTÅ200, 

Dynamic Contact Angle Analyzer software (First Ten Ångstroms, Inc., Portsmouth). 

At early times of spreading when the droplet was a spherical cap the profile was fitted 

using Young-Laplace equation 63 and values for the droplet base radius 𝑟, height ℎ, 

volume 𝑉, surface area 𝐴 and contact angle 𝜃 were extracted from the dedicated 

software. Pendant drop method analysis was used to measure interfacial tension of the 

fluids using the FTÅ200 apparatus. This method involves the determination of the 

profile of a drop of one liquid suspended in another liquid or fluid at mechanical 

equilibrium. The profile of these drops was determined by the balance between gravity 

effect and the surface forces. More specifically, a heating bath regulator containing 

water (and placed next to the FTA apparatus) was used to set the required temperature 

of the liquids. Syringes (2mL) with the desirable liquids were dipped in the heated bath 
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until reached the set temperature. Thermocouples (K-type) were placed in the heated 

water bath and in the core of the syringe to control accurately the temperature of the 

liquids, concurrently. The front side (tip) of the syringe was sealed before immersion 

in the heated bath, using a high temperature (up to 300oC) tacky (but easy to remove) 

tape with excellent resistance to water, water vapour, and alcohols. Since the time that 

was needed to remove the syringe from the bath place it in the pump driven motor 

system of the FTA apparatus, and subsequently extract a pendant drop resulted in a 

small temperature decrease of the liquid, the bath was set at a slightly higher 

temperature. In this way, we accounted for the inevitable small drop during the transfer. 

Furthermore, the use of thermocouples in the core of the syringe helped to monitor the 

temperature and reach the desire temperature for our experimental study with an error 

of ±1oC. The surface tension measurements were repeated several times (around 15 

repetitions), for each temperature and for each liquid case examined. In addition to the 

drop shape analysis goniometer (FTÅ200) measurements, a ThermaCamTM infrared 

thermography camera (SC3000 Series, FLIR Infrared Systems, 2005) was also used to 

analyse the surface temperature profiles of droplets of the same range size and 

concentration.  The ThermaCamTM SC3000 offers ultra-high thermal sensitivity, broad 

dynamic range and revolutionary long-wave imaging. The GaAs, Quantum Well 

Infrared Photon FPA detector of the camera has spectral range between 8 and 9 μm in 

the longwave infrared spectrum with a high resolution of 320 x 240 pixels, thermal 

sensitivity of 20 mK at 30°C and an accuracy of ±1°C for temperatures up to 150°C.The 

infrared camera detector is Stirling cooled to 70 K with cool down time < 6 min. The 

images were obtained at 50 frames/s using a camera fitted with a microscope lens with 

10 × 7.5 mm2 field of view and 26 mm minimum focal length. The infrared system 

provides automatic transmission correction of temperature, based on atmospheric 
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temperature, relative humidity, input distance from the object and emissivity of the 

object. The IR camera was used with a dedicated PC for acquisition, with specialized 

software (ThermaCAM Researcher Professional 2.9®) for image post-processing. The 

emissivity of the binary mixtures was close to that of pure water (~0.95) and it is a fixed 

parameter to accurately measure the liquid surface temperatures 14. It is worthwhile 

noting that the emissivity of the pure 1-butanol droplets was dependent on the liquid 

thickness 14, as it is a semi-transparent fluid to IR at the camera wavelengths of 8 – 9 

μm. Thus, in our present study, the obtained IR measurements for the butanol cases 

must be interpreted with care as the IR camera gave an indication of the temperature 

profile of the liquid close to the liquid interface but not of the interface itself 13. The 

total energy measured from the IR camera was the emission of the energy coming from 

the solid (glass substrate), the reflection of ambient radiation from the liquid-vapour 

and liquid-solid surfaces, and the emission from the bulk of the liquid (due to its small 

liquid thickness). For this part of the experiment, the droplets were deposited onto the 

glass coverslip and the ceramic substrate by means of a syringe pumping device. The 

substrates were heated-up uniformly in the same way as with the experiments 

conducted with the FTÅ200 apparatus. The thermal imaging camera was vertically 

mounted at the top of the droplet. Before performing the experiment, we checked that 

substrate temperature homogeneity was stable at ± 0.5°C with the use of thermocouples 

(K-type) in addition to the adopted PID controller. The infrared camera recorded 

radiation coming from the fluid volume and the heated substrate and the spatial and 

temporal temperature data of the droplet surface field were acquired. Figure 2 illustrates 

the experimental setup for the dynamic and thermal measurements of the droplets. It 

has to be noted that experiments performed by using the two cameras both 

simultaneously and individually. Both pure liquids and binary alcohol mixtures 
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temperatures were kept constant at 9o±1o C using a heating-cooling bath regulator 

before performing the experiments. The air temperature and the relative humidity 

surrounding the slide glass were T = 18±1oC and RH = 45 ± 5%, respectively, and the 

atmospheric pressure was assumed to be at P = 1 atm. 

 

 

Figure 2. Schematic illustration of the experimental apparatus. 

 

RESULTS 

The first step in our experiments was to compare the spreading behaviour of the pure 

liquids: (a) pure water and (b) pure butanol, with those of the dilute aqueous solutions 

of high carbon number alcohols: (c) water – 1-butanol 5% vol. and (d) water – 1-

pentanol 2% vol., under controlled experimental conditions. Figure 3 presents the 

sessile droplet contact base radius r adjustments, i.e. the difference between the final 

𝑟𝑚𝑎𝑥 (at equilibrium contact angle, 𝜃𝑒𝑞) and initial value 𝑟0 (immediately after 

deposition), for three different temperatures: 30oC, 60oC and 90oC, in a volume range 

from 1 to 5.5 ±0.2 μL, onto the uniformly heated glass substrate. Note that the obtained 

values represent typical examples i.e. among six or more repetitions for each droplet 
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volume and for each temperature, of all measurements were carried out. Pure liquids 

base radius change followed a linear increase with temperature, Figure 3 (a) and (b), 

contrary to the alcohol mixtures where the non-monotonic dependence of the wetted 

contact radius with the temperature was revealed, Figure 3 (c) and (d). 

 

 

Figure 3. Droplet contact radius changes (difference between the final, 𝑟𝑚𝑎𝑥, and initial, 𝑟𝑜, 

contact base radius) for pure liquids: (a) pure water, (b) pure butanol, and binary mixtures: (c) 

water – 1-butanol 5% vol. and (d) water – 1-pentanol 2% vol., with volumes: 1( ), 2( ), 3( ), 

4( ), 5( ) and 5.5( ) ±0.2 μL, against the three different temperatures: ~30oC, ~60oC and 

~90oC, on a uniformly heated glass substrate, under ambient conditions. 

 

The surface tension of the ordinary liquids (pure water and pure 1-butanol) and the self-

rewetting fluids (binary alcohol mixtures) has been measured in the temperature range 

from ~10oC to ~90oC, using the pendant drop method analysis (FTÅ apparatus). Typical 
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results are shown in Figure 4 where it is clearly depicted the linear decrease of the 

surface tension of the pure liquids with increasing temperature (Figure 4 (a)). Note that 

the pure 1-pentanol case was not plotted due to the relatively similar surface tension 

values with the pure 1-butanol case in this temperature range (10 – 90 ±1 oC). Moreover, 

the non-linear (quasi-parabolic) and non-monotonic dependence of the surface tension 

of the self-rewetting droplets with the temperature can be seen in Figure 4 (b). The 

minimum of the surface tension was measured around 63oC and the unusual 

temperature dependence which turns out to be increasing in the higher temperature 

region beyond the minimum for these self-rewetting solutions was clearly revealed. The 

surface tension measurements showed good agreement with previous work that have 

been reported from previous experimental studies using these (self-rewetting) binary 

alcohol mixtures 51,53,54. It is worth noting that the results presented in Figure 3, can be 

interpreted based on the measurements of surface tension, Figure 4. It can be observed 

that the increasing wettability of the pure liquid droplets was attributed to the surface 

tension dependence on temperature. Additionally, the non-monotonic dependence of 

the surface tension with the temperature for the binary alcohol droplets was revealed 

on the overall spreading behaviour where beyond the minimum of the surface tension 

(at ~63oC) the wettability of the droplets was decreased. To minimise further the 

uncertainties of the measurements of the surface tension values of the examined liquid 

cases in this temperature range, several repetitions (around 15 repetitions for each 

temperature and each liquid) were performed. 
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Figure 4. Surface tension measurements (mN/m) of the (a) pure liquids: pure water ( ) and 

pure 1-butanol ( ) and for the (b) self-rewetting fluids: water – 1-butanol 5% vol. ( ) and water 

– 1-pentanol 2% vol. ( ), in the temperature range from around 10oC to 90oC, under controlled 

experimental conditions. Note that the curves represent average values with obtained errors 

(among fifteen or more repetitions for each temperature) of all measurements performed.    

 

The spreading contact base radius 𝑟(𝑡) of the binary mixtures sessile droplets at the 

early stage (tenths of second) of spreading for a range volume from ~1 to ~5 μL, was 

systematically measured. Typical results of the binary droplets with volumes: 2±0.2 μL 

and 4±0.2 μL, for three different temperatures ~30, ~60 and ~90 oC (of the heated 

substrate) are presented in Figure 5, respectively. The results showed how the wetted 

radius 𝑟 of the binary alcohol mixtures developed over time 𝑡 once a droplet contacted 

onto the uniformly heated substrate; this early stage regime is usually dominated by 

inertia-viscous contributions. Since in the study we focus on the first-early stage of drop 
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spreading rather than on the overall drop lifetime, the complete drop evaporative 

behaviour is not included in Figure 5. The results demonstrated that for each 

temperature of the substrate, binary droplets spread at a different speed rate. In 

particular, for ~90oC, alcohol droplets showed increased kinetics, hence reaching a 

maximum radius much quicker than that of other cases. At around 60oC, the binary 

droplets was seen to spread much more in comparison with the other substrate 

temperatures which is consistent with the surface tension minimum (about 63±1oC), as 

shown in Figure 4. It is clear that at ~60oC substrate temperature, the surface tension 

forces dominated and resulted in the enhancement of the spreading dynamics, as 

reported in previous studies 35,36,38,40. The overall surface tension of the water-butanol 

mixture was slightly lower than that of the water-pentanol mixture (see also Figure 4) 

due to the different alcohol concentrations (5% vol. and 2% vol.) used for these binary 

alcohol mixtures. In turn, this can affect the overall wetting of the self-rewetting 

droplets. It is clear that the depletion time of the alcohol phase in these two self-

rewetting droplets was different (quicker for the water-pentanol mixture) at the same 

substrate temperatures. 
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Figure 5. Evolution of the contact radius 𝑟 (mm) of the wetted area for water – 1-butanol 5% 

vol. droplets: (a) 2±0.2 μL, (b) 4±0.2 μL and for water – 1-pentanol 2% vol. (c) 2±0.2 μL and 

(d) 4±0.2 μL as a function of time 𝑡 (s), for three different temperatures: ~30oC ( ), ~60oC ( ) 

and ~90oC ( ), respectively. Note that the obtained curves represent typical examples (among 

six or more repetitions for each droplet volume and for each temperature) of all measurements 

performed. Uncertainties observed in wetted radius 𝑟 measurements are due to the FTÅ 

apparatus errors, around 3%. 

 

Following the above observations about the spreading behaviour of the self-rewetting 

droplets on glass slides and the underlying spreading kinetics, an in-depth analysis 

focusing on the profile of each stage of spreading was conducted. Typical log-log plots 

of the spreading dynamics, for both self-rewetting mixtures examined and for four 

temperatures (20, 30, 60 and 90 ±1 oC), are presented in Figure 6 (a) and (c). For the 

calculations of the contact radii, the shape of the sessile drops were approximated by a 
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parabolic function. This is a good approximation that has been used extensively in the 

literature, even in the presence of Marangoni flows 64.  It can be clearly seen that 

spreading occurs in two characteristic stages i.e. inertia and viscous spreading regimes, 

and a transition regime in-between 35–40,42. The unbalanced horizontal force: 

𝛾𝑇(cos 𝜃 − cos 𝜃𝑒𝑞) drives the droplet to spread on the heated substrate until it reaches 

the final equilibrium contact angle 𝜃𝑒𝑞, where 𝛾𝑇 is the liquid-vapour interface surface 

tension (at specific temperature 𝑇) and θ the instantaneous contact angle 35–38,40,42. It 

was found that once the liquid droplet has established contact with the surface, the 

extension of the contact line radius 𝑟(𝑡) follows an exponential power-law (𝑟 −

 𝑟0 ~ 𝑡𝑛) of rapid growth, for all the experiments performed. In both graphs (a) and (c) 

(Figure 6), the power law (growth) has an exponent 𝑛 which depends strongly on the 

substrate temperature 𝑇. Additionally, experimental results related to the evolution of 

the contact angle in time are presented in Figure 6 (b) and (d) for the respective cases 

of water – 1-butanol 5% vol. and water – 1-pentanol spreading droplets as seen in 

Figure (a) and (b). A sharp decrease of the contact angles were noticed in the initial 

wetting stage connected with the different substrate temperatures. It can be clearly seen 

that the binary droplets resulted in faster and improved spreading mechanism as the 

temperature of the substrate was increased, at equivalent times. This (non-linear) decay 

of the contact angles is in agreement with the (non-linear) growth of contact radius of 

the self-rewetting spreading droplets.  
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Figure 6. log-log plot measurements of the contact radius r (mm) as a function of time 𝑡 (s) 

(volumes 3 – 4 ±0.2 μL) for four different substrate temperature cases: ~20oC (  ), ~30oC ( ), 

~60oC ( ) and ~90oC ( ) for the (a) water – 1-butanol 5% vol. and (c) water – 1-pentanol 2% 

vol. droplet solutions, respectively. The spreading follows a power-law (growth) over time 

(𝑟 − 𝑟𝑜 ~ 𝑡𝑛) with different exponents 𝑛 (𝑛1𝑠𝑡; first stage which approximately lasts for a 

period until the dashed lines in each curve). Note that at the later times of spreading (second 

stage of spreading), slow capillary-viscous dynamics with exponents 0.1 < 𝑛2𝑛𝑑 < 0.2 governed 

the wetting mechanism of the self-rewetting droplets. Evolution of the contact angles θ in time 

for the (b) water-1-butanol 5% vol. and (d) water – 1-pentanol 2% vol. spreading droplets. 

Uncertainties observed in wetted radius r and contact angles θ measurements are due to the 

FTÅ apparatus errors, around 3%. 
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Table 1 presents both the first (inertial-capillary) 𝑛1𝑠𝑡, and second (capillary-viscous) 

𝑛2𝑛𝑑, stage exponents, for water-butanol 5% vol. and water-pentanol 2% vol. droplets, 

respectively, for the data shown in Figure 6. The obtained spreading exponents (Table 

1) quantify the spreading droplet kinetics on the heated substrate at the early times of 

wetting in connection with the thermocapillary-driven flows generated due to surface 

tension forces gradients at the air-liquid interface. Before we discuss the values of the 

exponents in the different regimes, it is important to note that the first (inertial-

capillary) regime lasts only a few milliseconds (Figure 6) in excellent agreement with 

the values of the characteristic inertia time scale, 𝜏𝜌~√𝜌𝑅3 𝛾⁄ , (where 𝑅 is the initial 

droplet radius before contact and 𝜌 is the liquid density) calculated to be in the range 

of 0.08 to 0.25 s for all the different cases (different volumes, temperatures and liquid 

properties), in our experiments. Initially, when the substrate temperature changed from 

~20oC to ~30oC, a slight increase of the 𝑛1𝑠𝑡 can be observed from ~0.48 to ~0.51 

(Table 1) in both binary droplets. As the temperature of the substrate increased from 

~30oC to ~60oC, the obtained 𝑛1𝑠𝑡 spreading exponents for water-1-butanol and water-

1-pentanol droplets increased to ~0.71 and ~0.61, respectively. At ~90oC of the surface 

temperature, the 1-butanol aqueous droplet achieved an 𝑛1𝑠𝑡 exponent of around 0.69 

while the 1-pentanol mixture obtained a 𝑛1𝑠𝑡 value of 0.52. Furthermore, it is clear that 

the later times of spreading were characterised by slow wetting dynamics, since the 

system was dominated by viscous-capillary forces and approximately followed the 

well-known Tanner’s law described as: 𝑟 − 𝑟𝑜 ~ 𝑡1 10⁄  43. The 𝑛2𝑛𝑑 (second stage) 

power-law exponents were calculated to be from ~0.1 to ~0.2, in all cases examined.  

Another important feature revealed was the presence of a transition regime in the 

spreading profile of the droplets between the first and second stages. The latter 

corresponded to the shift from inertial to viscous spreading regions which lasted as long 
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as the capillary wave became pronounced over the bulk of the liquid. Upon droplet 

deposition on the surface, the capillary wave generated at the bottom of the drop, 

propagates upwards to the top of the drop and then back while the contact line is 

moving. However, the generation and propagation of the capillary wave initiated at the 

contact line may be the rate limiting process as there is a critical wavelength below 

which surface tension forces dominate the capillary wave propagation 38,41. Thus, in our 

cases, the observed transition regime may explain the slightly higher exponents 

obtained for the second stage of wetting compared to the Tanner’s law, in agreement 

with previous studies 39,40,42. 

 

Table 1. Spreading exponents values for the water-butanol 5% vol. and water-pentanol 2% vol. 

solutions regarding the two stages of wetting on the glass substrates at the four different 

(uniform) substrate temperatures: 20, 30, 60 and 90 ±1 oC.  

Temperature 

(oC) 

Water – 1-butanol exponent Water – 1-pentanol exponent 

~𝒏𝟏𝒔𝒕 ~𝒏𝟐𝒏𝒅 ~𝒏𝟏𝒔𝒕 ~𝒏𝟐𝒏𝒅 

20 0.48 0.12 0.48 0.13 

30 0.51 0.16 0.51 0.11 

60 0.71 0.15 0.62 0.12 

90 0.69 0.11 0.58 0.11 

 

Figure 7 shows the average (arithmetic mean) values (five or more repetitions for each 

case of volume and temperature) of the spreading exponents for the pure liquids and 

the binary mixtures against the three characteristic substrate temperatures, in a volume 

range from 1 to 5 ±0.2 μL, under controlled non-isothermal conditions on heated glass 

surfaces. The spreading exponent 𝑛 for the pure liquids increased weakly (and linearly) 

with increasing temperature in both of the two characteristic stages of spreading, as can 

be seen in Figure 7 (a) and (b). The behaviour of the exponents of the pure wetting 

droplets is consistent with the dependence of the surface tension on the temperature and 
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with the argument that surface tension governs and dominates the short-time wetting 

dynamics. Binary solutions of alcohols, on the other hand, revealed a non-linear and 

non-monotonic dependence of the spreading exponent 𝑛 with increasing temperature in 

the first spontaneous stage of wetting. It is worth mentioning that the existence of a 

local maximum in the 𝑛1𝑠𝑡 exponent, for both binary alcohol mixtures, at substrate 

temperature of ~60oC, is consistent with the surface tension dependence on temperature 

and the well-defined minimum, as seen in Figure 4. In the second stage of wetting, 

Figure 7 (d), alcohol mixture droplets were characterized by slow dynamics (viscous-

capillary region) with various low spreading exponents 0.1 <  𝑛2𝑛𝑑  <  0.2, for each 

temperature examined. The motion of the sessile self-rewetting droplets on such a non-

isothermal state is mainly driven by the (strong) Marangoni stresses due to surface 

tension gradients induced by temperature and compositional imbalances. Surface 

tension will continue to drive spreading in the viscous regime until the droplets reaches 

their equilibrium contact angle 𝜃𝑒𝑞. It has to be noted that in the case of 90oC substrate 

temperature, initially the surface gradients are directed from hot to cold regions (similar 

direction as presented at 30oC and 60oC cases). As time evolves and the liquid is heated 

up from the contact line, the temperature of the liquid will go above 60oC and the 

surface tension driven flows will change direction towards hot regions from cold 

regions (for the part of the droplet that is T>60oC); reverse Marangoni effect. However, 

the overall surface tension gradients during spreading behaviour of the self-rewetting 

droplet will be directed from hot to cold regions as seen in the previous cases due to the 

small surface tension differences in the range from 60oC to 90oC (as seen in Figure 4) 

as well as from the rapid heating of the liquid. Remarkably, the effect of the reverse 

Marangoni effect was revealed in both mixture cases (more clear in water-pentanol 

cases) as it is evident by the slight decrease of the spreading exponents from 60oC to 
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90oC cases causing the spreading contact line to slow down, decreasing the wetting rate 

due to the redirection of the surface tension driven flows at the periphery of the droplet 

(at the part of the droplet where T > 60oC).  

 

 

Figure 7. Average values (at least five repetitions for each case of volume and temperature) of 

the spreading exponents, n for the two characteristic stages of wetting versus the three typical 

substrate temperatures: ~30, ~60 and ~90 oC, for the pure droplets: (a, b) water ( ) and butanol 

( ) and (c, d) binary alcohol droplets: water – 1-butanol 5% vol. ( ) and water – 1-pentanol 2% 

( ), under controlled experimental condition. The error bars obtained among six or more 

repetitions for each droplet volume and for each temperature of all measurements performed. 

Note that the droplet insets in each image illustrate the direction (and strength) of the surface 

tension gradients acting at the liquid-air interface during wetting as well as the capillary flow 

at later times of spreading (𝑛2𝑛𝑑).  
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To gain a further understanding of the droplet short-time spreading behaviour under 

various substrate temperatures, it is necessary to investigate the changes in the droplet 

interface temperature as time progresses. In order to assess the temperature profile of 

the volatile pure and binary liquid sessile droplets at different substrate temperatures, 

IR thermography measurements were acquired. Experiments consist of depositing 

droplets of a known volume (from 1 to 5 ±0.2 μL) and initial temperature (9±1oC) on 

the uniformly heated glass substrate and recording the interface temperature map profile 

of the evaporating droplets. For IR data processing, a constant and homogeneous 

substrate temperature was assumed. Representative infrared temperature profile images 

of pure water and pure 1-butanol at substrate temperatures of ~30, ~60 and ~90 oC, are 

presented in Figures 8 and 9, respectively. They show the spatio-temporal evolution of 

temperature distribution along the interface of pure water and pure 1-butanol drops 

(with volumes of ~4±0.2 μL) at 0.05 s (upon initial deposition), 0.5 s and after 1 s, at 

constant temperature substrates. It is clear from the IR images that thermal energy is 

transferring from the contact line and propagates within the drop demonstrating that the 

top of the drop as the coldest point and the contact line the hottest region with the 

highest evaporation rate. In the case of the pure water droplets the thermal activity was 

found to be comparatively weaker than those of the pure 1-butanol droplets, as 

displayed in Figures 8 and 9. This was due to the different physical properties of the 

liquids. The generation of (Marangoni) convection cells (Figure 8) at the interface of 

the pure water droplets for 60oC substrate temperature, was observed at 1 s while for 

90oC appeared clearly at 0.5 and 1 s. The appearance of these thermal patterns were 

attributed to the presence of thermal Marangoni convection where flows are driven 

from the contact line to the apex along the interface induced by tangential temperature 

gradients and then recirculated through the drop centre towards the contact line. This 
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phenomenon appeared to be clearer and more intensive when higher temperature 

gradients between the substrate (~90oC) and the liquid phase (~9oC) were applied. For 

the pure 1-butanol droplets the thermal patterns are centrosymmetric and ring-like 

closer to the contact line. As time evolved, after droplet deposition, the liquid surface 

temperature rapidly increased. The contact angle of the droplets decreased significantly 

after contact so does the liquid thickness, which relates to lower thermal resistance, and 

the evaporation rate of the system was remarkably increased. This led to faster depletion 

of the liquid phase. Therefore, at the vicinity of pure 1-butanol droplets’ (approximate) 

contact line (dashed lines in Figure 9), the apparent emissivity became very small 

leading to higher uncertainty in the total energy that was emitted from the liquid phase 

due to energy reflected by both the liquid-vapour and the liquid-solid interfaces. 

Furthermore, as the 1-butanol is semi-transparent to infrared radiation at the 

wavelengths used from the camera (see also experimental section), the obtained IR 

measurements for the butanol cases reflected the temperature profile close at the liquid 

interface but not of the interface itself; thus the indicated temperatures must be 

interpreted with care.  
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Figure 8. IR thermography visualizations of the temperature profile of sessile droplets (top 

view) of pure water (volumes of 4±0.2 μL) on a uniformly heated glass substrate at three 

different temperatures of ~30, ~60 and ~90 oC, immediately after deposition (0.05 s), after ~0.5 

s and ~1 s. Note that the contrast in IR images at substrate temperature of around 30oC is not as 

sharp due to the lower temperature differences between the liquid droplets (interface) and the 

substrate. The scale bars depict a width of 1.5 mm, for each liquid case. 
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Figure 9. IR thermography visualizations of the temperature profile of sessile droplets (top 

view) of pure 1-butanol droplets (volumes of 4±0.2 μL) on a uniformly heated glass substrate 

at three different temperatures of ~30, ~60 and ~90 oC, immediately after deposition (0.05 s), 

after ~0.5 s and ~1 s. Note that the dashed lines represent the approximate moving contact line 

of the evaporating alcohol droplets. The scale bars depict a width of 1.5 mm, for each liquid 

case. 

 

In Figure 10, we show the IR images for the water – 1-butanol 5% vol. droplets with 

volumes of around 4±0.2 μL at the three substrate temperatures: ~30, ~60 and ~90 oC. 

The generation of characteristic thermal patterns (heat convection from the edges 

toward to the centre) at the interface of the binary droplets can be clearly seen which 
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indicate that these droplets are in a transient phase with complex mixing, flows and 

boundary conditions between the two evaporating components (water and 1-butanol). 

The thermal patterns observed at a substrate temperatures of ~60oC and ~90oC are 

similar to each other, corresponding to a ‘flowery’ fluid-wave motion of alternating 

warm/cool regimes. The generated thermal patterns are characterized by relatively 

darker, curved bands (at the droplet edge), with a preferential direction of propagation 

towards the centre of the droplet owing to the presence of surface tension gradients. It 

is worthwhile noting that the development of these thermal patterns occurred 

spontaneously, upon the deposition of the binary droplets on the heated substrate and 

they were more pronounced at higher temperature differences between the droplet and 

the substrate. These observed thermal patterns are organised radially and circle around 

the apex of the evaporating-spreading droplet, in the region where most of evaporation 

occurs mainly of the alcohol component (more volatile). Moreover, Figures 11 and 12, 

depict further infrared visualization images for typical examples of the water – 1-

butanol evaporating droplets at substrate temperatures of ~60oC and ~90oC, 

respectively, immediately after contact (~0.05 s), ~0.5 s (or 0.3 s), ~1 s and after ~3 s, 

where the generation of theses characteristic thermal instabilities within the evaporating 

self-rewetting droplets was further verified and more details of the process can be seen. 

Upon droplet deposition on the heated substrate, temperature gradients develop during 

the evaporation (and spreading) from the apex of the droplet and the contact line, 

resulting in surface tension gradients. Temperature (and/or composition) instabilities 

on the free fluid interface are known to generate Marangoni stresses and a flow that will 

drag the fluid from warm regions, where the surface tension is low, to cold regions, 

where the surface tension is high. The latter induces thermal-solutal convective 

phenomena within the droplet and these are observed as thermal patterns. In the initial 
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moments of the binary droplet spreading, the thermal field exhibited a very intricate 

and unbalanced evaporation-driven interfacial motion which covered completely the 

interface. As time progressed, this thermal motion gradually reduced its area of activity 

(decrease of temperature gradients) and finally disappeared completely following the 

characteristic motionless temperature field of pure water drops, as seen in Figure 8. The 

disappearance of these characteristic thermal patterns (t > ~3 s) can be determined as 

the moment of depletion of the alcohol phase (Figures 11 – 12). It is worthwhile noting 

that at later times of evaporation; ~ 3 s, at substrate temperatures of ~60oC and ~90oC, 

the presence of small random convection cells was observed which could be generated 

by the existence of thermal gradients (thermal Marangoni effect) within the droplets. 

Additionally, whatever is the stage of the evaporating droplets (both pure and binary 

liquids), the infrared visualization confirms the fact that the temperature of the droplet 

is hotter near the triple contact line and colder in the centre (apex). 
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Figure 10. IR thermography visualizations of the temperature profile of sessile droplets (top 

view) of water - 1-butanol 5% vol. (volume of 4±0.2 μL) on a uniformly heated glass substrate 

at three different temperatures (~30, ~60 and ~90 oC) immediately after deposition, at ~0.5 s 

and after ~1 s. Note that the contrast in IR images at substrate temperature of ~30oC is not as 

sharp due to the lower temperature differences between the liquid droplets and the substrate. 

The scale bar depicts a width of 1 mm. 
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Figure 11. Infrared visualization images of the temperature profile of three sessile droplets (top 

view) of water – 1-butanol 5% vol. (volumes 4.5±0.2 μL) on a uniformly heated glass substrate 

at temperatures of ~60oC, immediately after contact (~0.05 s), ~0.5, ~1 and ~3 s. The scale bar 

depicts a width of 1.5 mm, for all images. 
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Figure 12. Infrared visualization images of the temperature profile of three sessile droplets (top 

view) of water – 1-butanol 5% vol. (volumes 4.6±0.2 μL) on a uniformly heated glass substrate 

at temperatures of ~90oC, immediately after contact (~0.05 s), ~0.3, ~0.6 and ~3 s. The scale 

bar depicts a width of 1.5 mm, for all images. 

 

Additionally, the thermal activity of self-rewetting droplets; water-1-butanol 5% vol., 

on a different heated hydrophilic substrate was examined. Experiments consist of 

depositing spherical binary alcohol droplets on a heated ceramic (AlN) substrate 

(different thermal conductivity compared to glass substrate, ~100 times higher 65,66) 

with volumes from around 3 to 5 ±0.2 μL and initial temperature 9±1oC, at two different 

substrate temperatures: ~60oC and ~90oC. The generation of characteristic thermal 

patterns (heat convection from the edges towards the centre) at the interface of the 

binary alcohol droplets, with volumes of 4±0.2 μL, at substrate temperatures of ~60oC 

and ~90oC, can be clearly observed in Figure 13 (a) and (b), respectively. The thermal 

patterns observed, on the ceramic substrate, at ~60oC and ~90oC, were similar to each 
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other, were described by a wave-fluid (‘flowery’) movement of characteristic 

warm/cool regions, which travelled inwards to the centre of the droplet; similar 

behaviour as seen in the case of glass substrate but clearly with more intensive 

formation and movement. The development of these thermal patterns occurred 

spontaneously, upon the deposition on the heated substrate and were more pronounced 

at higher temperature differences i.e. between the droplet and substrate. These gradients 

then generated thermocapillary instabilities within the binary droplet. The generated 

thermal patterns were portrayed by relatively darker flowery-bands, with a preferential 

direction of propagation waves towards the centre of the droplet and were organized 

radially around the apex, in the alcohol-rich region where most of the evaporation 

occurs. The wavelength of self-rewetting droplets was seen to increase when the 

substrate temperature was increased from 60oC to 90oC. The latter feature was observed 

for both substrates i.e. glass and ceramic, examined in this study. However, the 

wavelength of droplets depositing on the ceramic substrate compared to glass increased 

as the thermal conductivity of the ceramic is higher 65,66. Furthermore, the binary 

droplets evaporating on the ceramic substrate reached a uniform temperature field much 

quicker (well before ~3 s) than those deposited on the glass surfaces owing to the higher 

heat transfer rate. The thermal activity and the generation-presence of characteristic 

thermal patterns i.e. number of waves, wavelength and intensity, at the interface of 

evaporating self-rewetting droplets was clearly affected from the substrate properties 

and the applied temperature.          
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Figure 13. Infrared visualization images of the temperature profile of three sessile self-

rewetting droplets i.e. water-1-butanol 5% vol., (top view) with volumes 4.5±0.2 μL, on a 

uniformly heated ceramic substrate at temperatures of (a) ~60oC and (b) ~90oC, immediately 
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after contact (~0.05 s) and 0.5 (at ~60oC) or 0.3 (at ~90oC), 1 and 3 s. The scale bar depicts a 

width of 1.5 mm, for all images. 

 

The heat waves on the surface of the water-butanol droplets (with volumes from 4 to 

4.5 ±0.2 μL, on glass and ceramic substrates) at two different temperatures: ~60oC and 

~90oC, corresponding to the number of warmer (or cooler) curved-like regions, were 

visually counted and reported as a function of the dimensionless time  𝑡 𝑡𝑡𝑜𝑡⁄ , where 

𝑡𝑡𝑜𝑡 is the duration of the thermal wave phenomena (time until the disappearance of the 

thermal waves), as shown in Figure 14 (a) and (b), respectively. Detailed inspection of 

these figures reveals that the number of waves depends drastically on the temperature 

of the substrate on which the binary droplets are deposited and also on the initial volume 

of the binary droplets. It is clear that the number of waves associated with the 

evaporation of the water-butanol droplet deposited on a ~60oC substrate is larger than 

that of the droplet deposited on a ~90oC substrate, both on glass and ceramic substrates. 

As the evaporative process proceeds, the number of waves formed follow an 

(approximately linear) decrease with time which is consistent with the driving 

mechanism of these thermal patterns. As the binary sessile droplet evaporated and 

heated up by the substrate, the overall concentration and temperature gradients along 

the free surface decreased which led to an accompanying decrease of the driving force 

of these patterns (Marangoni stresses). In the later stage of evaporation, the driving 

force (gradients) became sub-critical for the development of thermal patterns and it 

appeared difficult to follow those using the IR camera (Figures 10 – 13). The IR 

thermography visualizations of the temperature profile for water-1-pentanol sessile 

droplets on both substrates gave similar results to water-1-butanol droplets. 
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Figure 14. Temporal evolution of the number of observed thermal waves of six typical 

examples for water-1-butanol droplets (a) on glass substrate and (b) on ceramic substrate with 

volumes: 4 ( ), 4.3 ( ), 4.5 ( ) ±0.2 μL, and 4 ( ), 4.3 ( ) and 4.5 μL ( ) ±0.2 μL, at ~60oC 

and ~90oC substrate temperatures, respectively.  

 

 

DISCUSSION 

Generally, convection for volatile small drops, can be either gravity or surface tension 

driven (Marangoni effect). The capillary length is given by  𝑙𝑐 = √
𝛾

𝜌𝑔
 (g is the 

acceleration of gravity and 𝜌 liquid density) and therefore, for sessile droplets with 
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height ℎ < 𝑙𝑐 (small droplets) Benard–Marangoni convection, surface tension forces at 

the liquid/air interface, was likely to dominate the effect of gravity. In the present study, 

we examined water-alcohol droplets with an initial height (as given by the height at the 

apex; largest droplet dimension) from ~0.5 to ~1.7 mm which is smaller than the 

capillary length, 𝑙𝑐 calculated at around 1.9 mm. Thus, the convection mechanism at the 

early stages of spreading is unlikely to be buoyancy driven since the initial sizes of the 

droplets are small, i.e. below capillary length. This implies that the droplets will not be 

deformed by gravity and will adopt a spherical-cap shape. In turn, convection at the 

early stage of wetting is the result of surface-tension-driven flows either 

thremocapillary (temperature gradients) and/or solutal (concentration gradients) in 

nature and could not be described simply by evaporative flux, outward flow as 

suggested by Deegan et al. 9. 

 

The spreading exponent of the early stage growth (𝑛1𝑠𝑡) which determines the initial 

spreading speed rate was found to depend on the substrate temperature for all the liquids 

used. It is well-established that in evaporating sessile droplets, there is continuous 

outward flow driven by mass conservation 9 because of the higher evaporation rate near 

the triple contact line which leads to (small) temperature differences. In our 

experiments, at the early stages of wetting, the temperature differences between the 

triple-contact-line and the rest of the liquid phase were observed to be larger at higher 

temperatures as visually displayed in the IR thermography images (Figures 8 – 13). 

These temperature differences led to strong surface tension differences and thus to more 

intensive and agitated thermocapillary flows (Marangoni stresses) 10. For pure liquids, 

the temperature dependence of the surface tension is linear (Figure 4 (a)) which leads 

to a linear increase of the spreading exponent when the temperature of the substrate is 
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increased (Figure 7 (a)). Interestingly, in the case of the alcohol mixtures, the non-

monotonic dependence of the surface tension with the temperature (Figure 4 (b)) is 

associated with the exponent non-monotonic behaviour in the first (inertia-capillary) 

stage of spreading (Figure 7 (c)). The parabolic shape with a minimum at around 63oC 

of the surface tension – temperature curve (Figure 4 (b)) corresponds to a maximum 

wetting (Figure 3 (c) and (d)) of the evaporating self-rewetting droplets.  

 

The evaporation of binary mixture droplets introduces a new additional effect in the 

system compared with the single-component droplets. As butanol (or pentanol) is more 

volatile than water and migrates to the liquid-air interface and leads to local 

concentration gradients along and across the interface of the droplet, resulting in surface 

tension stresses inducing additional solutal Marangoni flows which enhanced the 

generation of characteristic thermal waves as seen by IR thermography (Figures 10 –

13). In fact, any imposed temperature difference across the liquid-vapour interface of 

these binary mixtures created also local surface concentration gradients. These 

Marangoni instabilities induced flows away from regions with low surface tension in 

the direction of increasing surface tension (Figure 1) resulting in complex-agitated 

flows and thermal patterns. The patterns were more prominent for the higher 

temperature substrates leading to more clearly formed flowery-like bands as displayed 

in Figures 10 – 13. 

 

It was only later, when the droplets approximately entered in Tanner’s regime and the 

contact line dissipation was controlled by slow spreading dynamics where the 

exponents changed to lower values, as seen in Figure 7 (b) and (d). This stage of wetting 

(at a later phase of evaporation) was characterized by progressively fewer thermal 
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waves (until they disappeared) and the presence of slow contact line dynamics i.e. 

viscous-capillary regime, where the apparent exponent n reached a plateau with values 

0.1 < 𝑛 < 0.2 in agreement with previous studies on other liquids for this wetting regime 

39,40,42.  

 

The characteristic thermal patterns observed in our experiments confirmed that the 

Marangoni instabilities induced characteristic thermal travelling waves and showed that 

the evaporation rate of these sessile water-alcohol droplets cannot be described by a 

vapour diffusion mechanism alone. The fact that the thermal patterns were more 

prominent for higher substrate temperatures indicates that the Marangoni-induced 

flows contributed more significantly to energy transport phenomena as the temperature 

differences were higher.  By the end of the first stage (inertia-capillary region), most (if 

not all) of the alcohol phase (butanol or pentanol) would have evaporated and also the 

temperature differences over the droplet would have become smaller, as the capillary 

waves propagate within the droplet. Thus, concentration and temperature gradients 

appeared to be weak to sustain the flows and the solutal-thermacapillary Marangoni 

stresses became sub-critical. In addition, the frequency of observed thermal waves 

decreased as the droplets’ heating and evaporation proceeded (Figure 14). Another 

feature revealed in this work was that the number of the thermal waves significantly 

decreased (but they were more intense) as the temperature of the substrate was 

increased as well as when the thermal conductivity of the substrate was higher.     

 

Finally, it is worth noting that for short chain alcohol molecules (such as butanol and 

pentanol used in this study) the alcohol-rich phase has a tendency to completely wet the 

air-water interface; this tendency is more pronounced for shorter alcohol chain lengths 



 40 

and at higher temperatures 67,68. The shorter chain alcohol is characterised by a better 

surface activity at the interface separating air and the aqueous phase. Hence the transfer 

of alcohol molecules from the bulk phase to the interface is more energetically 

favourable for the shorter alcohol chain length.  This may explain the different 

spreading exponents between the two binary mixtures (Figure 7 (c)) for higher substrate 

temperatures connected with the surface tension - temperature dependence and the 

generated surface tension gradients of these binary droplets.    

 

CONCLUSIONS 

We investigated the fluid contact line dynamics combined with infrared thermography 

imaging of evaporating sessile droplets of self-rewetting liquids under controlled 

experimental conditions. We have shown that the early stage of spreading on partially 

wetting substrates depends strongly on the substrate temperature. The exponent of the 

very first initial stage of spreading was close to 0.5 at substrate temperature of 30oC 

and increased non-monotonically at higher temperatures. This is consistent with the 

anomalous surface tension behaviour (at a particular range of temperatures) of these 

self-rewetting liquids. The second stage exponents was found to be from around 0.1 to 

0.2 consistent with the presence of a viscous-capillary balance regime. Furthermore, we 

observed the spontaneous appearance of characteristic thermal travelling waves which 

were developed along and across the free interface of the evaporating droplets. The 

latter was due to the spontaneous segregation of the more volatile components namely 

1-butanol and 1-pentanol in the binary solutions. Surface-tension-driven (Marangoni 

convection) thermal patterns occurred and were attributed to the temperature and/or 

concentration gradients hence influencing significantly the early-times spreading 

dynamics. It was further verified that the applied temperature and the properties of the 
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substrate affected the orientation and intensity of the generated ‘flowery’ thermal 

patterns.   
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