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Abstract 

There is a large amount of information in brightfield images that was previously inaccessible using 

traditional microscopy techniques. This information can now be exploited using machine learning 

approaches for both image segmentation and the classification of objects. We have combined these 

approaches with a label-free assay for growth and differentiation of leukemic colonies, to generate a 

novel platform for phenotypic drug discovery. Initially a supervised machine learning algorithm was 

used to identify in-focus colonies growing in a 3D methylcellulose gel. Once identified, unsupervised 

clustering and principle component analysis of texture based phenotypic profiles were applied to 

identify novelgroup similar phenotypes. In a proof of concept study we successfully identified a novel 

phenotype induced by a compound that is currently in clinical trials for the treatment of leukaemia. 

We believe that our platform will be of great benefit for the utilization of patient-derived 3D cell 

culture systems for both drug discovery and diagnostic applications. 
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Abbreviations 

3D  Three dimensional 

AML  Acute myeloid leukaemia 

BET   Bromodomain and extraterminal domain 

BF  Brightfield 

CFC  Colony forming cell 

DMSO  Dimethyl sulfoxide 

GFP  Green Fluorescent Protein 

H3  Histone three 

IMDM  Iscove’s Modified Dulbecco’s Medium 

LSC  Leukemic stem cell 

MLL  Mixed lineage leukaemia 

PCA  Principle component analysis 
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Introduction 

As a model disease for understanding cancer biology, leukaemia has been exceptionally revealing 
1
. 

Leukemic stem cells (LSCs) driving acute myeloid leukaemia (AML) were the first described cancer 

stem cell 
2
, ultimately leading to the more generalized 'cancer-stem-cell hypothesis'. Various 

translocations involving the mixed lineage leukaemia (MLL) gene lead to multiple haematological 

malignancies, including AML, and are often associated with a poor prognosis. MLL is a DNA-binding 

protein and epigenetic regulator that methylates histone H3 lysine 4 
3
. When present as a 

leukaemogenic fusion protein MLL has been shown to bind to the promoters of the Hoxa9 and Meis1 

genes and promote be associated with histone modification 4.   When grown in vitro, LSC colonies 

display graded phenotypes depending on the initiating mutation   
5,6

. Looser colonies are surrounded 

by a spectrum of more differentiated blast-like cells, while denser colonies contain more 

undifferentiated cells 
7
. These phenotypes are potentially clinically relevant as it has been shown that 

colony morphology is correlated with the disease prognosis in mice 
6
. Because the phenotype is easily 

visualized, it is possible to use image based screening to identify agents that can drive leukaemic cells 

towards a more benign, differentiated phenotype. We have developed a method for high-throughput, 

high-content screening of live colonies cultured and imaged in 3D. To validate the sensitivity of our 

approach to variations in genetic background we performed a pilot screen in three different cell lines. 

This allowed comparison of effects between human and mouse species and, in mouse, between 

primary cells transformed by different oncogenes. 

Colony formation assays are typically performed in 6-well plates and scored manually by a researcher. 

After initial isolation, cells are mixed with cytokine-containing semi-solid methylcellulose-based media 

formulated to promote leukaemic colony growth in three dimensions through proliferation and 

differentiation 
8
. The methylcellulose colony forming cell (CFC) assay 

9
, is a preferred in vitro assay 

used in the study of primitive hematopoietic cells, and cells can readily be recovered from 

methylcellulose for further phenotypic and molecular characterization. Due to observed auto-
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fluorescence of the growth gel (the methylcellulose scaffold and growth media mix), direct fluorescent 

imaging of GFP expressing cell colonies in situ could notcannot be utilized for our growth conditions.   

These colony forming assays are therefore low throughput, susceptible to bias due to manual scoring 

and generally unsuitable for arrayed chemical or genetic screening. Being able to employ these 3D 

assays for automated high throughput screening of peturbagens would clearly be advantageous, in 

both probing for mechanistic insights relating to disease biology and unearthing new therapeutic 

agents. In addition, the ability to perform high content screening for agents that are not simply 

preventing colony growth toxic but could drive colonies from a dense to loose phenotype would have 

added utility for drug discovery 
10

. 

Brightfield (BF) images contain rich texture information which, until recently, was inaccessible to 

automated image analysis 
11–13

. BF imaging of live cells also has several advantages over fluorescent 

imaging. Being label-free, there is no need to modify the cells with either a fluorescent protein 

expression cassette or the addition of dyes that could perturb normal cell function. Quantification of 

label-free BF images of colonies in situ would also support both short- and long-term live cell kinetic 

studies. We have previously been successful in developing a simple machine learning based analysis 

pipeline that could determine colony number and size from BF images 14. Here, we investigate 

whether a similar approach could be employed in a screening campaign, not only to count and size 

colonies, but additionally to use the texture information to phenotypically profile colonies and 

potentially identify compounds that can induce novel phenotypes.  

Materials and Methods 

See also table 1 for a summary of the screen protocol 

Colony Culture 

THP-1 cells were cultured at 500,000 cells/ml in RPMI-1640 GlutaMAX containing 10% FBS, 100 U/ml 

penicillin, and 100 μg/ml streptomycin.  

Formatted: Font: Not Bold
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MMA (MLL-AF9KI/+ cells): foetal liver haematopoietic cells were extracted from a E14.5 MLL-AF9KI/+ 

embryo (MLL-AF9
KI/+

 mice 
15

 were obtained from The Jackson Laboratory). After c-Kit enrichment using 

MACS LS columns (Miltenyi Biotec), cells were serially replated every 6 d in MethoCult M3231 

(STEMCELL Technologies) supplemented with 20ng/ml SCF, 10 ng/ml IL-3, 10 ng/ml IL-6 and 10 ng/ml 

GM-CSF. After 3 rounds of plating, cells were cultured at 300,000 cells/ml in IMDM containing 10% 

FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin, supplemented with SCF, IL-3, and IL-6.  

MMH (Meis1/Hoxa9 cells): foetal liver haematopoietic cells were extracted from a E14.5 C57Bl/6 

embryo. Following c-Kit enrichment using MACS LS columns (Miltenyi Biotec), cells were transduced 

with MSCV-Meis1a-puro and MSCV-Hoxa9-neo retroviruses as per 14. Following selection for 

puromycin/neomycin co-resistance, cells were serially replated every 6 days in MethoCult M3231 

(STEMCELL Technologies) supplemented with 20 ng/ml SCF, 10 ng/ml IL-3, 10 ng/ml IL-6 and 10 ng/ml 

GM-CSF. After 3 rounds of plating, cells were cultured at 200,000 cells/ml in IMDM containing 10% 

FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin, supplemented with SCF, IL-3, and IL-6.  

Animal experimentation complied with local and national requirements (UK Animals Act 1986) 

For methylcellulose medium, 20 ml IMDM (Life Technologies) was added to 80 ml MethoCult 3231 

(STEMCELL Technologies, Catalog #03231), vortexed, and allowed to settle. For primary murine cell 

lines, the methylcellulose was supplemented with cytokines 20 ng/ml SCF, 10 ng/ml IL-3, 10 ng/ml IL-6 

and 10 ng/ml GM-CSF. No antibiotics were added. Cells (THP-1 cells, MLL-AF9
KI/+

 foetal liver cells, or 

murine foetal liver transformed with Meis1 and Hoxa9 retroviruses) were suspended in IMDM and 

added to the prepared methylcellulose at a ratio of 1:9. The mixture was vortexed and allowed to 

settle. Compounds were added as a single dose. 5 μl of 2.1% test drug compound was pipetted into 

the centre of each well of a 96-well non-tissue culture treated edge plate (Thermo Scientific, Cat. # 

267313) with a CyBio FeLix. Subsequently, 100 μl of pre-mixed methylcellulose containing 400 cells 

(THP-1) or 600 cells (MLL-AF9
KI/+

 foetal liver cells, or murine foetal liver transformed with Meis1 and 

Hoxa9 retroviruses) was syringed into each well (using BD Microlance 3 18 Gauge 1.5” needles, 
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resultant drug compound concentration 0.1%). The plate was vortexed, and the side troughs and 

unused wells were half filled with PBS (Sigma) to prevent edge effects due to uneven evaporation. 

Plates were incubated at 37°C 5% CO2 (day 0), and then scanned on day 6 (murine cells), or day 9 (THP-

1 cells).  

Imaging, image and data analysis 

Images were acquired at 37°C 5% CO2 on an Operetta high content microscope (Perkin Elmer) 

equipped with a live cell chamber. The imaging pattern for plates consisted of a snaking pattern across 

columns beginning with the top left gel containing well (B2), down to B7, across to C7 up to C2 and so 

on. In each well the imaging pattern began with the middle field and followed a snaking pattern 

beginning at the top left field, across rows and avoiding imaging of the central field twice. We choose 

9 fields of view to maximise well coverage at 10 X magnification while avoiding the well edges. The 

edge of each of the wells had a texture that the algorithm sometimes identified as a colony and was 

therefore best to avoid. After testing various z-stack options during assay development focal planes 

separated by 150 μm were chosen to avoid repeated counting of the same colonies. Above a height of 

600 μm there were no colonies found and plate scan times were unnecessarily increased. 

Image and numerical data analysis 

Image and subsequent numerical analysis was performed using a variety of software tools: 

 Image analysis was performed in Columbus 2.7.1 (Perkin Elmer) was used for the initial image analysis 

step by manually training the “Find texture region” PhenoLogic machine learning  module to find two 

classes of texture regions in brightfield images. One class contained in-focus colonies (texture A) and 

the other class contained background and out of focus colonies (texture B). Texture A was then split 

into discrete objects, the outer border was shrunk by 6 pixels and any holes were filled. Objects 

greater than 2000 µm
2
 were then considered as colonies and morphology and texture properties were 

calculated using the “Calculate morphology properties” and “Calculate texture properties” modules. 

Formatted: Underline
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Well level aggregated data and Colony data data for individual colonies including morphology and 

texture features was  exported as separate text files.  

subsequently analysed in Spotfire HCP 7.5.0 (Perkin Elmer informatics) 

http://www.cambridgesoft.com was used for rapid initial visualization of the colony count data as 

plate heatmaps at colony and well level and scatterplots at well level for quality control purposes. 

Wells were tagged for positive and negative controls, compounds and concentration added. 

Hierarchical clustering of aggregated well level data and  (Pprinciple Ccomponent Aanalysis 
16

) was 

performed using the built in HCP tools in the software. Principal components and tagged data at the 

well level were exported as text files for further plotting in Python.  

, HC StratoMineR, (Core Life Analytics) www.corelifeanalytics.com was used for (for hit calling of well 

level data based solely on colony number 
17

). All p-values were calculated using the z-test based on 

negative controls with a median estimator with a p-value of <0.0001 considered significant. 

and Python www.python.org  www.python.org was used for plotting of all data, except dose response 

curves. Although not necessarily required for the analysis Python was used so as to maintain 

consistent formatting of figures across the manuscript figures. (all plotting, Python was also used to 

calculate the Z-score normalization and perform the hierarchal clustering shown in figure 4 with: 

sns.clustermap, method='average', metric='cosine').  

 

All p-values were calculated using the z-test with a p-value of <0.0001 considered significant. 

Results 

Supervised machine learning-based segmentation of colonies in three dimensions. 

The following automated image acquisition parameters were developed to enable optimal label-free 

imaging of colonies grown in a 96-well plate while avoiding common pitfalls of assay miniaturization. 

The imaging pattern avoided issues with both imaging the well wall (figure 1a) and identifying the 
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same colony in more than one focal plane (figure 1b). Due to their relatively larger size, the number of 

objects per well of a 96-well plate is limited when measuring colonies rather than cells. To maximise 

image coverage while minimising the time taken for imaging each plate, we employed a 10 X 

objective. This resulted in flatter illumination across fields than the 2 X lens but did result in more 

colonies that were clipped by the edge of the field (figure 1c). Nine fields of view were imaged in each 

well of the 96-well assay plate (figure 1a) covering approximately 50% of the well, with each field 

acquired at five focal planes each separated by 150 µm (figure 1b). All images were subsequently 

segmented using an algorithm (supervised texture segmentation module in the Columbus image 

analysis software) that had previously been trained on an independent training set 
14

. We tested the 

algorithm on three independent cell lines: a human AML (M5) cell line harboring a MLL-AF9 

translocation (THP-1 cells); cells obtained from a mouse (MLL-AF9
KI/+

) with a genomic rearrangement 

leading to expression of the MLL-AF9 fusion protein (further referred to as MMA cells); and a primary 

mouse cell line containing retroviral constructs that overexpress Meis1 and Hoxa9 (further referred to 

as MMH cells), each of which display differences in size and number of colonies. Upon visual 

inspection the segmentation algorithm performed equally well in identifying colonies grown from each 

cell line (figure 1d-f). As a positive control for compound addition to each plate we used iBET 18, a 

known inhibitor of leukemic cell growth and colony formation 
19

. In our assay, iBET proved effective at 

inhibiting the growth of all three cell lines (figure 1g-i). 

Epigenetic tool compound library 

Abnormal epigenetic regulation of gene expression has been implicated as potentially causative in 

several types of myeloid malignancies 
20

. We therefore employed the high quality epigenetic tool 

compound library from the Structural Genomics Consortium (SGC) 
21

 to map which epigenetic 

regulators are involved in colony growth and differentiation across the three different leukaemic cell 

lines. The compounds used are listed in table 2, along with their plate location and known targets. A 

six point dose response was performed starting at 10 µM with a 1 in 5 dilution at each step (giving: 10 
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µM; 2 µM; 400 nM; 80 nM; 16 nM; and 3.2 nM). Although SGC do not recommend using their 

compounds at concentrations higher than 1 µM we had previously observed that in semi-solid 

methylcellulose medium our positive control iBET was only effective at concentrations approximately 

10 fold higher than in liquid culture (unpublished data). We therefore began the dose response at 10 

µM. A  simple visual schematic summary of the screening experimental design is provided protocol is 

shown in table 1, with more detailed procedures inin the materials and methods section. 

 

Digitized colonies: size, number and location 

There was almost complete ablation of colonies in the positive control wells for each cell line (example 

plates shown in figure 2a-c, with iBET added to first 4 wells of rows 2 and last 3 wells of row 11). 

Compounds displaying toxicity ablating colony formation in all three cell lines are also plainly visible 

(figure 2a-c) at the highest concentration used (10 µM). At this concentration the lack of colonies is 

most likely due to toxicity due to the complete lack of cells found after manual inspection of the full 

resolution images. Colony location and size are clearly recapitulated by the segmentation algorithm 

(figure 2d-f). Visualizing the performance of the algorithm as an entire digital plate gave added 

confidence of accurate measurement of colony number and size. 

Quantification of total number of colonies across all plates in the screen shows several compounds to 

be toxicreduce CFC number at lower concentrations (figure 3a). There are no obvious edge effects on 

colony size or number in the outer wells of the plate. There appears to be a general reduction in CFC 

numbers, possibly due to a generally toxic effect of the compounds at the highestr concentrations, 

most apparent in the MMH cell line at 10 µM (figure 3b). Surprisingly there is also a single compound 

(GSK-LSD1) that increases colony number across a range of concentrations (figure 3a and effect size 

shown in 3b). Z-prime (Z’) scores based on colony number are excellent for THP-1 (0.57) and for MMH 

(0.54) cell lines but only -0.52 for the MMA cell line (calculated on 42 positive and 60 negative wells 

spread across 6 plates for each cell line). The reduced Z’ for this primary cell line is due to increased 
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overall noise in the measurements because of 1) the lower colony numbers leading to reduced 

number of colonies quantified, and 2) the greatly increased colony size which results in more frequent 

colony clipping. This is also reflected in called hits based on a reduction in colony number. THP-1 and 

MMH cell lines have almost perfect toxic hit overlap for reduction of colony numbers (table 23, all 

with a p-value < 0.0001 and dose response curves for overlapping compounds in supplemental figure 

1). Most of the hits are at the 10 µM concentration. If compounds with a potency below 10 µM are 

considered, only LAQ824 and JQ1 remain. JQ1 is clearly potent down to 2 µM with an IC50 of 1.6 µM 

for THP-1 derived colonies and 0.9 µM for MMH derived colonies. andJQ1 has a similar chemical 

structure to iBET 
22

, also targeting bromodomains. Far more potent however is LAQ824, killing colonies 

down to 80 nM in both specieswith IC50s of 65 nM for THP-1 and 20 nM for MMH derived colonies. 

The MMA cell line displayed no statistically significant hits at any concentration. 

 

Unsupervised clustering and PCA analysis identify novel colony phenotypes 

Although we had discovered clear toxic hits based on a reduction in colony number, ultimately our 

goal was to find compounds which induce differentiation within the leukemic colonies, ideally 

resulting in a less aggressive clinical phenotype and potentially having more specificity (with fewer side 

effects than a toxic compound that indiscriminately kills proliferating stem cells). To this end we 

performed morphology and texture analysis to give 21 further parameters describing each colony 

(examples in figure 4a). Well level data for the entire screen was then further analysed usingwith a 

hierarchicaln unsupervised clustering algorithm (figure 4b). Wells containing colonies from the same 

cell line largely cluster together, demonstrating a specific morphology profile for colonies derived from 

each cell type. Where there is intermingling of profiles from different cell lines, most of these wells 

had been treated either with the iBET positive control (green) or a compound that had a toxic effect 

atreduced colony number at a particular dose (red). After treatment with a toxic compound that 

affects colony number, wells containing affected colonies cluster together, rather than with their own 
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genotype. This indicates that the phenotypic effect elicited by the compound is stronger than the 

original phenotypic similarity due to the genetics of each cell line. 

To investigate the presence of potentially novel phenotypes, colony morphology and texture was 

further analysed by principle component analysis (PCA). PCA was applied to the entire dataset, 

containing all cell lines and compound concentrations. The first three principal components (PC1, 2 

and 3) respectively capture 48%, 16% and 12% of the variance in the data. In this PCA space a clear 

separation of positive (green) and negative (blue) controls can be seen, particularlyespecially for the 

THP-1   and MMH cell lines (figure 5 a and c). This separation is not as clear for the MMA derived 

colonies (figure 5b). In all cases the majority of compounds (yellow) are found clustering together with 

the DMSO controls having no effect. Many compounds are found in the same space as the positive 

controls (group i in figure 5 a-c). These compounds overlap exactly with the toxic hits based on a 

reduction in colony number (LAQ824, PFI-1, JQ1, GSK J4, NVS-1, OLAPARIB, Bromosporine and CL994 

in both THP-1 and MMH cell lines). As was the case for colony number, when only considering 

compounds at concentrations less than 10 µM, we are again left with JQ1 and LAQ824 and in the case 

of the THP-1 cell line also PFI-1. Most interestingly a single compound, GSK-LSD1 (at concentrations 

ranging from 10 µM to 16 nM) occupies PCA space orthogonal to the positive and negative controls 

(figure 5 a and c, group ii), and was not previously called as a hit based on a reduction in colony 

number. Visual inspection of this phenotype shows colonies that have differentiated into single cells. 
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Discussion 

Due to the high failure rate in target based drug discovery approaches 
23

 there is a need for renewed 

emphasis on phenotypic based approaches 
24

 that recognise the complexity of the biology involved 
10

. 

Recent advances in imaging, cell culture and genetic engineering technologies 
25

, combined with 

advances in machine learning 26,27 are converging to facilitate a high throughput renaissance in 

empirical drug discovery using more complex and relevant cell-based models of disease. Here, we 

present a simple image based screening methodology that relies on a complex but commercially 

available analysis pipeline. Our objective was not to come as close as possible to ground truth 

measurements or improve the error rate of manual counting,.  but toOur aim was  be able to increase 

assay throughput while readily quantifying a phenotypic difference. In this study we have used a 

machine learning approach to automate the quantification of, using a label-free 3D methylcellulose 

colony formation assay, to allow classification of compound activityidentifying a novel  

basedphenotype based on their induced morphological profiless. 

BF is less perturbing and faster than fluorescent imaging in multiple channels and thus particularly well 

suited to complex live-cell kinetic and/or 3D assays. Combined with machine learning facilitated 

analysis, BF images provide a rich source of texture and morphology information that can be mined for 

novel phenotypes. Because our segmentation algorithm was texture rather than intensity based and 

trained specifically to only find in-focus colonies this meant we could screen in 3D and overcome the 

issues of uneven illumination across a well due to the gel meniscus. Furthermore, because BF imaging 

is label-free and permits live imaging with minimal genetic or chemical perturbation, the methods 

described here may be beneficial for personalised diagnostic applications using primary patient-

derived cells. We have also used this approach to identify BF imaged liver organoids and in-focus cystic 

embryoid bodies grown in matrigel and stained with DAPI, followed by further nuclear segmentation 

(based on standard methods), estimation of relative cell numbers per cyst and classification of cells 
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based on fluorescent immunohistochemistry labelled markers (data unpublished). Thus, combining BF 

and fluorescent imaging can lead to even richer phenotypes in multiple tissue types and systems. 

In order to identify and segment colonies in a brightfield image it is critical that the colonies do not 

overlap. Typical image analysis strategies for segmenting touching objects in fluorescent images 

include peak intensity and shape or the more recently developed approach by the Horvath lab 28 that 

includes assumptions about nuclear shape and additive pixel intensities of overlapping nuclei. These 

approaches cannot be employed here as the method for identifying the colonies is texture based. This 

is a limitation of our approach and necessitates a lower object density to avoid overlap. 

During initial assay development we found it necessary to use non-tissue culture treated edge plates 

(Nunc Cat. # 267313) both to prevent colonies in contact with the bottom of the plate spreading over 

the plastic and to avoid what was obvious growth retardation in the outer wells, probably due to 

evaporation. As the number of compounds tested in this pilot screen allowed for only the inner 60 

wells of each plate to be used this further avoided any edge effects. However, for scale up compound 

numbers it would be desirable to use all 96-wells in a plate. In this case use of the edge plates would 

be necessary.  

MMA colonies did not display an orthogonal phenotype in PCA space when treated with GSK-LSD1. 

However, manual examination of GSK-LSD1 treated wells in this cell line reveals a similar 

differentiation effect but with a greatly reduced numbers of cells. These cells however had a curious 

elongated morphology (example seen in figure 5b, GSK-LSD1 at 400 nM). Because the cells were 

sparse they were not grouped as colonies by the algorithm and were lost during the size exclusion step 

after image segmentation. This compound has promise as a therapeutic agent, being potent down to 

16 nM and producing the desired differentiation phenotype without an obvious toxic effect based on 

the continued presence of cells (and depending on genotype). Indeed GSK-LSD1 has been through 

phase I clinical trials to assess safety and activity in patients with relapsed AML (under the generic 

name GSK2879552, https://www.gsk-clinicalstudyregister.com/study/200200#ps). Other lysine 
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demethylase targeting inhibitors in the SGC set did not show same phenotype. These inhibitors target 

proteins other than LSD1 (see table 2), which has been identified as the target of GSK-LSD1 
29

. Another 

lysine demethylase identified as a toxic hit reducing colony number is GSK-J4. This compound targets 

the JMJD3, UTX and JARID1B proteins 
30

 and displays effects only at the highest concentration (10 µM) 

in our assay. This difference between compounds targeting separate lysine demethylases could be 

mechanistically informative, pointing to a specific differentiating effect upon LSD1 inhibition. Although 

only showing toxic a reduction in colony formation rather than purely differentiation effects in this 

assay, LAQ824 has also been used in a phase I clinical trial for patients with advanced solid tumours 31 

and has shown activity against myeloma 
32

 and human acute leukaemia 
33

. 

Future scale up of this screening method would require development of a pipetting head and 

automation platform capable of dispensing large amounts of methylcellulose gel containing cells. The 

current analysis pipeline holds enormous potential for repurposing to a variety of other 3D assay 

formats. We expect that future use of machine learning to analyse label-free images will aid in the 

identification of novel leads to treat a variety of diseases and in their initial diagnosis. 
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Figure Legends 

Figure 1. Imaging strategy. Example of brightfield (BF) images showing: (a) approximate well coverage 

of nine tiled BF images avoiding well wall; (b) an example of a single stack both pre- and post-image 

processing; (c) even illumination and varied colony morphology; (d-f) performance of the algorithm 

throughout the gel for each of the cell lines (all images taken from top left field of DMSO negative 

control at the same plate location, well F2); (g-i) action of positive control on colony growth of each 

genotype (9 tiled images shown per cell line, all images taken from plane 1 in either well F2 for DMSO 

or C2 for 10 µM iBET positive control). 

Figure 2. Digitisation of colonies. Tiled BF images showing plane 1 of an entire plate at the highest 

compound concentration for each cell line (a-c) and the performance of the algorithm across the entire 

plate shown as scatterplots (d-f). Row and column numbers are relative to well position in a 96-well 

plate. 

Figure 3. Colony numbers across entire screen. Heatmaps showing effect of compounds while 

maintaining positional information for each plate (a) and the same data displayed as scatterplots (b) 

more clearly displaying the effect size. Data were normalized to the median DMSO value for each cell 

line. 

Figure 4. Hierarchical Clustering of morphological phenotypes. An example brightfield image with 

segmentation and representations of the spot, edge and ridge texture features (a). Clustered heatmap 

of Z-score normalized profiling data (b). Wells containing each cell line are marked pink, dark grey or 

yellow. Compounds are marked in green for iBET positive control, red for toxic hits reducing colony 

number (as per table 3) and the remaining compounds are white. Empty attribute values (coming from 

wells with no colonies to profile) are light grey. 

Figure 5. Orthogonal phenotype in PCA space. Three-dimensional scatter plots of first three principle 

components, plotted for each genotype (a-c) with example brightfield images directly below each plot. 
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Supplemental Figure 1. Dose response curves. 

Dose response curves are shown for all overlapping compounds that significantly reduce colony 

number (as per table 3). A line shows a logistic regression curve was fitted to data for each compound 

and cell line. Single data points for each concentration without replicates are shown as circles with 

inflection points, corresponding to the IC50, shown as triangles.  
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Figure 1. Imaging strategy. Example of brightfield (BF) images showing: (a) approximate well coverage of 
nine tiled BF images avoiding well wall; (b) an example of a single stack both pre- and post-image 
processing; (c) even illumination and varied colony morphology; (d-f) performance of the algorithm 

throughout the gel for each of the cell lines (all images taken from top left field of DMSO negative control at 
the same plate location, well F2); (g-i) action of positive control on colony growth of each genotype (9 tiled 
images shown per cell line, all images taken from plane 1 in either well F2 for DMSO or C2 for iBET positive 

control).  
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Figure 2. Digitisation of colonies. Tiled BF images showing plane 1 of an entire plate at the highest 
compound concentration for each cell line (a-c) and the performance of the algorithm across the entire plate 

shown as scatterplots (d-f). Row and column numbers are relative to well position in a 96-well plate.  
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Figure 3. Colony numbers across entire screen. Heatmaps showing effect of compounds while maintaining 
positional information for each plate (a) and the same data displayed as scatterplots (b) more clearly 

displaying the effect size. Data were normalized to the median DMSO value for each cell line.  
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Figure 4. Hierarchical Clustering of morphological phenotypes. An example brightfield image with 
segmentation and representations of the spot, edge and ridge texture features (a). Clustered heatmap of Z-
score normalized profiling data (b). Wells containing each cell line are marked pink, dark grey or yellow. 

Compounds are marked in green for iBET positive control, red for hits reducing colony number (as per table 
3) and the remaining compounds are white. Empty attribute values (coming from wells with no colonies to 

profile) are light grey.  
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Figure 5. Orthogonal phenotype in PCA space. Three-dimensional scatter plots of first three principle 
components, plotted for each genotype (a-c) with example brightfield images directly below each plot.  
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Supplemental Figure 1. Dose response curves are shown for all overlapping compounds that significantly 
reduce colony number (as per table 3). A line shows a logistic regression curve was fitted to data for each 
compound and cell line. Single data points for each concentration without replicates are shown as circles 

with inflection points, corresponding to the IC50, shown as triangles.  
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Table 1: Protocol Table 

Step Parameter Value Description 

1 Compound addition 5 μl /well To empty 96 well plate, 2.1% 

DMSO 

2 Mix cells and semi-solid media 20 ml/cell line 4000 cells/ml for human, 

6000 cells/ml for mouse 

3 Add cell mix to plates 100 μl/well Manually with syringe 

4 Vortex 5 seconds  

5 Incubation 6 - 9 days 6 days for mouse, 9 days for 

human 

6 Imaging 30 ms/field BF, 37°C and 5% CO2  

7 Image analysis PhenoLogic module Columbus image analysis 

server 

8 Data analysis Well level Hierarchical clustering and 

PCA 

Step Notes 

1 CyBio FeliX, non-tissue culture treated edge plate  

2 Media pre-warmed to 37°C 

3 Side trough and unused wells half filled with PBS 

4 Ensures mixing of compound with media 

6 Operetta microscope 

8 With Spotfire HCP or HC Stratominer 
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Table 2. Compounds used in this study. 

Compound Row Column Protein Family Specific Targets 

iBET         (positive 

control) 

2,3,4,5,5,6,7 2,2,2,2,11,11,11 Bromodomains BRD2, BRD3, 

BRD4, BRDT  

GSK2801 2 10 Bromodomains BAZ2A, BAZ2B 

BAZ2-ICR 2 9 Bromodomains BAZ2A, BAZ2B 

PFI-4 2 8 Bromodomains BRPF1B 

JQ1 2 7 Bromodomains BRD2, BRD3, 

BRD4, BRDT  

PFI-1 2 6 Bromodomains BRD2, BRD3, 

BRD4, BRDT  

LP99 2 5 Bromodomains BRD9, BRD7 

BI-9564 2 4 Bromodomains BRD9, BRD7 

OF-1 2 3 Bromodomains BRPF1, BRPF2, 

BRPF3 

NI-57 3 10 Bromodomains BRPF1, BRPF2, 

BRPF3 

SGC-CBP30 3 9 Bromodomains CREBBP, EP300 

I-CBP112 3 8 Bromodomains CREBBP, EP300 

NVS-CECR2-1 3 7 Bromodomains CECR2 

IOX1 3 6 Lysine demethylase pan-2-OG 

KDOAM25 3 5 Lysine demethylase KDM5 

SGC0946 3, 7 4, 9 Methyltransferase DOT1L 

UNC1999 3 3 Methyltransferase EZH2 

GSK343 4 10 Methyltransferase EZH2 

UNC0638 4 9 Methyltransferase G9a, GLP 

UNC0642 4 8 Methyltransferase G9a, GLP 

A-366 4 7 Methyltransferase G9a, GLP 

GSK-J4 4 6 Lysine demethylase JMJD3, UTX, 

JARID1B 

UNC1215 4 5 Methyl Lysine Binder L3MBTL3 

GSK-LSD1 4 4 Lysine demethylase LSD1 

GSK484 4 3 Arginine deiminases PAD-4 

Bromosporine 5 10 Bromodomains pan-

Bromodomain 

IOX2 5 9 2-oxoglutarate 

dependent oxygenases 

PHD2 

SGC707 5 8 Methyltransferase PRMT3 

PFI-2 5 7 Methyltransferase SETD7 

PFI-3 5 6 Bromodomains SMARCA,PB1 

LLY-507 5 5 Methyltransferase SMYD2 

BAY-598 5 4 Methyltransferase SMYD2 

A-196 5 3 Methyltransferase SUV420H1/H2 

OICR-9429 6 10 WD40 repeat WDR5 

LAQ-824 6 9 Histone deacetylases - 

OLAPARIB 6 8 DNA repair PARP 

C-646 6 7 Histone 

acetyltransferases 

p300/CBP 

CL-994 6 6 Histone deacetylases HDAC 1, 2, 3, 

and 8 
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IOX-2 6 5 2-oxoglutarate 

dependent oxygenases 

PHD2 

I-BRD9 6 3 Bromodomains BRD9 

GSK-J1 7 3 Lysine demethylase JMJD3, UTX, 

JARID1B 

DMSO            

(negative control) 

2,3,4,   

6,7,7,7,7,7,7 

11,11,11,2,2,4,5,  

6,8,10 

- - 
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Table 3. Hits based on a reduction in colony numbers (p<0.0001) 

Cell 

line 

Species Onco-

gene 

10 uM 2 uM 400 nM 80 nM 16 

nM 

3.2 

nM 

THP-1 human MLL-AF9 LAQ824, PFI-1, 

JQ1, GSK J4, NVS-

CECR2-1, 

OLAPARIB, 

Bromosporine 

LAQ824, 

JQ1  

LAQ824 LAQ824 - - 

MMA mouse MLL-AF9 - - - - - - 

MMH mouse Meis1/ 

Hoxa9 

LAQ824, PFI-1, 

JQ1, GSK J4, NVS-

CECR2-1, 

OLAPARIB, 

Bromosporine, 

CL994 

LAQ824, 

JQ1  

LAQ824 LAQ824 - - 
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