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Abstract: 

Tree-grass savannas are a widespread biome and are highly valued for 
their ecosystem services. There is a need to understand the long-term 
dynamics and meteorological drivers of both tree and grass productivity 

separately in order to successfully manage savannas in the future. This 
study investigated the inter-annual variability (IAV) of tree and grass gross 
primary productivity (GPP) by combining a long-term (15 year) eddy 
covariance flux record and model estimates of tree and grass GPP inferred 
from satellite remote sensing. On a seasonal basis, the primary drivers of 
tree and grass GPP were solar radiation in the wet season and soil moisture 
in the dry season. On an inter-annual basis, soil water availability had a 
positive effect on tree GPP and a negative effect on grass GPP. No linear 
trend in the tree-grass GPP ratio was observed over the 15 year study 
period. However, the tree-grass GPP ratio was correlated with modes of 
climate variability, namely the Southern Oscillation Index. This study has 

provided insight into the long-term contributions of trees and grasses to 
savanna productivity, along with their respective meteorological 
determinants of IAV.  
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Abstract 34 

Tree-grass savannas are a widespread biome and are highly valued for their ecosystem 35 

services. There is a need to understand the long-term dynamics and meteorological drivers of 36 

both tree and grass productivity separately in order to successfully manage savannas in the 37 

future. This study investigated the inter-annual variability (IAV) of tree and grass gross 38 

primary productivity (GPP) by combining a long-term (15 year) eddy covariance flux record 39 

and model estimates of tree and grass GPP inferred from satellite remote sensing. On a 40 

seasonal basis, the primary drivers of tree and grass GPP were solar radiation in the wet 41 

season and soil moisture in the dry season. On an inter-annual basis, soil water availability 42 

had a positive effect on tree GPP and a negative effect on grass GPP. No linear trend in the 43 

tree-grass GPP ratio was observed over the 15 year study period. However, the tree-grass 44 

GPP ratio was correlated with modes of climate variability, namely the Southern Oscillation 45 

Index. This study has provided insight into the long-term contributions of trees and grasses to 46 

savanna productivity, along with their respective meteorological determinants of IAV.  47 

 48 
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Introduction  49 

Savannas are a widespread biome characterised by a coexistence of trees and grasses that 50 

cover approximately 20 % of the global land surface (Scholes & Archer, 1997). They inhabit 51 

the continents of Australia, Africa, the Americas, Europe and Asia and are a vital source of 52 

food, timber products and income for a quarter of the world’s human population (Mistry, 53 

2001; Scholes & Archer, 1997; Shackleton et al., 2002). Savannas are also a key biome for 54 

terrestrial atmospheric carbon uptake via gross primary productivity (GPP), accounting for 55 

some 25 % of global GPP each year (Beer et al., 2010; Grace, José, Meir, Miranda, & Montes, 56 

2006). However, plant respiration consumes approximately half of GPP, while heterotrophic 57 

respiration contributes to further carbon release to the atmosphere (Bonan, 2008; Chapin III, 58 

Matson, & Vitousek, 2011). Over longer timescales, disturbances such as grazing, land cover 59 

change (Bristow et al., 2016; Hutley et al., 2013; Hutley & Beringer, 2010), and fire 60 

(Beringer et al., 2015; Bond & Keeley, 2005; Bowman et al., 2010; Shi, Matsunaga, Saito, 61 

Yamaguchi, & Chen, 2015; Van Der Werf et al., 2010) return a portion of the sequestered 62 

carbon from GPP back to the atmosphere. Taking these factors into account, savanna 63 

ecosystems are still an important terrestrial sink of atmospheric carbon (0.5 – 2.0 Gt C y-1  64 

globally; Grace, José, Meir, Miranda, & Montes, (2006); Scurlock & Hall, (1998)) and 65 

explain a large portion of inter-annual variability in the global land carbon sink (Ahlström et 66 

al., 2015; Poulter et al., 2014). Nevertheless, the seasonal, annual and inter-annual 67 

partitioning of this productivity between trees and grasses is still poorly understood for 68 

savannas (Moore et al., 2016; Whitley et al., 2011), which limits our ability to make informed 69 

decisions about savanna management into the future (Dyer & Smith, 2003; Scheiter, Higgins, 70 

Beringer, & Hutley, 2015; Shackleton et al., 2002; Walsh, Russell-Smith, & Cowley, 2014).    71 

As the climate changes into the 21st century, there is uncertainty about how savanna 72 

ecosystems will respond (Scheiter & Higgins, 2009; Scheiter et al., 2015). Global climate 73 
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projections anticipate an increase in temperature and rainfall amount for most savanna 74 

regions as atmospheric carbon dioxide (CO2) continues to rise (van Oldenborgh et al., 2013). 75 

Such  changes to rainfall regimes will directly affect savannas due to the pivotal role of 76 

moisture availability as a driver of productivity (Beringer et al., 2011; Kanniah, Beringer, & 77 

Hutley, 2010, 2011; Whitley et al., 2011). Rising CO2 poses an additional threat to savanna 78 

ecosystems from the effects of carbon fertilisation on savanna tree-grass structure. Tropical 79 

savanna grasses use a different photosynthetic pathway (C4) when compared to the trees (C3), 80 

which concentrates CO2 at the photosynthetic reaction centres and provides grasses with a 81 

photosynthetic advantage over trees under current atmospheric conditions (Beerling & 82 

Osborne, 2006; Sage, 2004).  Under higher atmospheric CO2 tree productivity will be less 83 

limited by CO2 availability, so they may experience a competitive advantage over the grasses 84 

as a result (Higgins & Scheiter, 2012). This phenomenon, where trees outcompete grasses, 85 

has been termed woody thickening, which is defined for savannas as an increase in woody 86 

standing biomass (Macinnis-Ng, Zeppel, Williams, & Eamus, 2011) and is likely to 87 

accelerate in coming decades (Browning, Archer, Asner, McClaran, & Wessman, 2008; Field, 88 

Lobell, Peters, & Chiariello, 2007; Scheiter & Higgins, 2009; Scheiter et al., 2015). 89 

Evergreen vegetation that persists year round will receive the greatest advantage from this 90 

CO2 fertilisation effect (Donohue, McVicar, & Roderick, 2009), particularly in seasonally 91 

water limited and arid environments (Donohue, Roderick, McVicar, & Farquhar, 2013). 92 

Dynamic vegetation modelling in African (Scheiter & Higgins, 2009) and Australian 93 

(Scheiter et al., 2015) savannas has attributed increased atmospheric CO2 and fire suppression 94 

as the primary drivers of this woody thickening.  95 

To determine how woody thickening might change savanna tree-grass dynamics in the future, 96 

we need an understanding of how the trees and grasses have interacted in the past. We know 97 

that tree productivity declines from the wet to dry season in response to declining plant 98 
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available moisture and the resultant reduction in leaf area (Cernusak, Hutley, Beringer, 99 

Holtum, & Turner, 2011; Eamus, Hutley, & O’Grady, 2001; Eamus, Myers, Duff, & 100 

Williams, 1999; Eamus & Prior, 2001). Fire is also an important regulator of both ecosystem 101 

productivity (Beringer et al., 2003; Beringer et al., 2015; Beringer, Hutley, Tapper, & 102 

Cernusak, 2007) and the biomass proportion of trees to grasses. Fire is fuelled by dead grassy 103 

biomass and supresses juvenile woody recruitment to the overstory (Murphy, Russell-Smith, 104 

& Prior, 2010; Prior et al., 2006; Werner & Prior, 2013). Over longer timescales, macro-scale 105 

cyclical climate modes such as El Niño/La Niña, monsoonal systems and cyclones influence 106 

the amount of rainfall received in savanna regions (Hutley et al., 2013; Rogers & Beringer, 107 

2017), which in turn has an effect on the productivity and tree-grass biomass of savanna 108 

ecosystems. Recent work from Moore et al., (2016) presents one of the first attempts at 109 

quantifying the relative contributions of productivity between trees and grasses using the 110 

eddy covariance technique. This study showed that in an Australian savanna, productivity 111 

was driven by both a strong seasonal input from the grasses and a comparatively consistent 112 

input from the trees. A model-based study at the same site as used by Moore et al., (2016), 113 

showed the importance of light limitation on tree-grass productivity (Whitley et al., 2011). 114 

While these two studies demonstrated the interaction of trees and grasses within the savanna 115 

ecosystem, both identified the need for longer term studies to explore the productivity 116 

dynamics of trees and grasses in more detail. In support of this, recent work from Ma, 117 

Baldocchi, Wolf, & Verfaillie, (2016) indicated that an ecosystem’s carbon balance can 118 

respond slowly to climatological forcing, highlighting the need for more long term studies 119 

that explore such dynamics.   120 

The combination of in situ monitoring and satellite remote sensing provides the tools 121 

necessary for establishing long term research studies that explore productivity dynamics 122 

within savanna ecosystems.  In recent years, techniques have been developed using satellite 123 
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data to isolate tree and grass fractions in mixed ecosystems (Donohue et al., 2014; Zhou, Hill, 124 

Sun, & Schaaf, 2016); with time-series available from 2001 (i.e. MODerate resolution 125 

Imaging Spectroradiometer (MODIS)). Additionally, ecosystem monitoring at the Howard 126 

Springs savanna research site in Australia began in 1997 (Eamus, Hutley, & O’Grady, 2001) 127 

and the site now forms part of the Australian and New Zealand flux network (OzFlux), with 128 

continuous monitoring of fluxes since 2001 (Beringer et al., 2016). The continuous flux 129 

dataset, coupled with MODIS data, provides 15 years of information to explore the 130 

magnitude and underlying meteorological variables responsible for inter-annual variability in 131 

tree and grass productivity. Using this 15-year data set, we addressed the following research 132 

questions; (i) what are the most important meteorological factors that govern long-term 133 

productivity dynamics of trees and grasses in this savanna?; (ii) Is there any link between 134 

macro-scale climate modes and tree-grass GPP at our site?; and (iii) Can we detect woody 135 

thickening at our site? Understanding the importance of climatological factors for savanna 136 

tree-grass structure and productivity will contribute towards improvement of predictions of 137 

the impacts of climate change on this key global ecosystem.    138 

 139 

Methods 140 

Study site 141 

The Howard Springs OzFlux and Fluxnet (AU-How) research site was used for this study, 142 

which is a mesic tropical savanna in the Northern Territory, Australia. Howard Springs (Fig. 143 

1; c), and the wider Northern Territory region (Fig. 1; a & b), is classified as mixed ‘savanna’ 144 

and ‘woody savanna’ by the MODIS land cover product (MCD12Q1) that uses the 145 

International Geosphere-Biosphere Program (IGBP) defined land cover types (Friedl et al., 146 

2002). The tree overstory comprises mostly Eucalyptus miniata and E. tetrodonta, with lesser 147 

abundant semi-, brevi- and fully deciduous species throughout, including Terminalia 148 
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ferdinandiana and Erythrophleum chlorostachys (Hutley, Beringer, Isaac, Hacker, & 149 

Cernusak, 2011; Williams, Myers, Muller, Duff, & Eamus, 1997). The understory consists 150 

mostly of C4 grasses, including the annual Sorghum intrans and the perennials Heteropogon 151 

triticeous and S. plumosum, but also woody species including Cycas armstrongii and juvenile 152 

overstory species (Moore et al., 2016). The rainy season months from mid-October to mid-153 

April account for 90-95 % of Howard Springs’ mean annual rainfall of 1732 (± 44 SE, from 154 

1941-2014) mm, (Australian Bureau of Meteorology (BoM), station ID: 014015, 155 

www.bom.gov.au). Mean daily air temperature (from 1941-2014) is very consistent 156 

throughout the year, with the monthly maxima ranging between 30.6 and 33.3 ˚C and minima 157 

between 19.3 and 25.3 ˚C (BoM, station ID: 014015, www.bom.gov.au). Soils in the region 158 

are weathered and nutrient poor red Kandosols (Isbell, 1996). Fire frequently occurs across 159 

the region, with recurrence rates between 1-5 years (Beringer et al., 2015; Jeremy Russell-160 

Smith & Yates, 2007) and on longer timescales, cyclone activity also causes large 161 

disturbance (Hutley et al., 2013; Hutley & Beringer, 2010).  162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 
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 171 

 172 

Figure 1: MODIS Land Cover Product (MCD12Q1) using the International Geosphere-173 

Biosphere Program (IGBP) classification system for a) the Northern Territory in 174 

Australia, b) the northern-west region of the northern territory and c) the area directly 175 

surrounding the Howard Springs OzFlux tower, with individual pixel resolution of 176 

500 m (produced in ArcMap v10.1 using MODIS Land Cover data from (Gibson, 177 

2015).   178 

 179 

Gross primary productivity from flux towers 180 

Eddy covariance flux towers were used in this study to estimate total ecosystem GPP, and its 181 

overstory (tree) and understory (mostly grass) components, from measurements of net 182 

ecosystem exchange (NEE). A flux tower at Howard Springs has been in continuous 183 

operation since 2001 (Beringer et al., 2016; Eamus, Hutley, & O’Grady, 2001). In September 184 

2012, an understory flux tower was installed to measure understory fluxes in conjunction 185 

with the ecosystem tower (Moore et al., 2016). The understory tower was installed 10 m to 186 

the west of the main ecosystem tower and recorded a representative footprint of the 187 

understory fluxes within that of the main tower. This arrangement of total ecosystem and 188 

understory measurements allowed for the separation of the overstory and understory carbon 189 

fluxes. The understory tower has been extensively validated by Moore et al., (2016), where 190 

details regarding the processing, quality assurance and quality control (QA/QC) of the flux 191 

data, as well as the partitioning of net ecosystem exchange (NEE) into respiration and GPP, 192 

and estimates of flux uncertainty can be found.  193 
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In brief, the principal eddy covariance instruments used in this study were an infrared gas 194 

analyser (LI-7500, LI-COR Biosciences, Lincoln, NE) and a three dimensional sonic 195 

anemometer (CSAT3, Campbell Scientific, Logan, UT). Both instruments measured at a rate 196 

of 10 Hz and were averaged to 30-minute covariances of vertical wind velocity and scalars of 197 

carbon, water and heat between the land surface and the atmosphere. In addition, 198 

measurements of soil heat flux (HFT3, Campbell Scientific, Logan, UT), temperature (TCAV, 199 

Campbell Scientific, Logan, UT) and moisture content (CS616, Campbell Scientific, Logan, 200 

UT) were made along with net/short/long wave radiation (CNR4, Kipp and Zonen, Delft, NL), 201 

air temperature and humidity (HMP45A, Vaisala, Vantaa, FI) and precipitation (TB3, 202 

Hydrological Services, NSW, AU) on 30-minute averages.  203 

The raw flux data were QA/QC’d to level 3 (L3) using the OzFluxQC (v2.9.4) standard 204 

processing scripts (Isaac et al., 2017). Energy balance closure for the ecosystem tower 0.89 205 

with an r2 of 0.92 determined for daily data as per Leuning, van Gorsel, Massman, & Isaac, 206 

(2012). We did not calculate energy balance closure for the understory tower due to the 207 

difficulty in obtaining an accurate net radiation estimate. Instead, a co-spectral analysis was 208 

performed on 10 Hz understory data to ensure the tower recorded turbulent fluxes during the 209 

day (Moore et al., 2016). To gap fill the L3 flux data and partition NEE into respiration and 210 

GPP, the Dynamic Integrated Gap filling and partitioning for OzFlux (DINGO) was used 211 

(Beringer, Mchugh, Hutley, Isaac, & Kljun, 2017). This process was performed on 3 years of 212 

understory data (2012-2015) and 15 years of ecosystem data (2001-2015). Once NEE was 213 

gap-filled, model and random error was calculated based on McHugh et al. (2017), revealing 214 

an error of 21.2 g C m-2 y-1 (4 % of NEE) for ecosystem and 25.8 g C m-2 y-1 (3.5 % of NEE) 215 

for understory (Moore et al., 2016).  216 

 217 
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Modelling tree and grass GPP 218 

To provide an estimate of tree and grass GPP over the past 15 years, we used the DIFFUSE 219 

model described by Donohue et al., (2014), which evaluates the fraction of tree and grass 220 

components based on their absorption of photosynthetically active radiation (PAR). The 221 

DIFFUSE model is formulated on the basis of Monteith's (1972) light use efficiency (LUE) 222 

model, estimating photosynthesis as a product of light absorbed (i.e. fraction of absorbed 223 

photosynthetically active radiation; APAR) along with the efficiency of its use (LUE, 224 

Equation 1): 225 

��� = �	 × ��		 × 
���	 × 	��                                                                            Equation 1 226 

where fPAR refers to the fraction of PAR absorbed by an ecosystem, Fsd is shortwave 227 

radiation (J m-2 d-1) and C is a constant that converts shortwave radiation into PAR (C ≈ 2.3 x 228 

10-6 mol J-1). fPAR was calculated from the MODIS normalised difference vegetation index 229 

(NDVI) product (MOD13Q1) following Donohue et al., (2014). Fsd was calculated using 230 

meteorological grids of radiation at 0.05˚ resolution (downscaled to 250 m) and shuttle radar 231 

topographic mission (SRTM) elevation data at 1 s resolution to account for the effects of 232 

topography on Fsd. Donohue, McVicar, & Roderick, (2010) provide a detailed explanation of 233 

Fsd calculation. The DIFFUSE model estimates LUE as a function of maximum 234 

photosynthesis under direct radiation (i.e. Ax) and the diffuse (Df) fraction of total incoming 235 

radiation. Df varies depending on sky conditions from 1.0 under a fully overcast sky to 0.2 236 

under clear sky conditions (Roderick, 1999). Taking this into account, the DIFFUSE model 237 

estimates LUE as (Equation 2): 238 

�� = 0.024�� + 0.00061��                                                                                    Equation 239 

2 240 
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where Ax is the maximum rate of photosynthesis at the top of a canopy (µmol CO2 m
-2 s-1) 241 

and the two constants (0.024 is unitless, 0.0061 has units of µmol PAR m-2 s-1) are calculated 242 

from empirical observations of solar radiation across Australia (Roderick, 1999). The 243 

DIFFUSE model was parametrised at the continental scale for Australia using satellite remote 244 

sensing data (primarily from MODIS) and was validated against 12 OzFlux monitoring sites 245 

(Donohue et al., 2014). Equations 1 and 2 form the basis of the DIFFUSE model that 246 

provides data output in monthly resolution. Further information about DIFFUSE can be 247 

found in Donohue et al., (2014).  248 

It should be noted that there may be some small differences between DIFFUSE and flux 249 

tower estimates because DIFFUSE evaluates the grass (and tree) components, whereas the 250 

flux tower measures the understory (grass plus some small shrubs). We have previously 251 

shown that in the savanna understory, grasses are the dominant vegetation during the wet 252 

season, with fire-suppressed saplings of the dominant woody tree and shrub species 253 

accounting for a modest fraction (~18 %) of annual GPP (Moore et al., 2016;, 2017). This 254 

contribution is particularly evident in the dry season when the senesced grasses do not 255 

contribute to GPP (Moore et al., 2016, 2017). The flux tower GPP estimates from the 256 

understory include this juvenile woody component, whereas the DIFFUSE model estimates 257 

were of C3 (i.e. tree) and C4 (i.e. grass) contributions. In addition, DIFFUSE was calculated 258 

from MODIS indices, whose temporal resolution is coarser than that of the flux towers. 259 

Therefore, we do not expect them to completely agree. From herein, we use tree and grass 260 

GPP to refer to the DIFFUSE model estimates and overstory and understory to refer to the 261 

flux tower estimates. 262 

Despite the model-flux tower differences, the DIFFUSE grass estimates did capture the 263 

seasonality of the flux tower understory quite well, except that in preliminary simulations a 264 

model lag existed during the transition from wet to dry season (i.e. March to May). We 265 
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suspected this was due to the phenology of the C4 annual grasses that dominate understory 266 

biomass not being fully captured by the DIFFUSE model. However, if it is assumed that the 267 

foliage cover of evergreen (or perennial) vegetation is reasonably invariant across seasons 268 

and that of annual (and ephemeral) vegetation is highly variable, the contribution of these two 269 

components to total foliage cover can be approximated. Donohue, McVicar, & Roderick 270 

(2009) developed such a method using a moving minimum approach. Due to the almost 271 

complete absence of deciduous vegetation in Australia, this approach has been shown to 272 

provide a reliable estimate of tree and grass foliage cover (Gill, Armston, Phinn, & Pailthorpe, 273 

2006). Here, instead of applying this splitting method to foliage cover and using tree and 274 

grass cover to produce separate DIFFUSE-based estimates of tree and grass, we calculated 275 

ecosystem GPP using the DIFFUSE model and then applied the Donohue, McVicar, & 276 

Roderick, (2009) splitting algorithm to produce tree and grass GPP. This approach improved 277 

the ability of the DIFFUSE model to capture the seasonal dynamics of the understory flux 278 

tower (Figure 2) and these results are used in the following analyses. Tree GPP was then 279 

calculated as the difference between flux tower ecosystem GPP and DIFFUSE grass GPP as 280 

(Equation 3): 281 

GPPTree = GPPEco – GPPGrass                                                                                        Equation 282 

3 283 

where GPPEco is the flux tower ecosystem GPP estimate and GPPGrass is the DIFFUSE model 284 

GPP estimate. This method provided the closest fit with tree GPP estimates from the flux 285 

tower.  286 

 287 
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Determining the drivers of tree and grass productivity  288 

Savanna ecosystem GPP varies over distinct time scales in response to meteorological and 289 

climatological conditions (Beringer et al., 2011; Kanniah, Beringer, & Hutley, 2010). Once 290 

we separated long-term ecosystem GPP into tree and grass estimates, we calculated anomaly 291 

values based on data grouped by water-year (i.e. July-June), to ensure the anomalies 292 

represented complete growing seasons. Tree and grass GPP anomalies, calculated as a change 293 

in yearly GPP (g C m-2 y-1) from the 14 water-year mean, were compared against anomaly 294 

values using linear regressions for six primary meteorological drivers that are known to 295 

influence GPP (Kanniah et al., 2010). These drivers were also measured by the flux tower, 296 

and included solar radiation (Fsd, MJ m-2 y-1), precipitation (Precip, mm y-1), air temperature 297 

(Ta, ᵒC), vapour pressure deficit (VPD, kPa), soil water storage (Sws, m3 m-3 y-1) and rainy 298 

season length (RS, number of days per year).  299 

To explore seasonality in the meteorological drivers of tree and grass GPP for each month of 300 

the year, we used the Random Forest machine learning technique described by Breiman, 301 

(2001) , and implemented using the Python Scikit-Learn module (Pedregosa et al., 2011). The 302 

Random Forest merges multiple mathematical decision trees (n = 1000) to split a population 303 

of dependent variables (i.e. GPP) as a function of a number of independent variables (i.e. 304 

meteorology). Each input variable was allocated an ‘importance’ value that was based on a 305 

tree-wise comparison of the explanatory power of the variables of each tree. Relative 306 

importance ranges from 0 – 1, with 0 indicating no importance and 1 indicating sole 307 

importance (Breiman, 2001; Exbrayat & Williams, 2015; López-Blanco et al., 2017). We 308 

tested the meteorological variables of Fsd, Precip, Ta, VPD and Sws on daily averaged data 309 

from 2001 to 2015 using Random Forests, and then grouped this data by month to investigate 310 

seasonal variability and IAV. Initial analysis used soil moisture at 10 cm, as this was 311 

available throughout the entire 15-year record. This surface Sws at 10 cm is quickly reduced 312 
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below field capacity in the dry season (Duff et al., 1997; Moore et al., 2016; Walker & 313 

Langridge, 1997). To test the relative importance of deeper Sws for productivity, we added a 314 

100 cm Sws measurement over a reduced time period (2008 to 2015), to account for 315 

installation of the 100 cm sensor at the beginning of 2008. Given the shorter temporal length 316 

of the 100 cm Sws time series, we did not use it in our IAV analysis.  317 

Lastly, to explore long-term trends in the productivity of the trees and grasses, we calculated 318 

a simple tree-grass GPP ratio (i.e. tree/grass) and plotted its annual anomaly values. Changes 319 

in the tree-grass GPP ratio and anomaly values over time can provide an indication of the 320 

potential for woody thickening at the site over the last 15 years. The anomaly values were 321 

also compared against four key climate indices of climate variability that have been found to 322 

perform well at describing long-term annual rainfall patterns at the Howard Springs site 323 

(Rogers & Beringer, 2017). These four indices were the Southern Oscillation Index (SOI), the 324 

Tasman Sea Index (TSI), the Indonesia Index (II) and the Australian Monsoon Index 325 

(AUSMI). The SOI is a measure of the monthly mean sea level pressure difference between 326 

Darwin and Tahiti and is commonly used as an indicator of El Niño and La Niña events 327 

(Nicholls, 1991; Nicholls, 1989; Suppiah & Hennessy, 1996). The TSI and II are calculated 328 

from sea surface temperatures, with the TSI from a region off the east coast of Australia (150 329 

ᵒE to 160 ᵒE and 40 ᵒS to 30 ᵒS, (Murphy & Timbal, 2008)) and the II from a region 330 

surrounding Indonesia (120 ᵒE to 130 ᵒE and 0 ᵒN to 10 ᵒS, (Nicholls, 1989; Schepen, Wang, 331 

& Robertson, 2012)). The AUSMI provides an indication of the occurrence of the summer 332 

monsoon that is a primary mechanism for delivering rainfall in northern Australia (Sturman 333 

& Tapper, 2006). It is calculated from zonal wind velocity at 850 mb over a region of 334 

Indonesia and north western Australia (110 ᵒE to 130 ᵒE and 5 ᵒS to 15 ᵒS, (Kajikawa, Wang, 335 

& Yang, 2010)). Annual (i.e. water-year) anomaly values were calculated for each index 336 

based on daily (TSI and II), monthly (SOI), or seasonal (AUSMI) data availability, which 337 

Page 15 of 49 Global Change Biology



For Review Only

15 

 

were regressed against the annual tree-grass anomaly values to assess their correlations. 338 

Correlations were expressed as significant based on p-values <0.05.  339 

 340 

Results  341 

Long-term tree and grass GPP dynamics 342 

To partition long-term ecosystem GPP at Howard Springs into tree and grass contributions, 343 

we first validated DIFFUSE model estimates of GPP against flux tower estimates for the 15-344 

year ecosystem record and for the three years the understory tower was in operation (2012-345 

2015). The DIFFUSE model performed well at capturing ecosystem flux tower seasonality in 346 

GPP over the 15-year study period (r2 = 0.83; Figure 2, a), as well as the shorter 3-year subset 347 

(r2 = 0.81; Figure 2, b). DIFFUSE also captured the seasonality of the grasses well, but 348 

slightly underestimated understory GPP in the dry season (r2 = 0.82; Fig. 2, c). In contrast to 349 

the grasses, DIFFUSE performed less well at capturing the timing of tree GPP (r2 = 0.39; Fig. 350 

2, d). Given the overall strong fit between DIFFUSE and flux tower ecosystem GPP estimates, 351 

plus the strong fit of DIFFUSE with understory flux tower GPP, we used the grass DIFFUSE 352 

model to predict grass productivity over the 15-year ecosystem flux time-series.   353 

 354 
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 355 

Figure 2: Time series and regression comparison of Howard Springs flux tower and 356 

DIFFUSE model estimates of gross primary productivity (GPP, g C m-2 d-1) for (a) 15 357 

years (2001-2015) of ecosystem fluxes, and 3 years (September 2012 to June 2015) of 358 

fluxes for (b) ecosystem, (c) grass and (d) tree. Regression plots show the line of best 359 

fit (solid line), the 1:1 line (dashed line), the relative predictive error (RPE, %), the 360 

root mean square error (g C m-2 d-1) and the r2 fit.  361 

 362 

Using the DIFFUSE model grass GPP fraction, we then partitioned the long-term ecosystem 363 

GPP tower estimate into monthly tree and grass contributions (Fig. 3). On an annual basis, 364 

the grasses contributed an average of 41 % to ecosystem GPP, with a range from as low as 365 

33 % in some years (i.e. 2010) and up to 50 % in other years (i.e. 2002 to 2003 and 2015, Fig. 366 

3).  367 
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 368 

Figure 3: Long-term (15 year) ecosystem (Eco) gross primary productivity (GPP) flux tower 369 

time series, the partitioned (modelled) tree and grass GPP, plus rainfall, for the 370 

Howard Springs savanna site. Data are shown as monthly sums.  371 

 372 

Seasonal and inter-annual drivers of tree and grass productivity  373 

To analyse what meteorological variables are most important for seasonality of GPP, and if 374 

they differed between the trees and grasses, we used the Random Forest technique. This 375 

approach revealed that solar radiation (Fsd) was, not surprisingly, the most important 376 

(qualitative indication of co-variation) variable for determining wet season productivity for 377 

both the trees and grasses (Fig. 4; a & b). In contrast to the wet season, soil water availability 378 

(Sws) was the most important driver of tree and grass productivity in the dry season (Fig. 4; a 379 

& b). At the onset of the dry season (Apr-May), the upper soil layers have the highest 380 

importance for productivity, which switches to deeper soil moisture as the dry season 381 
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progresses (Fig. 4; e & f). This result is also reflected in the inter-annual analysis, showing 382 

that overall, Sws was the most important determinant of tree and grass GPP over the 15-year 383 

time series (Fig. 4; c & d).  384 

 385 

Figure 4: Meteorological drivers of monthly (a & b) and yearly (c & d) grass and tree gross 386 

primary productivity (GPP) from 2001 to 2015, plus a shorter temporal monthly time 387 

series (e & f) of tree and grass GPP from 2008 to 2015 at Howard Springs. 388 

Meteorological drivers include soil water storage at 10 cm (Sws), Sws at 100 cm 389 
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(Sws100), air temperature (Ta), vapour pressure deficit (VPD) and incoming solar 390 

radiation (Fsd). The bottom panel begins in 2008 due to the installation of the 100 cm 391 

Sws sensor in that year.  392 

 393 

To explore IAV in tree and grass GPP, we calculated and plotted anomalies based on their 394 

respective 14 water-year (i.e. Jul-Jun) mean GPP values (Fig. 5). These plots showed that the 395 

GPP anomalies for trees appeared to increase over time, but that grass anomalies fluctuated 396 

around the mean. Included in Fig. 5 are anomalies for changes in the yearly sum of daily 397 

mean Fsd, Ta, Sws, soil temperature (Ts), and VPD, as well as changes in total annual 398 

rainfall. To determine which of these variables best described changes in tree and grass 399 

productivity inter-annually, we used a simple linear regression analysis. This approach 400 

showed that of the six variables, only Sws had a statistically significant influence on the IAV 401 

of the tree (p = 0.003) and grass (p = 0.006) GPP anomalies (Fig. 6), a finding also supported 402 

by the IAV Random Forest analysis (Fig. 4; c & d). Interestingly, the trees showed a positive 403 

correlation with increasing Sws (Fig. 6; e), while the grasses revealed a negative correlation 404 

with the increasing Sws anomalies (Fig. 6; k).  405 

The key year that stands out in the anomalies of the 15-year monitoring period is 2010-2011, 406 

where the highest positive rainfall anomaly (Fig. 5; f) and greatest negative Fsd anomaly (Fig. 407 

5; b) occurred. While the tree GPP anomaly was positive, it was not the highest recorded 408 

during this time period (Fig. 5; a), and the grass anomaly was negative, but not the most so 409 

(Fig. 5; e). Both tree and grass GPP anomalies became noticeably more positive in the year 410 

proceeding the 2010-2011 meteorological anomaly year (i.e. 2011-2012), while Fsd and 411 

rainfall were less variable than in 2010-2011 (Fig. 5 b & f).  412 

 413 
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 414 

Figure 5: Anomaly plots for tree (a) and grass (e) GPP, plus solar radiation (Solar, b), vapour 415 

pressure deficit (VPD, c), soil water storage (Sws, d), rainfall (Precip, f) and air (Ta, g) 416 

and soil (Ts, h) temperature for the Howard Springs savanna site.  417 
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 418 

Figure 6: Linear regression relationships of yearly solar radiation (Solar, a & g), air 419 

temperature (Ta, b & h) rainfall (Precip, c & i), vapour pressure deficit (VPD, d & j) 420 

soil water storage (Sws, e & k) and rainy season (RS, f & m) length anomalies against 421 

tree and grass gross primary productivity (GPP) anomalies for the Howard Springs 422 

site from 2001 to 2015. Anomalies represent the change from the 2001-2015 mean, 423 

Page 22 of 49Global Change Biology



For Review Only

22 

 

based on water-years (i.e. Jul-Jun). Only significant anomaly correlations are given, 424 

as indicated on the plots by r2 values and p values of <0.05 as a sign of statistical 425 

significant.   426 

 427 

Variability in the tree-grass GPP ratio at Howard Springs 428 

Under enhanced atmospheric CO2 levels, woody thickening is likely to increase the tree-grass 429 

GPP ratio in savannas. To determine if woody thickening was occurring at Howard Springs, 430 

we calculated yearly sums of tree and grass GPP, as well as the tree-grass GPP ratio anomaly 431 

(Fig. 7). In general, over the first half of the period there was a slight increasing trend in tree 432 

GPP and a decrease in the grasses, which translated into an increase in the tree-grass GPP 433 

ratio up to 2010-2011. However, after this point, the tree-grass GPP ratio decreased (Fig. 7), 434 

with the overall result that there was no significant (p = 0.18) linear trend over time that 435 

would be consistent with woody thickening. As such, we cannot conclude from this dataset 436 

that woody thickening occurred at Howard Springs during this time.  437 

 438 
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 439 

Figure 7: Annual model estimates for grass (a) and tree (b) gross primary productivity (GPP), 440 

as well as the tree-grass GPP ratio anomaly (c), for the Howard Springs savanna from 441 

the water-year (i.e. Jul-Jun) 2001-2002 to 2014-2015. Each plot also shows the trend 442 

in growth over the study period.  443 

 444 

Despite the apparent lack of woody thickening at Howard Springs, there was still a distinct 445 

cyclical pattern in the tree-grass GPP ratio anomaly over time (Fig. 7; c) that could be 446 
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correlated with modes of climate variability. Recent work from Rogers & Beringer, (2016) 447 

showed that IAV in rainfall for the Howard Springs region was correlated most strongly with 448 

changes in the SOI, the TSI and the II. Therefore, we used these in conjunction with a 449 

measure of the AUSMI to test the level of influence of the Australian monsoon on inter-450 

annual tree and grass productivity. This analysis revealed that of the four indices, the SOI had 451 

a significant relationship with the tree-grass anomaly (Fig. 8) only if the level of significance 452 

was relaxed to p = 0.10 (instead of p = 0.05). In general, for years when the SOI had a 453 

positive value, the tree-grass anomaly was also positive, indicating a benefit to the trees over 454 

the grasses. During years where the SOI was negative overall, the grasses benefited, as shown 455 

by negative tree-grass anomaly values (Fig. 8).  456 

 457 
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 458 

Figure 8: Time series plots of the yearly Howard Springs tree-grass anomaly against four key 459 

climate indices found to influence long-term precipitation at Howard Springs (Rogers 460 

& Beringer, 2017). These indices include the Southern Oscillation Index (SOI), the 461 

Australian Monsoon Index (AUSMI), the Tasman Sea Index (TSI) and the Indonesia 462 

Index (II). Correlation between each climate index and the tree-grass anomaly are 463 

given by the r2 values and its level of significance is given by the p-values.   464 

 465 

 466 
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Discussion 467 

We have shown how tree and grass productivity varies over the long-term in an Australian 468 

tropical savanna and what the primary meteorological factors are that determine this 469 

variability, both seasonally and inter-annually. Both tree and grass GPP of this savanna were 470 

light limited during the wet season and water limited during the dry season. Whitley et al., 471 

(2011) concluded that mesic (high rainfall) savannas, such as Howard Springs, were light 472 

limited in the wet season due to a limited capacity of the vegetation to absorb light under 473 

ample soil water conditions, and in the dry season due to loss of canopy leaf area. Thick 474 

cloud cover during the wet season, from the summer monsoon, can also reduce productivity 475 

due to significant reductions in the quantity of total radiation (direct and diffuse) reaching the 476 

land surface (Kanniah, Beringer, & Hutley, 2013). The summer monsoon is most active from 477 

Dec-Mar (Cook & Heerdegen, 2001), which is when solar radiation limits tree and grass 478 

productivity the most (Fig. 4). These studies highlight the complex way in which savanna 479 

vegetation has adapted to its climatic range, as well as how it responds to inter-annual 480 

climatic variability. 481 

At the onset of the dry season the annual C4 grasses senesce (Andrew & Mott, 1983; Moore 482 

et al., 2017), leaving perennial C4 grasses and woody understory species to contribute 483 

towards GPP in the understory (Moore et al., 2016, 2017). These species rely on moisture 484 

available in the surface soil layers to remain productive (Prior, Eamus, & Duff, 1997; Werner 485 

& Prior, 2013) and are often dormant during the late dry season when these layers are 486 

depleted (Prior et al., 2006; Werner & Prior, 2013). Likewise, the overstory tree species also 487 

maximise their usage of surface soil moisture while moisture remains available in the early 488 

dry season (Cook et al., 1998; Werner & Murphy, 2001). However, the trees also have an 489 

extensive root system that gives them access to this deeper water during the dry season (Cook 490 

et al., 1998; Eamus, Chen, Kelley, & Hutley, 2002; Kelley, O’Grady, Hutley, & Eamus, 2007; 491 
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Walker & Langridge, 1997), and they are able to maintain a nearly constant transpiration rate 492 

year-round (Hutley, O’Grady, & Eamus, 2000; O’Grady, Eamus, & Hutley, 1999). At the 493 

ecosystem scale, O’Grady, Eamus, & Hutley, (1999) found a strong coupling between tree 494 

water use and VPD, particularly during the late dry season when atmospheric VPD is at its 495 

highest, showing that the trees are limited in their ability to maintain stomatal closure. In our 496 

analysis, we found that VPD also increased slightly in importance during the late dry season 497 

(Aug-Oct) for the grasses, even though Sws at 100 cm remained the most important variable 498 

overall (Fig. 4). This result is consistent with the findings of Walker & Langridge, (1997) 499 

who concluded sub-soil moisture status has a significant influence on productivity in these 500 

savannas. 501 

In addition to investment in deeper roots, most tree species reduce their foliage cover in order 502 

to maintain transpiration rates as soil water availability declines (Hutley, O’Grady, & Eamus, 503 

2000; O’Grady, Eamus, & Hutley, 1999), which also reduces productivity by the late dry 504 

season (Eamus, Myers, Duff, & Williams, 1999; Prior, Eamus, & Duff, 1997). Decreasing 505 

soil water availability triggers the trees to regulate when and for how long their leaf stomata 506 

are open to reduce water loss (Eamus & Cole, 1997; Prior, Eamus, & Duff, 1997). However, 507 

as demonstrated by Myers, Williams, Fordyce, Duff, & Eamus, (1998) in an early dry season 508 

irrigation experiment, the trees can retain leaves, providing more photosynthetic structures 509 

that facilitate high rates of productivity in the dry season. The adaptive capacity of the trees 510 

to resource availability provides a likely explanation for why there was a positive correlation 511 

between increasing soil water availability and tree productivity (Fig. 6). While our analysis 512 

could be improved by the inclusion of deeper Sws monitoring (if available), we have shown 513 

the importance of soil moisture as a driver of tree-grass productivity both inter-annually and 514 

during the dry season, with increasing importance for deep soil moisture as the dry season 515 

progresses.  516 
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Another important question surrounding the future of savannas is how the tree-grass GPP 517 

ratio is likely to change as atmospheric CO2 levels continue to increase (Scheiter & Higgins, 518 

2009; Scheiter, Higgins, Beringer, & Hutley, 2015). While our study revealed no significant 519 

change in the tree-grass GPP ratio, a recent analysis of tree increment (i.e. from 2008 to 2014) 520 

at Howard Springs showed a biomass increase of 0.5 t C ha-1 y-1 (Rudge, 2015). This is at the 521 

upper end of reported tree growth for north Australian savannas (Beringer, Hutley, Tapper, & 522 

Cernusak, 2007; Cook et al., 2005; Lehmann, Prior, & Bowman, 2009; Murphy, Lehmann, 523 

Russell-Smith, & Lawes, 2014) and is consistent with reported site net ecosystem 524 

productivity (Beringer et al., 2016), site disturbance history and increasing site rainfall 525 

(Hutley & Beringer, 2010). A key finding of Rudge (2015) was that increasing biomass 526 

primarily occurred in the middle to high tree size classes and that there was little change in 527 

size class distribution (i.e. no juvenile recruitment). Therefore, woody thickening is not 528 

significant at Howard Springs. The work of Rudge (2015) shows that biomass is being 529 

accumulated at a slow rate, but that it is due to the growth of individual trees, rather than the 530 

recruitment (i.e. thickening) of saplings. This is consistent with our finding that there is no 531 

temporal trend of changing tree-grass GPP ratio over the past 15 years at Howard Springs 532 

(Figure 7; c).  533 

Varying degrees of woody thickening have been detected at other sites in the Northern 534 

Territory savannas, including in the Kakadu (Bowman, Riley, Boggs, Lehmann, & Prior, 535 

2008) and Litchfield (Bowman, Walsh, & Milne, 2001) national parks. Spatial variability in 536 

thickening is likely to be a long-term response to fire management in the Australian savanna 537 

region, which is highly heterogeneous (Beringer et al., 2015; Scheiter, Higgins, Beringer, & 538 

Hutley, 2015). The Howard Springs site is intensively managed each year with control 539 

burning to reduce the threat of high intensity, late dry season fires damaging the eddy 540 

covariance equipment. However, late dry season fires are a common occurrence in the 541 
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Howard Springs region (return rates of 1-3 years (Beringer et al., 2015)) as it is located 542 

approximately 5 km from a low density peri-urban development (Fig. 1; a) and receives little 543 

management from local fire authorities (Russell-Smith et al., 2013; Russell-Smith et al., 544 

2003). These high intensity fires do encroach upon the Howard Springs flux footprint, 545 

resulting in top-kill of juveniles that would limit woody thickening (Lawes, Richards, Dathe, 546 

& Midgley, 2011; Prior et al., 2006; Prior, Williams, & Bowman, 2010) at the site. This 547 

highlights the important role fire plays in shaping savanna ecosystem structure and supports 548 

the need for further research into how it may change in the future.  549 

Along with fire, our study revealed the importance of the SOI as a driver of tree-grass 550 

productivity at Howard Springs (Fig. 7). The SOI provides an indication of El Niño/La Niña 551 

driven climatic variability that influences Ta and Fsd, as well as rainfall (Broich et al., 2014; 552 

Risbey, Pook, McIntosh, Wheeler, & Hendon, 2009). As such, it has been found to correlate 553 

with vegetation productivity (Nicholls, 1986, 1991) and phenology (Broich et al., 2014) for 554 

many regions of Australia. In the northern Australian savanna region, the SOI has also been 555 

correlated with fire activity (Harris, Tapper, Packham, Orlove, & Nicholls, 2008), which is 556 

linked with grass productivity in particular.  557 

The 15-year flux record included a record breaking La Niña year (2010-2011), which resulted 558 

in a greening pulse over much of the terrestrial southern hemisphere (Ahlström et al., 2015; 559 

Poulter et al., 2014). This greening effect was strongly evident in xeric (low rainfall) 560 

savannas of inner continental Australia (Cleverly et al., 2016), and the mesic (higher rainfall) 561 

Howard Springs savanna also experienced its highest rainfall year and lowest total solar 562 

energy year (Fig. 5). However, the response of tree and grass GPP to this anomalous year was 563 

mixed, with higher than average (but not maximum) GPP experienced by the trees and lower 564 

than average GPP experienced by the grasses (Fig. 5). However, grass GPP was at its highest 565 

in the year following the La Niña event, indicating a lag in the response of the grasses to the 566 
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rainfall surplus. Recent work from Ma, Baldocchi, Wolf, & Verfaillie, (2016) showed a 567 

similar result in an oak-grass temperate savanna in California, with the research concluding 568 

that ecosystem-level responses of tree and grass GPP were driven by slow (i.e. often lagged) 569 

responses to meteorological variability. While xeric savannas have evolved to be fast 570 

responders to climatic pulses (Cleverly et al., 2016), our results indicate that mesic savannas 571 

might be slower at responding to similar climatic pulses. As models improve at capturing 572 

savanna productivity dynamics (Whitley et al., 2017), there will be more opportunities for 573 

exploring tree-grass responses to climate across the global savanna biome.  574 

In summary, our findings suggest that mesic and xeric savanna ecosystems might respond 575 

very differently to climate driven changes in the timing and distribution of annual rainfall and 576 

how they relate to energy availability in the wet season and soil moisture availability in the 577 

dry season. This study fills an important gap in our understanding of the long-term tree and 578 

grass productivity dynamics of a tropical savanna. By identifying the importance of light 579 

availability in the wet season and soil moisture availability in the dry season, as well as the 580 

influence of inter-annual variability in soil moisture and climate indices (i.e. SOI), it puts us 581 

one step closer towards determining how the tree-grass dynamic may shift as the climate 582 

changes in the coming century. 583 
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Figure Captions 

Figure 1: MODIS Land Cover Product (MCD12Q1) using the International Geosphere-

Biosphere Program (IGBP) classification system for a) the Northern Territory in 

Australia, b) the northern-west region of the northern territory and c) the area directly 

surrounding the Howard Springs OzFlux tower, with individual pixel resolution of 

500 m (produced in ArcMap v10.1 using MODIS Land Cover data from Gibson 

(2015).   

Figure 2: Time series and regression comparison of Howard Springs flux tower and 

DIFFUSE model estimates (ModelO = original model, ModelA = adjusted model to 

include understory woody contributions) of gross primary productivity (GPP, g C m-2 

d-1) for understory (a) and overstory (b) from September 2012 to June 2015. 

Regression plots show the line of best fit (solid line), the 1:1 line (dashed line), and 

the linear regression equation for modelled GPP (GPPM) predicting tower GPP 

(GPPT).  

Figure 3: Long-term (15 year) ecosystem (Eco) gross primary productivity (GPP) flux tower 

time series, the partitioned overstory (O/S) and understory (U/S) GPP, plus rainfall, 

for the Howard Springs savanna site. Data are shown as monthly sums. 

Figure 4: Meteorological drivers of monthly understory and overstory gross primary 

productivity (GPP) from 2001 to 2015 (a & b) and 2008 to 2015 (c & d) at Howard 

Springs. Meteorological drivers include soil water storage at 10 cm (Sws), Sws at 100 

cm (Sws100), air temperature (Ta), vapour pressure deficit (VPD) and incoming solar 

radiation (Fsd). The bottom panel begins in 2008 due to the installation of the 100 cm 

Sws sensor in that year.  
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Figure 5: Anomaly plots for overstory (O/S) and understory (U/S) GPP, plus solar radiation 

(Solar), vapour pressure deficit (VPD), soil water storage (Sws), rainfall (Precip) and 

air (Ta) and soil (Ts) temperature for the Howard Springs savanna site. 

Figure 6: Linear regression relationships of yearly solar radiation (Solar), air temperature (Ta) 

rainfall (Precip), vapour pressure deficit (VPD) soil water storage (Sws) and rainy 

season (RS) length anomalies against overstory (O/S) and understory (U/S) gross 

primary productivity (GPP) anomalies for the Howard Springs site from 2001 to 2015. 

Anomalies represent the change from the 2001-2015 mean, based on water-years (i.e. 

Jul-Jun). Correlations are given by the r2 values, where (+) values represent a benefit 

of the increasing meteorological variable and (-) values represent inhibition of the 

increasing meteorological variable to GPP. Correlation significance is given by the p 

value, where p values <0.05 are significant.   

Figure 7: Annual gross primary productivity (GPP) sums for the understory (U/S) and 

overstory (O/S), as well as the tree-grass GPP ratio anomaly, for the Howard Springs 

savanna from the water-year (i.e. Jul-Jun) 2001-2002 to 2014-2015. Each plot also 

shows the trend in growth over the study period.  

Figure 8: Time series plots of the yearly Howard Springs tree-grass anomaly against four key 

climate indices found to influence long-term precipitation at Howard Springs (Rogers 

and Beringer, 2016). These indices include the Southern Oscillation Index (SOI), the 

Australian Monsoon Index (AUSMI), the Tasman Sea Index (TSI) and the Indonesia 

Index (II). Correlation between each climate index and the tree-grass anomaly are 

given by the r2 values and its level of significance is given by the p-values, with p 

<0.05 indicating a significant relationship.  
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