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Abstract
The front-end bottleneck is a well-established problem in
server workloads owing to their deep software stacks and
large instruction working sets. Despite years of research into
effective L1-I and BTB prefetching, state-of-the-art tech-
niques force a trade-off between performance and metadata
storage costs. This work introduces Shotgun, a BTB-directed
front-end prefetcher powered by a new BTB organization that
maintains a logical map of an application’s instruction foot-
print, which enables high-efficacy prefetching at low storage
cost. To map active code regions, Shotgun precisely tracks an
application’s global control flow (e.g., function and trap rou-
tine entry points) and summarizes local control flow within
each code region. Because the local control flow enjoys high
spatial locality, with most functions comprised of a hand-
ful of instruction cache blocks, it lends itself to a compact
region-based encoding. Meanwhile, the global control flow is
naturally captured by the application’s unconditional branch
working set (calls, returns, traps). Based on these insights,
Shotgun devotes the bulk of its BTB capacity to branches re-
sponsible for the global control flow and a spatial encoding of
their target regions. By effectively capturing a map of the ap-
plication’s instruction footprint in the BTB, Shotgun enables
highly effective BTB-directed prefetching. Using a storage
budget equivalent to a conventional BTB, Shotgun outper-
forms the state-of-the-art BTB-directed front-end prefetcher
by up to 14% on a set of varied commercial workloads.

Categories and Subject Descriptors C.1.0 [Processor Ar-
chitectures]: General; C.5.5 [Computer System Implementa-
tion]: Servers

Keywords Servers, Prefeteching, Instruction Cache, Branch
Target Buffer (BTB), BTB Organization, Control Flow
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1. Introduction
Traditional and emerging server workloads are characterized
by large instruction working sets stemming from deep soft-
ware stacks. A user request hitting a modern server stack may
go through a web server, database, custom scripts, logging
and monitoring code, and storage and network I/O paths in
the kernel. Depending on the service, even simple requests
may take tens of milliseconds to complete while touching
MBs of code.

The deep stacks and their large code footprints can easily
overwhelm private instruction caches (L1-I) and branch pre-
diction structures, diminishing server performance due to the
so-called front-end bottleneck. Specifically, instruction cache
misses may expose the core to tens of cycles of stall time if
filled from the last-level cache (LLC). Meanwhile, branch tar-
get buffer (BTB) misses may lead to unpredicted control flow
transfers, triggering a pipeline flush when misspeculation is
discovered.

The front-end bottleneck in servers is a well-established
problem, first characterized in the late 90s [1, 11, 14]. Over
the years, the problem has persisted; in fact, according to
a recent study from Google [8], it is getting worse due to
continuing expansion in instruction working set sizes in
commercial server stacks. As one example of this trend, the
Google study examined the Web Search workload whose
multi-MB instruction footprint had been expanding at an
annualized rate of 27%, doubling over the course of their
study [8].

Microarchitecture researchers have proposed a number
of instruction [4, 5, 12, 15, 17] and BTB [2, 3] prefetchers
over the years to combat the front-end bottleneck in servers.
State-of-the-art prefetchers rely on temporal streaming [5] to
record and replay instruction cache or BTB access streams.
While highly effective, each prefetcher requires hundreds
of kilobytes of metadata storage per core. Recent temporal
streaming research has focused on lowering the storage
costs [9, 10, 12]; however, even with optimizations, for a
many-core CMP running several consolidated workloads,
the total prefetcher storage requirements can reach into
megabytes.

To overcome the overwhelming metadata storage costs of
temporal streaming, the latest work in relieving the front-end
bottleneck leverages fetch-directed instruction prefetching



(FDIP) [15] and extends it with unified prefetching into the
BTB [13]. The scheme, called Boomerang, discovers BTB
misses on the prefetch path and fills them by fetching the
appropriate cache blocks and extracting the necessary branch
target metadata.

While Boomerang reduces the prefetcher costs to near zero
by leveraging existing in-core structures (BTB and branch
direction predictor), it has limited effectiveness on workloads
with very large instruction working sets. Such workloads
result in frequent BTB misses that reduce Boomerang’s effec-
tiveness, because instruction prefetching must stall whenever
a BTB miss is being resolved to uncover subsequent control
flow. As a result, Boomerang captures less than 50% of the
opportunity of an ideal front-end prefetcher on workloads
with the largest instruction working sets.

This work addresses the key limitation of Boomerang,
which is that a limited-capacity BTB simply cannot track
a sufficiently large control flow working set to guarantee
effective instruction prefetching. Our solution is guided by
software behavior. Specifically, we observe that contemporary
software is structured as a collection of small functions;
within each function, there is high spatial locality for the
constituent instruction cache blocks. Short-offset conditional
branches steer the local control flow between these blocks,
while long-offset unconditional branches (e.g., calls, returns),
drive the global control flow from one function to another.

Using this intuitive understanding, we make a critical
insight that an application’s instruction footprint can be
mapped as a combination of its unconditional branch working
set and, for each unconditional branch, a spatial encoding of
the cache blocks around the branch target. The combination
of unconditional branches and their corresponding spatial
footprints effectively encode the application’s control flow
across functions and the instruction cache working sets within
each function.

Based on these insights, this work introduces Shotgun, a
BTB-directed front-end prefetcher powered by a new BTB
organization specialized for effective prefetching. Shotgun de-
votes the bulk of its BTB capacity to unconditional branches
and their targets’ spatial footprints. Using this information,
Shotgun is able to track the application’s instruction working
set at a cache block granularity, enabling accurate and timely
BTB-directed prefetching. Moreover, because the uncondi-
tional branches comprise just a small fraction of the appli-
cation’s entire branch working set, they can be effectively
captured in a practical-sized BTB. Meanwhile, conditional
branches are maintained in a separate small-capacity BTB.
By exploiting prior observations on control flow commonality
in instruction and BTB working sets [10], Shotgun prefetches
into the conditional branch BTB by predecoding cache lines
brought into the L1-I through the use of spatial footprints. In
doing so, Shotgun achieves a high hit rate in the conditional
branch BTB despite its small size.

Using a diverse set of server workloads, we make the

following contributions:
• Demonstrate that limited BTB capacity inhibits timely in-

struction prefetching in existing BTB-directed prefetchers.
This calls for BTB organizations that can map a larger
portion of an application’s instruction working set within a
limited storage budget.

• Show that local control flow has high spatial locality and a
small cache footprint. Given the target of an unconditional
branch, on average, over 80% of subsequent accesses (prior
to the next unconditional branch) are to cache blocks within
10 blocks of the target. This observation enables a compact
spatial encoding of code regions.

• Propose a new BTB organization in which most of the ca-
pacity is dedicated to unconditional branches, which steer
the global control flow, and spatially-encoded footprints of
their regions. By compactly encoding footprints of entire
code regions, the proposed organization avoids the need to
track a large number of conditional branches inside these
regions to discover their instruction cache working set.

• Introduce Shotgun, a unified instruction cache and BTB
prefetcher powered by the proposed BTB organization.
By tracking a much larger fraction of an application’s
instruction footprint within a fixed BTB storage budget,
Shotgun outperforms the state-of-the-art BTB-directed
front-end prefetcher (Boomerang) by up to 14%.

2. Background
2.1 Temporal streaming prefetching
Over the past decade, temporal streaming [5] has been the
dominant technique for front-end prefetching for servers. The
key principle behind temporal streaming is to record control
flow access or miss sequences and subsequently replay them
to prefetch the necessary state. The general concept has been
applied to both instruction cache [6] and BTB [3] prefetching,
and shown to be highly effective in eliminating misses in
these structures.

The principal shortcoming of temporal streaming is the
need to store large amounts of metadata (hundreds of kilo-
bytes per core) for capturing control flow history [3, 6]. To
mitigate the cost, two complementary techniques have been
proposed. The first is sharing the metadata across all cores
executing a common workload [9]. The second is using one
set of unified metadata for both instruction cache and BTB
prefetching, thus avoiding the cost and complexity of main-
taining two separate control flow histories [10]. The key in-
sight behind unified front-end prefetching is that the metadata
necessary for populating the BTB can be extracted from cache
blocks containing the associated branch instructions. Thus,
history needs to be maintained only for instruction prefetch-
ing, while BTB prefetching happens “for free”, storage-wise.

The state-of-the-art in temporal streaming combines the
two ideas into a unified front-end prefetcher called Conflu-
ence [10]. Confluence maintains only the L1-I history meta-



Workload MPKI
Nutch 2.5
Streaming 14.5
Apache 23.7
Zeus 14.6
Oracle 45.1
DB2 40.2

Table 1: Miss rate of a 2K-entry BTB without prefetching.

data for both instruction and BTB prefetching, virtualizes
it into the LLC and shares it across the cores executing a
common workload. While effective, Confluence introduces
a significant degree of cost and complexity into a processor.
LLC virtualization requires invasive LLC modifications, in-
curs extra traffic for metadata movement and necessitates
system software support to pin the cache lines containing the
history metadata in the LLC. Moreover, the effectiveness of
metadata sharing diminishes when workloads are colocated,
in which case each workload requires its own metadata, re-
ducing the effective LLC capacity in proportion to the number
of colocated workloads.

2.2 BTB-directed prefetching
To mitigate the exorbitant overheads incurred by temporal
streaming prefetchers, recent research has revived the idea of
BTB-directed (also called fetch-directed) instruction prefetch-
ing [15]. The basic idea is to leverage the BTB to discover
future branches, predict the conditional ones using the branch
direction predictor, and generate a stream of future instruc-
tion addresses used for prefetching into the L1-I. The key
advantage of BTB-directed prefetching is that it does not
require any metadata storage beyond the BTB and branch
direction predictor, both of which are already present in a
modern server core.

The original work on BTB-directed prefetching was lim-
ited to prefetching of instructions. Recent work has addressed
this limitation by adding a BTB prefetch capability in a tech-
nique called Boomerang [13]. Boomerang uses a basic-block-
oriented BTB to detect BTB misses, which it then fills by
fetching and decoding the necessary cache lines from the
memory hierarchy. By adding a BTB prefetch capability with-
out introducing new storage, Boomerang enables a unified
front-end prefetcher at near-zero hardware cost compared to
a baseline core.

While highly effective on workloads with smaller instruc-
tion working sets, Boomerang’s effectiveness is reduced when
instruction working sets are especially large. The branch foot-
print in such workloads can easily exceed the capacity of a
typical BTB by an order of magnitude, resulting in frequent
BTB misses. Whenever each BTB miss occurs, Boomerang
must stall instruction prefetching to resolve the miss and
uncover subsequent control flow. When the active branch
working set is much larger than the BTB capacity, the BTB
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Figure 1: Comparison of state-of-the-art unified front-end
prefetchers to the ideal front-end on server workloads.

will thrash, resulting in a chain of misses whenever control
flow transfers to a region of code not in the BTB. Such a
cascade of BTB misses impedes Boomerang’s ability to issue
instruction cache prefetches due to frequently unresolved con-
trol flow. Thus, Boomerang’s effectiveness is tightly coupled
to its ability to capture the control flow in the BTB.

2.3 Competitive Analysis
Figure 1 compares the performance of the state-of-the-art tem-
poral streaming (Confluence) and BTB-directed (Boomerang)
prefetchers. Complete workload and simulation parameters
can be found in Section 5. As the figure shows, on workloads
with smaller instruction working sets, such as Nutch and Zeus,
Boomerang matches or outperforms Confluence by avoiding
the latter’s reliance on the LLC for metadata accesses. In Con-
fluence, the latency of these accesses is exposed on each L1-I
miss, which resets the prefetcher and incurs a round-trip to
the LLC to fetch new history before prefetching can resume.

In contrast, on workloads with larger instruction working
sets, such as Oracle and DB2, Confluence handily outper-
forms Boomerang by 14% and 9%, respectively. On these
workloads, Boomerang experiences the highest BTB miss
rates of any in the evaluation suite (see Table 1), which di-
minishes prefetch effectiveness as explained in the previous
section.

Given that software trends point in the direction of larger
code bases and deeper call stacks [8], there is a need for
a better control flow delivery architecture that can enable
prefetching for even the largest instruction working sets
without incurring prohibitive storage and complexity costs.

3. BTB: Code Meets Hardware
To maximize the effectiveness of BTB-directed prefetching,
we next study the interplay between software behavior and
the BTB.

3.1 Understanding Control Flow
Application code is typically organized as a collection of
functions to increase code reusability and productivity. The
function body itself can be thought of as a contiguous re-
gion of code that spans a small number of adjacent cache
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Figure 2: Program control flow example. The solid arrows
represent global control flow and dotted arrows depict local
control flow. A1, B1, etc denote cache block addresses.
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code regions.

blocks, as small functions are favored by modular design and
software engineering principles. To achieve the desired func-
tionality, execution is steered between different code regions
through function calls, system calls and the corresponding
return instructions; collectively, we refer to these as global
control flow. Meanwhile, local control flow guides the execu-
tion within a code region using a combination of conditional
branches and fall-through (next sequential instruction) execu-
tion.

Figure 2 shows a cartoon example of three code regions
and the two types of control flow. Global control flow that
transfers execution between the regions is depicted by solid
arrows, which correspond to call and return instructions.
Meanwhile, local control flow transfers due to conditional
branches within the code regions are shown with dashed
arrows.

Local control flow tends to have high spatial locality as
instructions inside a code region are generally stored in
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Figure 4: Contribution of static branches towards dynamic
branch execution for Oracle and DB2.

adjacent cache blocks. Furthermore, conditional branches that
guide local control flow tend to have very short displacements,
typically within a few cache blocks [13], as shown by dashed
arrows in Figure 2. Thus, even for larger functions, there is
high spatial locality in the set of instruction cache blocks
being accessed within the function.

Figure 3 quantifies the spatial locality for a set of server
workloads. The figure shows the probability of an access to
a cache block in relation to its distance from an entry point
to a code region, where a code region is defined as a set of
cache blocks spanning two unconditional branches (region
entry and exit points) in dynamic program order. As the figure
shows, regions tend to be small and with high spatial locality:
90% of all accesses occur within 10 cache blocks of the
region entry point.

Finally, we demonstrate that the total branch working set
of server workloads is large but the unconditional branch
working set is relatively small. As shown in Figure 4, for
Oracle, accommodating 90% of all dynamic branches is not
possible even by tracking 8K hottest static branches. With
a practical-sized BTB of 2K entries, only 65% of Oracle’s
dynamic branches can be covered. Meanwhile, the uncondi-
tional branch working set, responsible for the global control
flow, is rather modest because conditional branches that guide
application logic within code regions dominate. On Oracle, a
2K-entry BTB can capture 84% of all dynamically-occurring
unconditional branches; increasing the capacity to 2.75K can
cover 90% of dynamic unconditional branch executions. The
trend is similar on the DB2 workload, for which 2K hottest
static branches can cover only 75% of the total dynamic
branches, whereas the same number of hottest unconditional
branches cover 92% of the unconditional dynamic branches.

3.2 Implications for BTB-directed Prefetching
BTB-directed prefetchers rely on the BTB to discover con-
trol flow transfer points between otherwise sequential code



sections. Correctly identifying these transfer points is es-
sential for accurate and timely prefetching. Unfortunately,
large branch working sets in server workloads cause frequent
BTB misses. Existing BTB-directed prefetchers handle BTB
misses in one of two ways:
• The original FDIP technique [15] speculates through the

misses, effectively fetching straight line code when a
branch goes undetected; this, however, is ineffective if
the missing branch is a global control flow transfer that
redirects execution to a new code region.

• The state-of-the-art proposal, Boomerang, stalls prefetch-
ing and resolves the BTB miss by probing the cache hierar-
chy. While effective for avoiding pipeline flushes induced
by the BTB miss, Boomerang is limited in its ability to
issue instruction prefetches when faced with a cascade of
BTB misses inside a code region as explained in Sec 2.2.
We thus conclude that effective BTB-directed prefetching

requires two elements: (1) identifying global control flow
transfer points, and (2) racing through local code regions
unimpeded. Existing BTB-directed prefetchers are able to
achieve only one of these goals at the expense of the other.
The next section will describe a new BTB organization that
facilitates both of these objectives.

4. Shotgun
Shotgun is a unified BTB-directed instruction cache and BTB
prefetcher. Its key innovation is using the BTB to maintain
a logical map of the program’s instruction footprint using
software insights from Sec 3. The map allows Shotgun to
incur fewer BTB-related stalls while staying on the correct
prefetch path, thus overcoming a key limitation of prior BTB-
directed prefetchers.

Shotgun devotes the bulk of its BTB capacity to tracking
the global control flow; this is captured through unconditional
branches that pinpoint the inter-region control flow transfers.
For each unconditional branch, Shotgun maintains compact
metadata to track the spatial footprint of the target region,
which enables bulk prefetching of cache blocks within the
region. In contrast, prior BTB-directed prefetchers had to
discover intra-region control flow by querying the BTB one
branch at a time. Because unconditional branches represent a
small fraction of the dynamic branch working set and because
the spatial footprints summarize locations of entire cache
blocks (which are few) and not individual branches (which
are many), Shotgun is able to track a much larger instruction
footprint than a traditional BTB with the same storage budget.

4.1 Design Overview
Shotgun relies on a specialized BTB organization that ju-
diciously uses the limited BTB capacity to maximize the
effectiveness of BTB-directed prefetching. Shotgun splits the
overall BTB storage budget into dedicated BTBs for cap-
turing global and local control flow. Global control flow is
primarily maintained in the U-BTB, which tracks the un-

conditional branch working set and also stores the spatial
footprints around the targets of these branches. The U-BTB
is the heart of Shotgun and drives the instruction prefetch
engine. Conditional branches are maintained in the C-BTB,
which is comprised of just a few hundred entries to track
the local control flow within the currently-active code re-
gions. Finally, Shotgun uses a third structure, called Return
Instruction Buffer (RIB), to track return instructions; while
technically part of the global (unconditional) branch work-
ing set, returns require significantly less BTB metadata than
other unconditional branches, so allocating them to a separate
structure allows for a judicious usage of the limited BTB stor-
age budget. Figure 5a shows the three BTBs and the per-entry
metadata in each of them.

For L1-I prefetching, Shotgun extends Boomerang to lever-
age the separate BTBs and the spatial footprints as follows:
whenever Shotgun encounters an unconditional branch, it
reads the spatial footprint of the target region from the U-
BTB and issues prefetch probes for the corresponding cache
blocks. For filling the BTBs, Shotgun takes a hybrid approach
by incorporating the features from both Boomerang [13] and
Confluence [10]. Specifically, while prefetching instruction
blocks from LLC, Shotgun leverages the proactive BTB fill
mechanism of Confluence to predecode the prefetched blocks
and fill the BTB before the entries are accessed. Should a
BTB miss be encountered by the front-end despite the proac-
tive fill mechanism, it is resolved using the reactive BTB fill
mechanism of Boomerang that fetches the associated cache
block from the memory hierarchy and extracts the necessary
branch metadata.

4.2 Design Details
4.2.1 BTB organization
We now detail the microarchitecture of Shotgun’s three BTBs,
which are shown in Figure 5a.

Unconditional branch BTB (U-BTB)
The U-BTB tracks the unconditional branch working set, the
spatial footprints for the target and, when applicable, return re-
gions of these branches. Because unconditional branches and
their spatial footprints are critical for prefetching, Shotgun
devotes the bulk of total BTB storage budget to the U-BTB.

Each U-BTB entry, as shown in Figure 5a, is comprised
of the following fields:
Tag: the branch identity.
Size: the size of the basic block containing the branch (like
Boomerang, Shotgun uses a basic-block-oriented BTB [20])1.
Type: the type of branch instruction (call, jump, etc.).
Target: the target address of the branch instruction.
Call Footprint: the spatial footprint for the target region of a
call or unconditional jump instruction.

1 Here, a basic block means a sequence of straight-line instructions ending
with a branch instruction; slightly different from a conventional definition of
single-entry single-exit straight-line code
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Figure 5: Shotgun: (a) BTB organization and (b) Prefetching using spatial footprints.

Return Footprint: the spatial footprint for the target region of
a return instruction as explained next.

Because a function may be called from different sites,
the footprint associated with a return instruction is call-site-
dependent. Meanwhile, tracking potentially many footprints
for each return instruction is impractical. To resolve this
conundrum, Shotgun leverages a simple observation that
the target region of a particular instance of a return is, in
fact, the fall-through region of the preceding call (static code
region immediately following the call). Therefore, Shotgun
associates the spatial footprint of the return region with the
entry of the corresponding call instruction in the U-BTB. To
support this design, each U-BTB entry must maintain two
spatial footprints; one for the target region of the call and the
other for the return region.

Return Instruction Buffer (RIB)
Shotgun employs a dedicated storage structure, RIB, to track
return instructions corresponding to function and trap returns.
Storing returns in the U-BTB along with other unconditional
branches would result in severe storage under-utilization
because the majority of U-BTB entry space is not needed
for returns. For example, returns read their target address
from Return Address Stack (RAS) instead of the Target
field of U-BTB entry. Similarly, as discussed above, the
spatial footprint for return target region is stored along with
the corresponding call. Together, these fields (Target, Call
Footprint, and Return Footprint) account for more than 50%
of a U-BTB entry storage. The impact of such space under-
utilization is significant because returns occupy a significant

fraction of U-BTB entries. Indeed, our studies show that 25%
of U-BTB entries are occupied by return instructions, hence
resulting in storage inefficiency. Note that with a conventional
BTB, allocating the return instructions into the BTB does
not lead to a high inefficiency because over 70% of BTB
entries are occupied by conditional branches, while returns
are responsible for fewer than 10% of all entries.

These observations motivate Shotgun’s use of a dedicated
RIB structure to track return instructions. As shown in Fig 5a,
each RIB entry contains only (1) Tag, (2) Type, and (3) Size
fields. Compared to a U-BTB entry, there are no Target, Call
Footprint, and Return Footprint fields in a RIB entry. Thus,
by storing only the necessary and sufficient metadata to track
return instructions, RIB avoids wasting U-BTB capacity.

Conditional branch BTB (C-BTB)
Shotgun incorporates a small C-BTB to track the local control
flow (conditional branches) of currently active code regions.
As shown in Fig 5a, a C-BTB entry is composed of (1)
Tag, (2) Size, (3) Direction, and (4) Target fields. A C-BTB
entry does not contain branch Type field as all the branches
are conditional. As explained in Section 4.2.3, Shotgun
aggressively prefetches into the C-BTB by exploiting spatial
footprints, which affords a high hit rate in the C-BTB with a
capacity of only a few hundred entries.

4.2.2 Recording spatial footprints
Shotgun monitors the retire instruction stream to record the
spatial footprints. As an unconditional branch represents the
entry point of a code region, Shotgun starts recording a new



spatial footprint on encountering an unconditional branch
in the retire stream. Subsequently, it tracks the cache block
addresses of the following instructions and adds them to
the footprint if not already present. The spatial footprint
recording for a code region terminates on encountering a
subsequent unconditional branch, which indicates entry to a
different code region. Once the recording terminates, Shotgun
stores the footprint in the U-BTB entry corresponding to the
unconditional branch that triggered the recording.

Spatial footprint format: A naive approach to record a
spatial footprint would be to record the full addresses of all
the cache blocks accessed inside a code region. Clearly, this
approach would result in excessive storage overhead due to
the space requirements of storing full cache block addresses.
A storage efficient alternative would be to record only the
entry and exit points of the region and later prefetch all the
cache blocks between these points. However, as not all the
blocks in a region are accessed during execution, prefetching
the entire region would result in over prefetching, potentially
leading to on-chip network congestion and cache pollution.

To achieve both precision and storage-efficiency, Shotgun
leverages the insight that the accesses inside a code region
are centered around the target block (first block accessed in
the region) as discussed in Sec 3. To exploit the high spatial
locality around the target block, Shotgun uses a short bit-
vector, where each bit corresponds to a cache block, to record
spatial footprints. The bit positions in the vector represent the
relative distance from the target block and the bit value (1 or
0) indicates whether the corresponding block was accessed
or not during the last execution of the region. Thus, by using
a single bit per cache block, Shotgun dramatically reduces
storage requirements while avoiding over prefetching.

4.2.3 Prefetching with Shotgun
Similar to FDIP [15], Shotgun also employs a Fetch Tar-
get Queue(FTQ), as shown in Figure 5a, to hold the fetch
addresses generated by the branch prediction unit. These ad-
dresses are later consumed by the fetch-engine to fetch and
feed the corresponding instructions to core back-end. To fill
the FTQ, the branch prediction unit of Shotgun queries all
three BTBs (U-BTB, C-BTB, and RIB) in parallel. If there
is a hit in any of the BTBs, the appropriate fetch addresses
are inserted in to the FTQ. As these addresses are eventually
going to be used for fetching instructions from L1-I, they rep-
resent natural prefetching candidates. Therefore, like FDIP,
Shotgun capitalizes on this opportunity by scanning through
the fetch addresses, as they are inserted into the FTQ, and
issuing prefetch probes for corresponding L1-I blocks.

On a U-BTB or RIB hit, Shotgun also reads the spatial
footprint of the target code region to issue L1-I prefetch
probes for appropriate cache blocks. Accessing the spatial
footprint is simple for U-BTB hits because it is directly read
from the Call Footprint field of the corresponding U-BTB
entry. However, the mechanism is slightly more involved on

RIB hits because the required spatial footprint is not stored in
RIB, rather in the U-BTB entry of the corresponding call. To
find this U-BTB entry, we extend the RAS such that on a call,
in addition to the return address that normally gets pushed
on the RAS, the address of basic block containing the call
is also pushed2. Because the RAS typically contains a small
number of entries (8-32 is common), the additional RAS
storage cost to support Shotgun is negligible. On a RIB hit
for a return instruction, Shotgun pops the basic block address
of the associated call from the RAS to index the U-BTB and
retrieve the spatial footprint from the Return Footprint field.

In addition to using the spatial footprint to prefetch in-
structions into the L1-I, Shotgun exploits control flow com-
monality [10] to prefetch into the C-BTB as well. Thus, when
the prefetched blocks arrive at the L1-I, Shotgun uses a set
of predecoders to extract branch metadata from them and
uses it to populate the C-BTB ahead of the access stream. By
anticipating the upcoming instruction working set via the spa-
tial footprints and prefetching its associated branch working
set into the C-BTB via predecoding, Shotgun affords a very
small yet highly effective C-BTB.

Figure 5b shows a working example of using a spatial
footprint for L1-I and C-BTB prefetching on a U-BTB hit.
Shotgun first reads the target address A and the call footprint
01001000 from the U-BTB entry. It then generates prefetch
probes to the L1-I for the target block A and, based on the
call footprint in the U-BTB entry, for cache blocks A+2 and
A+5 (step 1 ). If any of these blocks are not found in the
L1-I, Shotgun issues prefetch request(s) to the LLC (step
2 ). Once prefetched blocks arrive from the LLC, they are

installed in the L1-I (step 3 ) and are also forwarded to a
predecoder (step 4 ). The predecoder extracts the conditional
branches from the prefetched blocks and inserts them into the
C-BTB (step 5 ).

If Shotgun detects a miss in all three BTBs, it invokes
Boomerang’s BTB fill mechanism to resolve the miss in the
following manner: first, the instruction block corresponding
to the missed branch is accessed from L1-I or from lower
cache levels if not present in the L1-I. The block is then fed to
the predecoder that extracts the missing branch and stores it
into one the BTBs depending on branch type. The rest of the
predecoded branches are stored in the BTB Prefetch Buffer
[13]. On a hit to the BTB Prefetch Buffer, the accessed branch
is moved to the appropriate BTB based on the branch type.

4.3 Discussion
Similar to Shotgun, two previously proposed techniques,
pTask [7] and (RDIP) [12]), also leverage global control
flow information for prefetching; but unlike Shotgun, they
target only L1-I misses. Moreover, pTask initiates prefetching
only on OS context switches and requires software support.

2 Because Shotgun uses a basic-block oriented BTB, it is the basic block
address, and not the PC, corresponding to the call instruction that is stored
on the RAS.



Web Search

Nutch
Apache Nutch v1.2

230 clients, 1.4 GB index, 15 GB data segment
Media Streaming

Darwin
Darwin Streaming Server 6.0.3

7500 clients, 60GB dataset, high bitratez
Web Frontend (SPECweb99)

Apache
Apache HTTP Server v2.0

16K connections, fastCGI, worker threading model

Zeus
Zeus Web Server

16K connections, fastCGI
OLTP - Online Transaction Processing (TPC-C)

Oracle
Oracle 10g Enterprise Database Server
100 warehouses (10GB), 1.4 GB SGA

DB2
IBM DB2 v8 ESE Database Server

100 warehouses (10GB), 2GB buffer pool

Table 2: Workloads

Processor
16-core, 2GHz, 3-way OoO

128 ROB, 32 LSQ
Branch Predictor TAGE [16] (8KB storage budget)

Branch Target Buffer 2K-entry

L1 I/D
32KB/2way, 2-cycle, private

64-entry prefetch buffer
L2 NUCA cache shared, 512KB per core, 16-way, 5-cycle

Interconnect 4x4 2D mesh, 3 cycles/hop
Memory latency 45 ns

Table 3: Microarchitectural parameters

RDIP is closer to Shotgun as it also exploits global program
context captured by RAS for prefetching. However, there
are important differences between the two approaches. First,
RDIP, for timely prefetching, predicts the future program
context (next call/return instruction) solely based on the
current context. This approach ignores local control flow
in predicting the future execution path, which naturally limits
accuracy. Shotgun, on the the other hand, predicts each and
every branch to locate the upcoming code region. Therefore,
Shotgun is more accurate in discovering future code regions
and L1-I accesses. Second, RDIP targets only a part of
the overall front-end bottleneck as it prefetches only L1-I
blocks but does not prefill BTB. Meanwhile, Shotgun offers a
cohesive solution to the entire problem. Finally, RDIP incurs
a high storage cost, 64KB per core, as it has to maintain
dedicated metadata for L1-I prefetching. Shotgun, in contrast,
has no additional storage requirement, as it captures the
global control flow and spatial footprints inside the storage
budget of a conventional BTB.

5. Methodology
5.1 Simulation Infrastructure
We use Flexus [18], a full system multiprocessor simulator,
to evaluate Shotgun on a set of enterprise and open-source
scale-out applications listed in Table 2. Flexus, which models
SPARC v9 ISA, extends the Simics functional simulator with
out-of-order(OoO) cores, memory hierarchy, and on-chip
interconnect. We use SMARTS [19] multiprocessor sampling

methodology for sampled execution. Samples are drawn over
32 billion instructions (2 billion per core) for each application.
At each sampling point, we start cycle accurate simulation
from checkpoints that include full architectural and partial
microarchitectural state consisting of caches, BTB, branch
predictor, and prefetch history tables. We warm-up the system
for 100K cycles and collect statistics over the next 50K
cycles. We use the ratio of number of application instructions
to the total number of cycles (including the cycles spent
executing operating system core) to measure performance.
This metric has been shown to be an accurate measure of
server throughput [18].

Our modeled processor is a 16-core tiled CMP. Each core
is 3-way out-of-order that microarchitecturally resembles an
ARM Cortex-A57 core. The microarchitectural parameters
of the modeled processor are listed in Table 3. We assume a
48-bit virtual address space.

5.2 Control Flow Delivery Mechanisms
We compare the efficacy and storage overhead of the follow-
ing state-of-the-art control flow delivery mechanisms.
Confluence: Confluence is the state-of-the-art temporal
streaming prefetcher that uses unified metadata to prefetch
into both L1-I and BTB [10]. To further reduce metadata stor-
age costs, Confluence virtualizes the history metadata into the
LLC using SHIFT [9]. We model Confluence as SHIFT aug-
mented with a 16K-entry BTB, which was shown to provide
a generous upper bound on Confluence’s performance [10].
To provide high L1-I and BTB miss coverage, Confluence re-
quires at least a 32K-entry instruction history and an 8K-entry
index table, resulting in high storage overhead. Furthermore,
it adds significant complexity to the processor as it requires
LLC tag extensions, reduction in effective LLC capacity, pin-
ning of metadata cache lines in the LLC and the associated
system software support, making it an expensive proposition
as shown in prior work [13]. The LLC tag array extension,
for storing index table, costs 240KB of storage overhead,
whereas the history table for each colocated workload require
204KB of storage which is carved out from LLC capacity.
Boomerang: As described in Section 2.2, Boomerang em-
ploys FDIP for L1-I prefetching and augments it with BTB
prefilling. Like FDIP, Boomerang employs a 32-entry fetch
target queue (FTQ) to buffer the instruction addresses be-
fore they are consumed by the fetch engine. We evaluate
Boomerang with a 2K entry basic-block oriented BTB. Each
BTB entry consists of a 37-bit tag, 46-bit target address, 5
bits for basic-block size, 3 bits for branch type (conditional,
unconditional, call, return, and trap return), and 2 bits for
conditional branch direction prediction. In total, each BTB
entry requires 93 bits leading to an overall BTB storage cost
of 23.25KB. Also, our evaluated Boomerang design employs
a 32-entry BTB prefetch buffer.
Shotgun: As described in Section 4.2, Shotgun uses dedi-
cated BTBs for unconditional branches, conditional branches,
and returns. For a fair comparison against Boomerang, we



restrict the combined storage budget of all BTB components
in Shotgun to be identical to the storage cost of Boomerang’s
2K-entry BTB. Like Boomerang, Shotgun also employs a
32-entry FTQ and a 32-entry BTB prefetch buffer.
U-BTB storage cost: We evaluate a 1.5K (1536) entry U-
BTB, which accounts for the bulk of Shotgun’s BTB storage
budget. Each U-BTB entry consists of a 38-bit tag, 46-bit
target, 5 bits for basic-block size, and 1 bit for branch type
(unconditional or call). Furthermore, each U-BTB entry also
consists of two 8-bit vectors for storing spatial footprints. In
each spatial footprint, 6 of the 8 bits are used to track the
cache blocks after the target block and the other two bits for
the blocks before the target block. Overall, each U-BTB entry
costs 106 bits, resulting in a total storage of 19.87KB.
C-BTB storage cost: Since Shotgun fills C-BTB from L1-I
blocks prefetched via U-BTB’s spatial footprints, only a small
fraction of overall BTB storage is allocated to C-BTB. We
model a 128-entry C-BTB with each C-BTB entry consisting
of a 41-bit tag, 22-bit target offset, 5 bits for basic-block
size, and 2 bits for conditional branch direction prediction.
Notice that only a 22-bit target offset is needed, instead of
the complete 46-bit target address, as conditional branches
always use PC relative offsets and SPARC v9 ISA limits the
offset to 22-bits. Also, as C-BTB stores only the conditional
branches, the branch type field is not needed. Overall, the
128-entry C-BTB requires 1.1KB of storage.
RIB storage cost: We model a 512-entry RIB, with each
entry containing a 39-bit tag, 5 bits for basic-block size, and
1 bit for branch type (return or trap-return). Since return
instructions get their target from the RAS, the RIB does not
store target addresses (Section 4.2). With 45 bits per each
RIB entry, a 512-entry RIB requires 2.8KB of storage.
Total: The combined storage cost of U-BTB, C-BTB and RIB
is 23.77KB.

6. Evaluation
In this section, we first evaluate Shotgun’s effectiveness in
eliminating front-end stall cycles, and the corresponding
performance gains in comparison to temporal streaming
(Confluence) and BTB-directed (Boomerang) control flow
delivery mechanisms. Next, we evaluate the key design
decisions taken in Shogun’s microarchitectural design: we
start with assessing the impact of spatial footprints in front-
end prefetching; we then analyze the impact of using a small
C-BTB on Shotgun’s performance; finally, we present a
sensitivity study to the BTB storage budget.

6.1 Front-end stall cycle coverage
To assess the efficacy of different prefetching mechanisms,
we present the number of front-end stall cycles covered by
each of them in Figure 6. Notice that instead of using the
more common misses covered metric, we use stall cycles
covered; that way, we can precisely capture the impact of
in-flight prefetches: the ones that have been issued, but the

requested block has not yet arrived in L1-I when needed by
the fetch unit. Furthermore, we consider stall cycles only on
the correct execution path, since wrong-path stalls do not
affect performance.

On average, as shown in the Figure 6, Shotgun covers
68% of the stall cycles experienced by a no prefetch baseline;
this is 8% better than each of Boomerang and Confluence.
A closer inspection reveals that Shotgun outperforms its
direct rival Boomerang on all of the workloads; in particular,
Shotgun provides more than 10% coverage improvements
on each of DB2 and Streaming, and over 8% on Oracle –
these workloads have a high BTB MPKI, whose impact on
front-end performance Shotgun aims to mitigate. Shotgun’s
improved coverage is a direct outcome of uninterrupted L1-
I prefetching via U-BTB’s spatial footprints; in contrast,
Boomerang has to wait to resolve BTB misses.

Compared to Confluence, Shotgun provides better stall
coverage on four out of six workloads. A closer inspection re-
veals that Shotgun comprehensively outperforms Confluence
on Apache, Nutch, and Streaming with 16%-19% additional
coverage. Confluence performs poorly on these applications,
as also noted by Kumar et al. [13], owing to frequent LLC ac-
cesses for loading history metadata. On every misprediction
in L1-I access sequence, Confluence needs to load the correct
sequence from the LLC before starting issuing prefetches on
the correct path. This start-up delay in issuing prefetches on
each new sequence compromises Confluence’s coverage.

On the workloads with the highest BTB MPKI (DB2 and
Oracle), Shotgun is within 2% of Confluence on DB2, but
is 10% behind on Oracle. As shown in Figure 4, Oracle’s
unconditional branch working set is much larger compared
to other workloads. The most frequently executed 1.5K
unconditional branches (equal to the number of Shotgun’s
U-BTB entries) cover only 78% of dynamic unconditional
branch execution. Therefore, Shotgun often enters code
regions not captured by U-BTB, which limits the coverage
due to not having a spatial footprint to prefetch from.

6.2 Performance Analysis
Figure 7 shows the performance improvements for differ-
ent prefetching mechanisms over a baseline without any
prefetcher. The performance trends are similar to coverage
trends (Figure 6) with Shotgun providing, on average, 32%
performance improvement over the baseline and 5% improve-
ment over each of Boomerang and Confluence. The speedup
over Boomerang is especially prominent on high BTB MPKI
workloads, DB2 and Oracle, where Shotgun achieves 10%
and 8% improvement respectively.

Interestingly, Figure 7 shows that Shotgun attains a rela-
tively modest performance gain over Boomerang on Nutch,
Apache, and Zeus workloads, despite its noticeable cover-
age improvement. The reason behind this behavior is that
these workloads have relatively low L1-I MPKI; therefore,
the coverage improvement does not translate into propor-
tional performance improvement. Similar to coverage results,
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Figure 6: Front-end stall cycles covered by different prefetching schemes over no-prefetch baseline.
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Figure 7: Speedup of different prefetching schemes over no-prefetch baseline.

Shotgun outperforms Confluence on Apache, Nutch, Stream-
ing, and Zeus. Furthermore, it matches the performance gain
of Confluence on DB2; however, due to lower stall cycle
coverage, Shotgun falls behind Confluence on Oracle by 7%.

6.3 Quantifying the Impact of Spatial Footprints
As discussed in Sec 4.2.2, Shotgun stores the spatial region
footprints in the form of a bit-vector to reduce the storage
requirements while simultaneously avoiding over prefetching.
This section evaluates the impact of spatial footprints and
their storage format (bit-vector) on performance. We evaluate
the following spatial region prefetching mechanisms: (1) No
bit vector: does not perform any region prefetching; (2) 8-
bit vector; (3) 32-bit vector; (4) Entire Region: prefetch all
the cache blocks between entry and exit points of the target
region; and (5) 5-Blocks: prefetch five consecutive cache
blocks in the target region starting with the target block.
The “5-Blocks” design point is motivated by Figure 3, which
shows that 80%-90% of the accessed blocks lie within this
limit. The benefit of always prefetching a fixed number of
blocks is that it completely avoids the need to store metadata
for prefetching.

First, we focus on the stall cycle coverage and performance
with different bit-vector lengths. For the No Bit Vector
design, which performs no region prefetching, we increase the

number of entries in the U-BTB up to the same storage budget
as the 8-bit vector design. For the 32-bit vector, however,
instead of reducing the number of U-BTB entries (to account
for more bits in bit-vector), we simply provide additional
storage to accommodate the larger bit-vector. Therefore, the
results for 32-bit vector upper-bound the benefits of tracking
a larger spatial region with the same global control flow
coverage in the U-BTB as the 8-bit vector design.

As Figures 8 and 9 show, an 8-bit vector provides, on
average, 6% coverage and 4% performance benefit com-
pared to no spatial region prefetching. In fact, without spa-
tial footprints, Shotgun’s coverage is only 2% better than
Boomerang. With an 8-bit vector, Shotgun improves the per-
formance of every single workload, with the largest gain of
9% on Streaming and DB2, compared to No Bit Vector. Mean-
while, increasing the bit-vector length to 32 bits provides only
0.5% performance, on average, over an 8-bit vector. These
results suggest that longer bit vectors do not offer a favorable
cost/performance trade-off.

The remaining spatial region prefetching mechanisms, En-
tire Region and 5-Blocks, lead to a performance degradation
compared to 8-bit vector as shown in Figure 9. The perfor-
mance penalty is especially severe in two of the high opportu-
nity workloads: DB2 and Streaming. This performance degra-
dation results from over-prefetching, as these mechanisms
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Figure 8: Shotgun front-end stall cycle coverage with different spatial region prefetching mechanisms.
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Figure 9: Shotgun performance with different spatial region prefetching mechanisms.
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Figure 10: Shotgun prefetch accuracy with different spatial
region prefetching mechanisms.

lack the information about which blocks inside the target re-
gion should be prefetched. Always prefetching 5 blocks from
the target region results in significant over prefetching and
poor prefetch accuracy, as shown in Figure 10, because many
regions are smaller than 5 blocks. The reduction in prefetch
accuracy is especially severe in Streaming where it goes down
to mere 42% with 5-Block prefetching compared to 80% with
8-bit vector. On average, 8-bit vector provides 71% accuracy
whereas, Entire Region and 5-Blocks prefetching are only
56% and 43% accurate, respectively. Over-prefetching also
increases pressure on the on-chip network, which in turn
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Figure 11: Number of cycles required to fill an L1-D miss
with different mechanisms for spatial region prefetching.

increases the effective LLC access latency, as shown in Fig-
ure 11. For example, as the figure shows, average latency to
fill an L1-D miss increases from 54 cycles with 8-bit vector to
65 cycles with 5-Blocks prefetching for DB2. The combined
effect of poor accuracy and increased LLC access latency due
to over-prefetching makes indiscriminate region prefetching
less effective than the 8-bit vector design.

6.4 Sensitivity to C-BTB Size
As discussed in Sec 4, Shotgun incorporates a small C-BTB
and relies on both proactive and reactive mechanisms to
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Figure 12: Shotgun speedups with different C-BTB sizes.

fill it ahead of time. To measure Shotgun’s effectiveness in
prefilling the C-BTB, Fig 12 presents performance sensitivity
to the number of C-BTB entries. Any speedup with additional
entries would highlight the opportunity missed by Shotgun.

To assess Shotgun’s effectiveness, we compare the perfor-
mance of 128-entry verses 1K-entry C-BTBs. As the figure
shows, despite an 8x increase in storage, the 1K entry C-BTB
delivers, on average, only 0.8% improvement. This result val-
idates our design choice, demonstrating that a larger C-BTB
capacity is not useful.

On the other hand, reducing the number of entries to 64 re-
sults in noticeable performance loss especially on Streaming
and DB2, with 4% lower performance compared to a 128-
entry C-BTB. On average, the 128-entry C-BTB outperforms
the 64-entry C-BTB by 2% as shown in Figure 12.

6.5 Sensitivity to the BTB Storage Budget
We now investigate the impact of the BTB storage budget on
the effectiveness of the evaluated BTB-directed prefetchers:
Boomerang and Shotgun. We vary the BTB capacity from 512
entries to 8K entries for Boomerang, while using the equiv-
alent storage budget for Shotgun. To match Boomerang’s
BTB storage budget in the 512- to 4K-entry range, we pro-
portionately scale Shotgun’s number of entries in U-BTB,
RIB, and C-BTB from the values presented in Sec 5.2. How-
ever, scaling the number of U-BTB entries to match 8K-entry
Boomerang BTB storage would lead to a 6K-entry U-BTB,
which is an overkill, as 4K-entry U-BTB is sufficient to cap-
ture the entire unconditional branch working set as shown in
Figure 4. Therefore, Shotgun limits the number of U-BTB en-
tries to 4K and expands RIB and C-BTB to store 1K and 4K
entries respectively, to utilize the remaining budget. Empiri-
cally, we found this to be the preferred Shotgun configuration
for the 8K-entry storage budget.

Figure 13 shows the results for Oracle and DB2, the two
workloads with the largest instruction footprints that are par-
ticularly challenging for BTB-based prefetchers. The striped
bars highlight the results for the baseline 2K-entry BTB. As
the figure shows, given an equivalent storage budget, Shot-
gun always outperforms Boomerang. On the Oracle work-
load, Shotgun, with a small storage budget equivalent to a
1K-entry conventional BTB outperforms Boomerang with
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Figure 13: Boomerang and Shotgun speedup for different
BTB sizes. The indicated BTB size is for Boomerang; Shot-
gun uses the equivalent storage budget for its three BTBs.

an 8K-entry BTB (27% vs 26.3% performance improvement
over no prefetch baseline). Similarly on DB2, Boomerang
needs more than twice the BTB capacity to match Shotgun’s
performance. For instance, with a 2K-entry BTB, Shotgun
delivers a 61.5% speedup, whereas Boomerang attains only a
58.9% speedup with a larger 4K-entry BTB. These results in-
dicate that Shotgun’s judicious use of BTB capacity translates
to higher performance across a wide range of BTB sizes.

7. Conclusion
The front-end bottleneck in server workloads is a well-
established problem due to frequent misses in the L1-I and the
BTB. Prefetching can be effective at mitigating the misses;
however, existing front-end prefetchers force a trade-off
between coverage and storage overhead.

This paper introduces Shotgun, a front-end prefetcher pow-
ered by a new BTB organization and design philosophy. The
main observation behind Shotgun is that an application’s
instruction footprint can be summarized as a combination
of its unconditional branch working set and a spatial foot-
print around the target of each unconditional branch. The
former captures the global control flow (mostly function calls
and returns), while the latter summarizes the local (intra-
function) instruction cache working set. Based on this insight,
Shotgun devotes the bulk of its BTB capacity to uncondi-
tional branches and their spatial footprints. Meanwhile, con-
ditional branches are maintained in a small-capacity dedi-
cated BTB that is filled from the prefetched instruction cache
blocks. By effectively summarizing the application’s instruc-
tion footprint in the BTB, Shotgun enables a highly effective
BTB-directed prefetcher that largely erases the gap between
metadata-free and metadata-rich state-of-the-art prefetchers.
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