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ABSTRACT 23 

 Sponges may form an important component of benthic ecosystems from shallow littoral 24 

to hadal depths. In the deep ocean beyond the continental shelf, sponges can form high-density 25 

fields, constituting important habitats supporting rich benthic communities. Yet these habitats 26 

remain relatively unexplored. Apart from scientific exploration, the offshore oil and gas 27 

industry has played a key role in advancing our knowledge of deep-sea environments. Since 28 

its inception in the 1960s, offshore oil and gas industry has moved into deeper waters. 29 

However, the impacts of offshore oil and gas activities on deep-sea sponges and other 30 

ecosystems are only starting to become the subject of active research. Throughout the 31 

development, operation and closure of an oil or gas field many activities take place, ranging 32 

from the seismic exploration of sub-seafloor geological features or the installation of 33 

infrastructure at the seabed to the drilling process itself. Accidental releases of hydrocarbons 34 

during spills or cuttings release can significantly impact the local marine environment. Each 35 

phase of a field development or an accidental oil spill will therefore have different impacts on 36 

sponges at community, individual and cellular levels. Legacy issues regarding the future 37 

decommissioning of infrastructure and the abandonment of wells are also important 38 

environmental management considerations. This paper reviews our understanding of impacts 39 

from hydrocarbon exploration and exploitation activities on deep-sea sponges and the habitats 40 

they form. Effects of offshore oil and gas activities include (1) at community level, decreasing 41 

of the diversity and density of benthic communities associated with deep-sea sponges owing 42 

to physical disturbance of the seabed, (2) at individual level, interrupting filtration owing to 43 

exposure to increased sedimentation, (3) at cellular level, decreasing in cellular membrane 44 

stability owing to exposure to drill muds.  However, many potential effects, not yet tested in 45 

deep-sea sponges but observed in shallow-water sponges or other model organisms should also 46 

be taken into account. Furthermore, to the best of our knowledge, no studies have shown impact 47 



of oil or dispersed oil on deep-sea sponges. To highlight these significant knowledge gaps, a 48 

summary table of potential and known impacts of hydrocarbon extraction and production 49 

activities, combined with a simple “traffic light” scheme is also provided. 50 

 51 

INTRODUCTION 52 

Presently, offshore oil and gas production accounts for one third of worldwide 53 

hydrocarbons production (Bennear 2015). Since the end of the 1960s and the beginning of 54 

offshore oil and gas exploration, the oil and gas industry have developed technologies that 55 

enable exploitation of deep-sea environments (Managi et al. 2005) and is, today, operating in 56 

deeper and complex marine settings (Muehlenbachs et al. 2013). Hydrocarbon exploration 57 

and production is taking place in areas where vulnerable benthic species such as deep-sea 58 

sponges are present. For example, in the Faroe-Shetland Channel, oil production activities are 59 

taking place within a Nature Conservation Marine Protected Area designated to protect the 60 

local deep-sea sponge grounds (Henry and Roberts, 2014).  61 

Exploration for hydrocarbon and other resources in deep waters offshore has helped 62 

discover new deep-sea environments. For example, collaborative efforts between academia 63 

and industry partners have been very successful in increasing our understanding of deep-sea 64 

benthic ecosystems e.g. the SERPENT project (Scientific and Environmental ROV 65 

Partnership using Existing iNdustrial Technology) (Gates et al. 2016) and discovering 66 

previously unknown habitats such as the Darwin Mounds in the NE Atlantic (Huvenne et al. 67 

2016). However, industrial operations in deeper settings are strongly correlated with a 68 

number of technical incidents such as blowouts, injuries or spills (Muehlenbachs et al. 2013) 69 

as well as operational discharges and disturbances leading to the chemical contamination of 70 

water and seafloor habitats as well as local scale physical impacts from amongst others 71 

drilling, anchoring and pipelines (OSPAR Commission 2009a).  This was most starkly 72 



demonstrated by the 2010 Deepwater Horizon oil spill in the Gulf of Mexico, caused by a 73 

well blowout at 1500 m depth (Beyer et al. 2016 and references therein). Subsea well 74 

blowouts and pipeline leaks at depth have become more of a concern while the number of 75 

tanker-related oil incidents at surface have decreased over time (Jernelöv 2010). In addition, 76 

day to day operations can also have environmental impacts in the deep sea (Cordes et al. 77 

2016). From the presence of man-made infrastructures on the seabed to the release of 78 

produced waters or the re-sedimentation of particles close to the drilling locations, the 79 

ecological footprints of the offshore oil and gas production activities are multiple (Kark et al. 80 

2015). As it is known that recovery rates vary in the deep-sea depending on the region and 81 

biological communities already living there, understanding the impact of oil and gas industry 82 

related activities on deep-sea benthic ecosystems is complex (Henry et al. 2017).  83 

Furthermore, while pressures from anthropogenic activities such as the exploitation of 84 

oil and gas reserves on deep-sea ecosystems keep increasing, our understanding of deep-sea 85 

organisms and the scale of human impacts on ecosystems functionning remains limited 86 

(Ramirez-Llodra et al. 2011). Deep-sea ecosystems comprise a highly diverse set of physical 87 

and biological settings, many of which are hotspots of biodiversity including hydrothermal 88 

vents, abyssal plains, manganese nodule fields, cold-water coral reefs and sponge grounds 89 

(Ramirez-Llodra et al. 2011). Although many of these ecosystems also contribute 90 

significantly in global biogeochemical cycling (Ramirez-Llodra et al. 2011) the overall value 91 

of the ecosystem services provided by deep-sea ecosystems remain poorly quantified 92 

(Thurber et al. 2014).  93 

Sponges (Phylum Porifera) play vital roles in sustaining global deep-sea biodiversity 94 

and ecosystem functioning. The diversity of sponges in the deep sea (Fig. 1A and B), the 95 

rarity of some poriferan taxa (members of the class Calcarea), and the ecological uniqueness 96 

of some poriferan groups such as carnivorous sponges of the family Cladorhizidae (Fig. 1C) 97 



and the stalked glass sponges of the family Hyalonematidae, all add to the biological richness 98 

of life in the deep ocean (Hogg et al. 2010). Habitats formed by dense aggregations of one or 99 

several sponge taxa (sponge “grounds”, Fig. 1D) can extend over very large areas up to 100 

hundreds of km2 and provide three-dimensionally complex stable habitats that support 101 

distinct biological communities and a biologically diverse mixture of other species 102 

(Maldonado et al. 2016). Maldonado et al. (2016) provides an extensive review of sponge 103 

grounds including deep-sea sponge grounds such as the hexactinellid sponge reefs in the 104 

northeast Pacific Ocean off, astrophorid sponge aggregations in the north Atlantic, lithistid 105 

sponge grounds or antarctic sponge grounds more than 400 species rich. Sponges themselves 106 

host an array of organisms ranging from bryozoans or polychaetes to crustaceans (Wulf 2006; 107 

Kazanidis et al. 2015) and sponge grounds act as nursery grounds and support many benthic 108 

species including commercially important fish species such as rockfish, hake and blue ling 109 

(Freese and Wing, 2003; Du Preez and Tunicliffe 2011; Maldonado et al. 2016) (Fig. 1E to 110 

H). Therefore, sponge grounds meet several criteria of Vulnerable Marine Ecosystems 111 

(VMEs) as recognised by the UN Food and Agriculture Organisation (FAO). Deep-sea 112 

sponge grounds also meet the criteria of Ecologically or Biologically Significant Areas 113 

(EBSAs) as defined by the UN Convention on Biological Diversity (table 1) (Hogg et al. 114 

2010). 115 

Despite their ability to enhance benthic biodiversity, the biology and ecology of deep-116 

sea sponges has only started to be uncovered. What has been revealed most recently is that 117 

sponges play essential roles in the biogeochemical cycling of matter in the deep oceans 118 

(Cathalot et al. 2015). This is principally owing to sponges being very efficient at filtering 119 

large volumes of water as they rely on Particulate Organic Matter (POM) as well as 120 

Dissolved Organic Matter (DOM) for food (Rix et al. 2016). Up to 40% of the carbon and 121 

nitrogen assimilated by sponges is released back into the water column in the form of 122 



pumping and mesohyl cell detritus (Rix et al. 2016). Sponges, including deep-sea species, 123 

thus recycle DOM to POM which is then available for other benthic organisms and 124 

contributes to bentho-pelagic coupling in oligotrophic environments (Maldonado 2016; Rix 125 

et al. 2016). Sponges host highly diverse microbial communities of bacteria, archaea and 126 

eukaryotes, often compared for their complexity to the microbial assemblages of the 127 

mammalian gut (Hentschel et al. 2012; Webster et al. 2012). Deep-sea sponges participate in 128 

nitrogen cycling through these microbial symbionts capable of nitrification, denitrification 129 

and ammanox reactions (Hoffman et al. 2009; Li et al. 2014). The concept of a ‘sponge loop’ 130 

have therefore emerged in the literature whereby sponges support oligotrophic food webs by 131 

recycling organic carbon and nitrogen (De Goeij et al. 2013; Maldonado 2016). Furthermore, 132 

sponge skeleton elements (spicules) are composed of silica assimilated from the environment 133 

and sponges can play large roles in the cycling of silica. Glass sponge reefs composed of 134 

hexactinellid sponges such as Aphrocallistes vastus, which are composed of up to 80% of 135 

biogenic silica, concentrate huge amounts of Si in some areas of the seabed (Chu et al. 2011). 136 

It is also becoming more evident that deep-sea sponges create other ecosystem 137 

services: these “provisioning” services including the production of bioactive secondary 138 

metabolites related to sponge-microbial associations that are of great interest to the 139 

biotechnology sector. Conservation of these ancient animals (individual sponges have been 140 

aged over 400 to over 2000 years old) and their habitats must therefore scale up with the rates 141 

and extent of emerging anthropogenic activity, and thus the impacts that deep-water oil and 142 

gas activities could have on these benthic organisms needs to be considered in management 143 

plans (McMurray et al. 2008; Fallon et al. 2010). 144 

The purpose of this review is to provide the first fully comprehensive review of the 145 

impacts of offshore oil and gas activities on deep-sea sponges and the habitats they create. 146 

Although studies on the resilience of deep-sea sponges to some oil and gas production 147 



activities are starting to emerge, many knowledge gaps persist. Relevant findings from 148 

shallow-water sponges or other benthic organisms has therefore also been used here to 149 

highlight possible impacts on deep-sea sponges and the habitats they form. Impacts can occur 150 

at all stages of offshore oil and gas activities from exploration, development and production 151 

through to decommissioning and legacy effects. Furthermore, effects of these activities can 152 

be detected across ecological scales from community, individual and cellular levels. This 153 

review therefore adopts this multiple scale framework to assess impacts at the level of sponge 154 

habitats, at the individual sponge level and at the cellular and molecular level. 155 

 156 

EFFECT ON SPONGE HABITATS AND COMMUNITIES 157 

During the development of an oil and gas field under development the activities can 158 

broadly be broken up into four successive phases: exploration and appraisal, development, 159 

production and decommissioning (DTI 2001; Fig. 2). Each phase involves a range of routine 160 

activities that may have effects on deep-sea sponge habitats and the biological communities 161 

they support (Fig. 2). Exceptional events such as accidental spills and chemical releases could 162 

also negatively affect deep-sea sponge grounds and so should also be taken into 163 

consideration. Potential impacts of accidental spills are treated separately in this section of 164 

the review to help guide the development of monitoring and spill management plans. 165 

  166 

Impacts of routine activities on deep-sea sponge grounds and associated communities 167 

Subsea infrastructure (wells, pipelines, manifolds and platforms) 168 

During the phases of exploration and development, offshore oil and gas activities 169 

require the drilling of wells and the installations of heavy infrastructure such as manifolds 170 

and pipelines that directly disturbs the seabed (Fig. 2). Physical disruption and smothering by 171 

sediments is one of the main impacts linked to the early stages of oil field development 172 



arising from installing pipelines, cables, bottom rigs, templates, skids, and platforms 173 

including platform legs and anchoring (OSPAR commission 2010). Physical disruption and 174 

increased sedimentation (Fig. 1I and J) during these phases can locally diminish benthic 175 

communities by more than 90% in terms of megafaunal density within sponge grounds (Jones 176 

et al. 2006). Long-term effects on deep-sea sponge grounds from such physical disturbance 177 

are still detectable up to 10 years post-drilling and this slow, partial recovery, inversely 178 

related to the distance to the well and the time after drilling, could result from the long-lived 179 

nature, slow growth rates and low reproduction rates of most deep-sea organisms (Jones et al. 180 

2012). Very limited recovery of megafauna was observed in areas where drill cuttings were 181 

not eroded 10 years post drilling (Jones et al. 2012).  182 

Physical disruption and increased sedimentation are also associated with the 183 

installation of pipelines, which export produced hydrocarbons onshore. Power transmission 184 

cable installations significantly impact local benthic communities inflicting a 100% mortality 185 

rates to glass sponges below the cables and a 15% mortality rate within 1.5 m of the cables all 186 

along its footpath (Dunham et al. 2015) with potentially similar effects expected from 187 

pipeline deployments (OSPAR commission 2010). 188 

 189 

Discharges of drill cuttings and drill muds 190 

In the early stages of drilling a well drill cuttings and muds, comprising residual rock 191 

fragment from the well and drilling fluid chemicals, are released directly into the 192 

environment at depth (Ellis et al. 2012). For the remainder of the drilling process, treated 193 

cuttings are typically discharged at the surface, where they sink to the seafloor under the rig. 194 

Unless dispersed by active near-bed currents, drill cuttings can accumulate on the seabed and 195 

over time may release contaminants, especially if disturbed (OSPAR commission 2010). The 196 

usually customised drill muds can be classified into three types: oil-based, synthetic and 197 



water-based fluids all of which may contain toxic chemicals, including polyaromatic 198 

hydrocarbons and heavy metals. Only two studies have shown the impact of drilling mud and 199 

cuttings on megafaunal communities with abundant sponges, both in the north east Atlantic 200 

(Gate and Jones, 2012; Jones et al.  2012). Both studies indicate major reductions in sponge 201 

densities and reduced diversity close (100-200 m) to drilling activity that persist for several 202 

years (Fig. 3). The gravity of the impact of drill muds and cuttings has been better studied on 203 

other benthic communities where the impacts have been shown to depend largely on abiotic 204 

conditions such as depth and currents as well as the concentration of chemicals associated 205 

with the muds (Ellis et al. 2012, Henry et al. 2017). For synthetic and water-based muds, a 206 

decrease in community diversity and abundance have been measured up to 1,000 m away 207 

from the release location (Ellis et al. 2012). Functional changes in benthic communities, 208 

associated with a loss of suspension-feeding species and an increase in deposit feeders have 209 

also been detected at release sites (Trannum et al. 2010; Ellis et al. 2012). The spatial impact 210 

footprint is largest during the first one to two years after drilling and reduces in extent and 211 

contaminant concentration afterwards due to leaching into the water column (OSPAR 212 

Commission 2016). Today the production and release of oil-based drill muds have been 213 

widely reduced in the North East Atlantic by the oil and gas industry (OSPAR 214 

Recommendations R2001/1, 2006/5 and 2010/18) but use of oil-based drill muds in the past 215 

has been shown to have a local but strong and lasting impact on benthic communities 216 

(OSPAR Commission 2010; Henry et al. 2017). Potential impacts of past releases of oil-217 

based drill muds on sponge grounds and associated benthic communities therefore still need 218 

to be understood. 219 

 220 

Decommissioning 221 

As offshore infrastructures age, decommissioning options for the physical removal of 222 



oil and gas infrastructure including pipelines, platforms, drill cuttings and the capping of 223 

wells needs to be considered (Fig. 2). Worldwide, there are over 7,500 oil and gas structures 224 

offshore and about 85% of them will need to be decommissioned by 2025 (Fowler et al. 225 

2014). In the North East Atlantic, the dumping, and leaving wholly or partly in place, of 226 

disused offshore installations has been prohibited within certain sea areas, under OSPAR 227 

Decision 98/3 on the Disposal of Disused Offshore Installations since 1998. Based on a pre-228 

defined assessment demonstrating that there are significant reasons why an alternative 229 

disposal is preferable to reuse or recycling or final disposal on land, the competent authority 230 

of the relevant Contracting Party may authorise companies to leave some parts of the 231 

installations in place after consultation with the other Contracting Parties. Such derogations 232 

concern very heavy concrete and steel installations which might provide a suitable settlement 233 

ground also for deepwater sponges. Until 2009, 122 offshore installations have been brought 234 

ashore for disposal and only five permits have been issued for structures to be left in place 235 

(OSPAR Commission 2009a). However, with more and more installations approaching their 236 

end of life, the industry has started to lobby for a modification of the Decision itself instead 237 

of using the derogation options provided by OSPAR Decision 98/3. The argument is that the 238 

physical impact on the seabed as well as the economic costs of such operations are 239 

substantial.  240 

Environmental impacts caused by a complete removal of offshore infrastructure that 241 

could negatively affect deep-sea sponge grounds and associated communities may include: 242 

contamination of the water column by hydrocarbons and other chemicals, direct damage to 243 

the seabed and smothering by increase sedimentation (Fowler et al. 2014). Decommissioning 244 

of oil and gas industry infrastructure has not yet taken place within known deep-sea sponge 245 

grounds and so potential impacts of decommissioning at community level is for the moment 246 

unknown. Under UK regulation, decommissioning impacts on the environment must be 247 



considered in the Environmental Impact Assessment (EIA) produced in the beginning of any 248 

new oil and gas field development (DECC, 2011). 249 

Accidental spills and releases  250 

 The Deepwater Horizon oil spill was one of the largest and deepest offshore oil spills to 251 

date, with approximately 3.19 million barrels of oil released into the water at a depth of 1500 252 

m (Beyer et al. 2016 and reference therein). It was also the first time dispersants were used to 253 

such an extent at depth to mitigate the formation of a surface oil slick that would have 254 

impacted upon sensitive coastal ecosystems (White et al. 2014). Almost 3 million litres of 255 

dispersant CorexitTM 95000 were released near the well head (White et al. 2014). A large 256 

amount of the oil released into the water column formed several subsurface oil plumes 257 

(Diercks et al. 2010). The most significant sub-surface plume extended for 35 km at 258 

approximately 1100 m depth (Camilli et al. 2010). The DeepWater Horizon incident thus 259 

created a new kind of oil spill where deep water ecosystems and habitats were exposed to 260 

high concentrations of dispersed crude oil and dispersants (Peterson et al. 2012).  261 

 Impact of accidental oil releases are better understood in shallow water than in deep 262 

ecosystems. In shallow water coastal environments, oil spills have shown both lethal (high 263 

mortality rate) and sub-lethal effects (carcinogenic and cytotoxic impacts) on benthic species 264 

leading to changes in community diversity, age structure and trophic interactions (Suchanek  265 

1993). Impact of oil spills on deep-sea benthic ecosystems are far less understood. After the 266 

Deepwater Horizon incident, significant decreases in macro- and meio-fauna diversity were 267 

detected after the blowout up to 17 km away from the well (Montagna et al. 2013). Other 268 

studies have shown high mortality rate of deep-water corals, colonial and pelagic tunicates, 269 

sea pens as well as glass sponges within a 2 km radius of the well but no further result on 270 

deep-sea sponges is given (White et al. 2012; Valentine and Benfield 2013).  271 

 Long-term impacts of oil spills in shallow water ecosystems often take the form of 272 



community structure anomalies (absence of organisms of a specific age class) owing to the 273 

longevity and slow growth rate of some species (Kingston 2002). Long-term impacts of deep-274 

sea oil spill such as the DeepWater Horizon oil spill remains unknown. Deep-sea sponges 275 

display relatively slow and strongly seasonal growth rates varying from a few millimetres to 276 

a couple of centimetres per year (Fallon et al. 2010; Dayton et al. 2013; Dunham et al. 2015), 277 

suggesting that deep-sea spills in the vicinity of deep-sea sponge grounds could have a strong 278 

long-term community effect on these habitats.  279 

 280 

PHYSIOLOGICAL AND ECOTOXICOLOGICAL EFFECTS ON INDIVIDUAL 281 

SPONGES 282 

Main impacts of routine offshore oil and gas activities on deep-sea sponges 283 

Seismic surveying during hydrocarbon exploration and appraisal phases 284 

During the initial phases of exploration and appraisal, seismic surveys are conducted 285 

to assess sub-seafloor structures and determine drilling location (DTI 2001). Impact of 286 

seismic surveys on marine invertebrates and larval development and survival has been 287 

investigated in several studies (Aguilar de Soto et al. 2013; Nedelec et al. 2014). 288 

Developmental delays and malformations in scallops have been identified as potential effects 289 

of seismic surveys on benthic organisms (Aguilar de Soto et al. 2013). In gastropods, seismic 290 

pulses decrease larval development and increased mortality by over 20% (Nedelec et al. 291 

2014). However, no studies have yet investigated the effect of seismic surveys on sponges or 292 

their larval stages.  293 

 294 

Sedimentation from seabed disturbance 295 

 The phases of offshore exploration and development are characterised by drilling and 296 

the installation of heavy infrastructure, which are associated with re-suspension of sediments 297 



that can affect local benthic organisms including deep-sea sponges (OSPAR Commission 298 

2010) (Fig. 2). Bell et al. (2015) summarized the often species-specific effects of 299 

sedimentation on marine sponges, focussing mainly on shallow-water species. Increased 300 

sedimentation impacts sponge filtration and feeding (Reiswig 1971; Bannister et al. 2012 301 

amongst others), respiration (Lohrer et al. 2006; Bannister et al. 2012 amongst others), 302 

reproduction (Roberts et al. 2006 amongst others) and growth (Wilkinson and Vacelet, 1979; 303 

Roberts et al. 2006 amongst others). Additionally, evidence of tissues sloughing in shallow-304 

water sponge Halichondria panicea was found after exposure to increased sedimentation 305 

(Barthel and Wolfrath 1989). Studies on deep-water sponges have confirmed some of the 306 

findings made on shallow-water sponges. Heavy sedimentation on deep-water sponge Geodia 307 

barretti led to a 50% to 86% reduced respiration rate depending on sediment concentration 308 

tested but was associated with a fast recovery after exposure to sediments (Tjensvoll et al. 309 

2013; Kutti et al. 2015). Furthermore, sedimentation caused a rapid arrest in feeding 310 

behaviour and chamber clogging in the two deep-sea glass sponges Rhabdocalyptus dawsoni 311 

and Aphrocallites vastus. However, some aspects in the response of the two glass sponge 312 

species differed: feeding was resumed earlier in A. vastus and sediment level required to halt 313 

feeding was lower for R. dawsoni (Tompkins-Macdonald and Leys, 2008). This shows that 314 

increase in sedimentation have an overall negative impact on deep-sea sponges, with some 315 

species more resilient than others.  316 

 317 

Release of contaminants in the environment during routine operations 318 

 Routine operations during the production phase of an oil field development include the 319 

discharge to the sea of produced water that contains small amounts of hydrocarbons such as 320 

polyaromatic hydrocarbons (PAHs), dissolved metals and naturally occurring radioactive 321 

elements such as radium-226 and radium-228 (Fig. 2) (Neff et al. 2011).  322 



 Although the volume of oil released into the sea in the NE Atlantic through produced 323 

water discharges has overall been reduced following industry effort through decision such as 324 

OSPAR recommendation 2001/1, produced water still remains the main source of 325 

hydrocarbons in the environment from oil and gas industry linked activities (OSPAR 326 

Commission 2010; Neff et al. 2011). Upon release, produced water is believed to be diluted 327 

very rapidly into the ambient seawater (Neff et al. 2011). Therefore, although some PAHs are 328 

persistent compounds in the environment and can be toxic at higher concentration as 329 

discussed in the next section (for accidental releases of hydrocarbons), produced water is 330 

expected to have a very low impact on marine organisms (Neff et al. 2011). However, PAHs 331 

from produced water could have sub-lethal effects on deep-sea sponges. Benthic suspension 332 

feeders such as mussels have been shown to accumulate PAHs when exposed to produced 333 

water (Sundt et al. 2011). Moreover, low concentration of PAHs can be bioaccumulated in 334 

sponges at higher levels than mussels (Negri et al. 2006; Batista et al. 2013; Mahaut et al. 335 

2013; Gentric et al. 2016). Changes in fatty acid content in sponges exposed to PAHs has 336 

also been observed. It has therefore been suggested to use sponges as environmental 337 

bioindicators for PAHs concentration monitoring (Batista et al. 2013). 338 

 Dissolved metals can also be present in produced water including barium, iron, 339 

manganese, mercury and zinc. Shallow-water sponges are known to bioaccumulate zinc 340 

(Gentric et al. 2016). It is consequently possible that deep-sea sponges could also 341 

bioaccumulate metals in their tissue from produced water exposition but no study has been 342 

conducted so far on this subject. Notably, zinc naturally present in the environment has been 343 

shown to be incorporated into sponge spicules (Hendry and Andersen 2013). However, no 344 

studies looking at the impact of metal concentration from anthropogenic sources in sponge 345 

spicules have been conducted so far. 346 

 347 



Decommissioning 348 

Removal of aging offshore infrastructures during decommissioning could lead to an 349 

increase in sedimentation and a release of hydrocarbons and other chemicals into the marine 350 

environment (Fig. 2) (Fowler et al. 2014). Yet targeted disturbance experiments of the drill 351 

cuttings accumulated on the seafloor demonstrate no major effect on the spatial distribution 352 

of cuttings contamination or the biological communities present in the seabed located greater 353 

than 100 m from the original location of the installation (OSPAR Commission 2009b). It has 354 

to be born in mind, however, that the removal of large anchors or installations on the seafloor 355 

will likely cause resuspension of a much larger extent. Intensive water column and sediment 356 

monitoring will be required to assess the effects of the removal of individual or multiple 357 

installations.  358 

As previously stated, no infrastructure decommissioning project has yet taken place 359 

within deep-sea sponge grounds and so potential impacts of decommissioning at individual 360 

level is for the moment unknown. It can only be hypothesized that impacts on deep-sea 361 

sponges associated with high sedimentation rate and hydrocarbon pollution described during 362 

the exploration, development and production phases could also occur during the 363 

decommissioning phase.  364 

 365 

Impacts of accidental hydrocarbon release and dispersants use on deep-sea sponges 366 

 During accidental spills, large amounts of hydrocarbons are released directly into the 367 

marine environment. During oil spills, PAHs are of particular concern when considering 368 

ecotoxicological impacts on organisms present in the vicinity of the spill location (Blackburn 369 

et al. 2014 and references therein). In shallow-water sponges, high concentrations of PAHs 370 

have been shown to disturb sponge larval settlement and development (Cebrian and Uriz 371 

2007; Negri et al. 2016). Effects of dispersants and dispersed oil on larval stages of various 372 



other marine organisms have been investigated but results of higher toxicity associated with 373 

the use of dispersant seem to depend on the organisms considered and the duration of 374 

exposition (Singer et al. 1998; Epstein et al. 2000, Stefansson et al. 2016). In tropical corals, 375 

exposure to dispersed crude oil resulted in increased mortality in larvae of the coral 376 

Stylophora pistillata and a stronger decrease in larvae settlement rate compared to exposure 377 

to crude oil alone (Epstein et al. 2000). Furthermore, exposure to dispersed oil and 378 

dispersants alone has led to a strong health decline (defined by percentage of live polyps and 379 

tissue coverage) in three deep-water coral species from the Gulf of Mexico (DeLeo et al. 380 

2016). To the authors’ knowledge no studies have yet tested the effects of dispersed oil or 381 

dispersants on marine sponges and sponge larvae.  382 

 Long-term impacts of a deep-sea oil spill could be derived from sediment associated 383 

hydrocarbons. It is estimated that 35% of the oil released into the marine environment during 384 

the Braer oil spilled off the Shetland Islands in the northeast Atlantic subsequently ended up 385 

in subtidal sediments (Davies et al. 1997). PAHs and hydrocarbon breakdown is slowed 386 

down in sediments owing to overall anoxic conditions within the sediments (Atlas and Hazen 387 

2011 and references therein). However, benthic organisms can be exposed to sediment 388 

associated PAHs or hydrocarbon via sediment resuspension. Bivalves are able to accumulate 389 

PAHs from the sediment during resuspension episodes (Nandini Menon and Menon 1999). It 390 

has been suggested that deep-sea sponges can derive part of their nutrition from re-suspended 391 

matter (Hogg et al. 2010) and therefore could be impacted by PAH contaminated sediments. 392 

Furthermore, Culbertson and collaborators (2008) showed that short-term and long-term 393 

exposure to 38-year-old residual petroleum associated with sediments led to a decrease in 394 

growth rate, lower health condition and decreased filtration rate in mussels. Dispersants have 395 

also been shown to persist in deep-sea sediments as dispersants were quantified in sediments 396 

collected within deep-sea coral communities 6 months after the Deepwater Horizon spill 397 



(White et al. 2014). This suggests that oil spill can have long term impacts on deep-sea 398 

benthic organisms when hydrocarbon and dispersants enter the sediments, which is of 399 

concern for deep-sea sponges.  400 

 401 

EFFECT ON DEEP-SEA SPONGES AT CELLULAR AND MOLECULAR SCALES 402 

Impacts of offshore oil and gas production activities on deep-sea sponges at a cellular 403 

level  404 

During the production phase of offshore oil field development, the release of drill 405 

muds has been shown to impact deep-sea sponges at a cellular level (Edge et al. 2016). 406 

Barite, one of the major solid components of these drill muds has been shown to decrease 407 

lysosomal membrane stability in the deep-sea sponge G. barretti (Edge et al. 2016).  408 

Hydrocarbon contamination including PAH pollution is also a main concern when 409 

considering cellular impacts of offshore oil and gas activities on sponges. Water 410 

accommodated oil fraction (solution of soluble hydrocarbons in seawater) activates the 411 

Mitogen-Activated Protein Kinase (MAPK) and apoptosis pathways in the sponge Suberites 412 

domuncula (Châtel et al. 2011). The MAPK pathway plays an important role in cellular 413 

response to environmental and oxidative stress (Regoli and Giuliani 2014). Increased DNA 414 

damage was also detected in S. domuncula (Châtel et al. 2011), confirming previous work 415 

conducted by Zahn et al. (1981, 1983) showing exposure to PAH induced DNA damage in 416 

the shallow-water sponge Tethya lyncurium.  417 

Furthermore, the cytochrome P450-dependent monooxygenase system has also been 418 

shown to be involved in the detoxification of PAH benzo-a-pyrene, in two marine sponge 419 

species (Solé and Livingstone 2005).  Lower yields of cytochrome P450 protein were 420 

detected in sponges compared with other phyla (Cnidaria, Mollusca, Annelida, Arthropoda, 421 

Echinodermata and Chordata) but this could result from overall lower metabolic rates (Solé 422 



and Livingstone 2005). Under PAHs contaminated conditions produced in the laboratory, 423 

PAH molecules interact with the aryl hydrocarbon receptor and induce the cytochrome P450 424 

pathway (Regoli and Giuliani 2014). The cytochrome P450 pathway is known to play an 425 

important role in oxidative stress responses (Solé and Livingston 2005), which are induced in 426 

many organisms after exposure to PAHs (Nebert et al. 2000; Puga et al. 2002; Regoli and 427 

Giulani 2014 amongst others). Oxidative stress is a consequence of an imbalance in the 428 

antioxidant system in an organism. Normal aerobic metabolism produces reactive oxygen 429 

species (ROS), which are neutralised by the antioxidant system. Exposure to xenobiotic 430 

compounds can increase the formation of ROS and decrease the antioxidant system’s 431 

functioning. Formation of ROS in turn, downregulates the cytochrome P450, which limits the 432 

organism’s capacity to deal with contaminants such as PAHs (Regoli and Giuliani 2014).The 433 

role of the aryl hydrocarbon receptor in organisms impacted by oil spills was recently 434 

confirmed in a transcriptomic study showing an induction of a large amount of stress 435 

response genes such as the aryl hydrocarbon receptor and the glutathione-S-transferase in 436 

oysters deployed during the Deepwater Horizon oil spill (Jenny et al. 2016). However, to the 437 

authors knowledge, no studies have reported the activation of the aryl hydrocarbon receptor 438 

and cytochrome P450 pathway in deep-sea sponges. 439 

Dispersants themselves have been shown to trigger cellular stress responses in 440 

different organisms. In the commonly used model organism Caenorhabditis elegans 441 

(Nematoda), exposure to dispersant CorexitTM 9500A caused the abnormal expression of 442 

twelve genes, involved in a wide range of biological processes ranging from egg-laying to 443 

neurological functions and oxidative stress (Zhang et al. 2013). However, in the tropical coral 444 

Montastraea franksi, CorexitTM 9527 exposure led to increased expression of genes coding 445 

for P-glycoprotein, heat shock protein 70 and heat shock protein 90 and, to a lesser extent, 446 

proteins involved in other cellular stress responses (Venn et al. 2009). Furthermore, exposure 447 



to dispersants alone as well as dispersants and crude oil lead to an increase in cell membrane 448 

damages in diatoms, which was not observable in diatoms exposed to oil alone (Hook and 449 

Osborn 2012). No studies so far have investigated the impact of dispersants on marine 450 

sponges. 451 

 452 

Impacts of offshore oil and gas production activities on deep-sea sponge associated 453 

micro-organisms 454 

Sponges host highly diverse microbial communities often compared for its 455 

complexity to the bacterial community of the human gut (Hentschel et al. 2012). Although 456 

bacteria generally dominate deep-sea sponge microbial communities, eukaryotic and archaeal 457 

symbionts have also been described. Mainly found in the mesohyl of the sponges these 458 

microbes are metabolically very active and are believed to play important roles in the 459 

nitrogen and carbon metabolism (Li et al. 2014).  Deep-sea sponges are a rich source of 460 

secondary metabolites of great interest as new therapeutic compounds and it is often the 461 

associated microbial communities that synthesises these compounds. Sponges’ secondary 462 

metabolites show properties that include antifouling, antifungal, antibacterial or antiviral 463 

properties and are believed to play a major role in sponge defence against diseases or against 464 

other benthic organisms competing for the same substrata (Sipkema et al. 2005). 465 

The impact of environmental pollution and specifically exposure to hydrocarbons or other 466 

offshore oil and gas extraction activities on the sponge-associated microbial communities are 467 

currently unknown. Studies have investigated the stability of the shallow-water sponge 468 

associated microbial community when exposed to thermal stress, changes in seawater pH or 469 

to high metal concentrations (Webster and Hill. 2001; Webster et al. 2008; Selvin et al. 2009; 470 

Fan et al. 2013; Fang et al. 2013; Tian et al. 2014). However, only a few of these studies 471 



found, under stressed conditions, a shift in the associated microbial community composition 472 

(Webster and Hill. 2001; Webster et al. 2008; Fan et al. 2013; Tian et al. 2014). A change in 473 

associated microbes was also correlated with a decline in overall sponge host health status 474 

characterised by an increase in sponge tissue necrosis and increased expression of genes 475 

linked to cellular oxidative stress (Webster and Hill. 2001; Webster et al. 2008; Fan et al. 476 

2013; Tian et al. 2014). An oil degrading surfactant biosynthesis gene has been isolated from 477 

bacteria associated with the shallow-water sponge Acanthella sp (Anburajan et al. 2015). 478 

However, the capacity of the bacteria to synthesize the surfactant when associated with the 479 

marine sponge and when exposed to crude oil was not investigated (Anburajan et al. 2015). 480 

In the Gulf of Mexico, the deep-sea sponge Myxilla methanophila growing on tubeworms 481 

near cold-seeps was described to be associated with putative oil degrading bacteria after 482 

deep-sequencing of its associated microbial community (Arellano et al. 2013). In this case, it 483 

was hypothesized that the sponge had acquired the symbiont from its environment naturally 484 

rich in hydrocarbons (Arellano et al. 2013). Whether the bacteria played a role in 485 

hydrocarbon detoxification or in sponge nutrition was not be investigated (Arellano et al. 486 

2013). The capacity of deep-sea marine sponges to acquire oil-degrading bacteria after an oil 487 

spill event has not yet been investigated.  488 

 489 

CONCLUSIONS 490 

Oil and gas activities are today taking place in deeper settings and will impact deep-491 

sea ecosystems. Oil and gas production activities impact deep-sea sponges and the habitats 492 

they form at all stages of field development and at community, individual and cellular levels 493 

as summarised in table 2. At community level, physical disturbance and discharge of drill 494 

muds have been shown to decrease diversity and density of organisms associated with deep-495 

sea sponge grounds. At individual level, physical disturbance and increased sedimentation 496 



inhibit the filtration systems of deep-sea sponges, while the discharge of produced water and 497 

drill cuttings could lead to bioaccumulation of hydrocarbons and metals (as shown in 498 

shallow-water sponges). At cellular and molecular levels, discharge of drill muds and 499 

produced water could trigger cellular stress responses as has been shown for shallow-water 500 

sponges exposed to PAH and metal contaminated seawater. Accidental releases of 501 

hydrocarbons and the use of dispersants during oil spill could result in benthic diversity 502 

decrease, individual sponge mortality and larval settlement disruption as well as trigger 503 

oxidative stress. However, most of the possible impacts described in this review have not yet 504 

been studied in deep-sea sponges.  505 

Offshore oil and gas activities are managed by national legislations within the 506 

exclusive economic zones and under United Nations legislations in the high seas. In most 507 

countries, oil companies are required to complete EIAs before starting any new operation 508 

(Budd 1999). EIAs have become a major component of oil and gas industry regulation as 509 

their aim is to identify and manage adverse environmental impacts before they occur by: (1) 510 

screening for possible impacts (2) completing baseline surveys (3) producing Environmental 511 

Statements and (4) leading the decision-making process. The major benefits of EIAs are that 512 

the environment is considered in an early stage of the project and that scientific data are 513 

acquired during the EIA process (Budd 1999). However, despite its widespread use in 514 

offshore activity regulation, EIAs’ project specific approach means that cumulative 515 

environmental impacts owing to the development of several oil fields in the same area cannot 516 

be taken into account (Baker and Jones 2013) and by their nature EIAs have to rely on 517 

existing scientific understanding of ecosystems function. Despite promising advances in 518 

recent years the latter remains poorly developed in deep-water settings including those that 519 

support deep-sea sponge grounds. Strategic Environmental Assessments are therefore now 520 

starting to be adopted by the oil & gas industry (Fidler and Noble 2012). National 521 



jurisdictions apply only to waters within the 200 nm EEZ of coastal states. However, deep-522 

sea sponge grounds occur beyond the EEZ of coastal states.  The United Nations Convention 523 

on the Law of the Sea (UNCLOS) signed in 1972 first enabled the deep-sea floor and High 524 

Seas to be exploited for biological and geological resources and technological improvements 525 

over time have made the deep-sea accessible (Ramirez-Llodra et al. 2011). In 2008 526 

Ecologically or Biologically Significant Areas (EBSAs) were defined by the United Nations 527 

Convention on Biological Diversity to help international organisations protect key marine 528 

environments. Following this, 8 EBSAs were proposed in September 2011 in the northeast 529 

Atlantic to protect cold-water corals and sponge grounds (Weaver and Johnson 2012) but 530 

have not been subsequently developed. Since 2009, deep-sea sponge grounds are considered 531 

by the UN Food & Agriculture Organisation as Vulnerable Marine Ecosystems, as defined by 532 

the General Assembly resolution 61/105, calling states to restrict destructive fishing 533 

practices. Although VME designations are used to control the adverse effect of fishing on 534 

marine species, it brings organisms with specific conservation needs to light and is therefore 535 

also useful in the context of offshore oil and gas industry activities. In addition to EBSA and 536 

VME designations, the development of Marine Protected Areas (MPAs) and design of 537 

connected networks have gained momentum during the early 2000 under the OSPAR 538 

convention (Howell 2010; O’Leary et al. 2012). Indeed, deep-sea sponges entered the 539 

OSPAR Threatened and/or Declining Species and Habitat list in 2008. Criteria for the 540 

designation of MPAs were determined by the World Conservation Union (IUCN) in 1994 541 

and include ecological, scientific and economic importance (Howell 2010).  542 

Lack of scientific data on the effects of deep-sea hydrocarbon exploitation activities 543 

on deep-sea benthic organisms such as sponges is limiting the efficiency of national and 544 

international management and monitoring regulations. Collaborative initiatives between 545 

academic and industry partners provide a constructive way to close the current knowledge 546 



gaps. The access to and sharing of environmental data between industry and academia should 547 

also be encouraged (Murray et al. IN PREP). Furthermore, the increasing use of new 548 

technologies and methodologies such as Autonomous Underwater Vehicles and predictive 549 

habitat modelling to survey and map large areas of the seabed will offer new opportunities to 550 

increase our understanding deep-sea benthic environments. As oil and gas production 551 

activities already occur within deep-sea sponge grounds, further collaboration between 552 

industry and research partners to better monitor the effect of oil and gas activities on deep-sea 553 

sponge and deep-sea sponge grounds are urgently needed. 554 
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Figure 1: Example of deep-sea sponges and of the habitats they form. (A, B) Example of 868 

deep-sea sponge morphotypes from the Faroe-Shetland Channel. (C) Carnivorous sponges of 869 

the family Cladhorizidae constitute a deep-sea ecological oddity. (D) Present in high 870 

abundance, deep-sea sponges can form sponge grounds as seen here at 1890m depth from 871 

Orphan Knoll, NW Atlantic. (E to H) Deep-sea sponges and sponge grounds provide habitats 872 

for various benthic organisms (I and J) Sponges are impacted by offshore oil and gas 873 

activities amongst other through increased sedimentation. Photo credits: (D) Fisheries & 874 

Oceans, Canada (DFO). (G to I) SERPENT Project, National Oceanography Centre, 875 

Southampton UK. 876 
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Figure 2: Flow chart of oil fields development process divided into 4 phases and main 878 

activities associated with each phase. 879 



Figure 3: Field data on the initial impact and recovery from oil drilling disturbance in 880 

deep-sea sponges in the Faroe-Shetland Channel (FSC), at the Laggan site (Jones et al. 881 

2012), and Norwegian Sea (NS), at the Morvin site (Gates and Jones 2012).  882 

The density of all megafaunal sponges is shown with distance from drilling activity at 883 

different time points (colours) after drilling (units years [yr] and days [d]). Pre indicates 884 

densities prior to drilling activity.885 



Table 1: VME and EBSA criteria and their applicability to sponge grounds as 886 

respectively defined by the UN FAO and the UN CBD. 887 

Designation Criteria 
Characteristics of deep-sea sponges and/or 

sponge grounds fulfilling criteria 

VME 

Uniqueness or rarity 

Deep-sea sponge grounds are not rare but occur in 

specific and limited areas where favourable 

abiotic conditions are present 

Functional 

significance of 

habitats 

Deep-sea sponges increase physical heterogeneity 

of benthic ecosystems 

Fragility 

Deep-sea sponges are extremely vulnerable to 

physical damage by trawling or other 

anthropogenic activities 

Life history traits 

making recovery 

difficult 

Deep-sea sponges are considered as slow-growing, 

long lived organisms and their reproduction cycles 

are largely unknown 

Structural complexity 

Deep-sea sponge grounds give three-

dimensionality to seabed increasing the number of 

available microhabitats 

EBSA 

Uniqueness or rarity 

Deep-sea sponge grounds are not rare but occur in 

specific and limited areas where favourable 

abiotic conditions are present 

Special importance 

for like history stages 

of species 

Deep-sea sponge grounds constitute nursery 

grounds for fish and invertebrate species 

Importance for 

threatened, 

endangered or 

declining species 

and/or habitats 

Deep-sea sponge grounds constitute nursery 

grounds for threaten species such economically 

important fishes 

Vulnerability, 

fragility, sensitivity 

or slow recovery 

Deep-sea sponges are considered as slow-growing, 

long lived organisms, making them both vulnerable 

to anthropogenic activities and slow to recover 

Biological 

productivity 

Deep-sea sponges play important roles in the 

biogeochemical cycling and the habitat they create 

support diverse benthic ecosystems 

Biological diversity 
Deep-sea sponge grounds provide a habitat to 

diverse benthic vertebrate and invertebrate species 

Naturalness 

Anthropogenic activities such as oil and gas 

exploitation and mining are impacting deep-sea 

sponge grounds 

888 



Table 2: Overview of major impacts of offshore oil and gas activities on deep-sea sponges and deep-sea sponge grounds at community, 889 

individual, cellular and molecular levels and throughout oil field development. Impacts described in deep-sea sponge species are highlighted 890 

in green. Impacts described in shallow-water sponge species but not yet confirmed for deeper species are highlighted in orange. Impacts 891 

described in other benthic organisms but not yet investigated in any sponge species are highlighted in red to emphasize current knowledge gaps.  892 

    Exploration and appraisal 
Field 

Development 
Production Decommissioning Deep-sea oil spill 

Community 

level 

Main 

concern 

Physical disturbance of seabed and increase 

sedimentation 

Discharge of drill muds and 

cuttings 
Removal of structure 

Exposure to high hydrocarbons and 

dispersant concentrations 

Impacts 

    
Benthic habitat 

destruction. 

Changes in benthic community abundance, 

age structure and trophic interactions. 

        

Diminished benthic community. 
Benthic community 

diversity/abundance decrease. 
    

Individual 

Level 

Main 

concern 

Seismic survey and increase 

sedimentation 

Increase 

sedimentation 
Discharge of produced water 

Release of chemical 

contaminants 

Exposure to high hydrocarbons and 

dispersant concentrations 

Impacts 

Larval development delay 

and malformations. 
        

Health decline, hydrocarbon 

bioaccumulation. 

Changed respiration rate and reproduction 

capacities. Decreased growth rate. 
Bioaccumulation of PAH and heavy metals. 

Larval settlement disturbance. Hydrocarbon 

bioaccumulation. 

Paused filtration.       

Cellular & 

Molecular 

levels 

Main 

concern 
Discharge of drill muds and exposure to chemicals via release of produced water 

Exposure to high hydrocarbons and 

dispersant concentrations 

Impacts 

Decrease immune system function. Decreased immune system function. 

Activation of MAPKs and cytochrome P450 pathways. Oxidative stress. 
Activation of MAPKs and cytochrome P450 

pathways. Oxydative stress. 

Decrease of lysosomal membrane stability.   
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