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        December 11th, 2017

Dear Dr. Dufour

           Enclosed you can find the electronic files of the revised version of our manuscript 
entitled “Thermochemical decomposition of coffee ground residues by TG-MS: a kinetic 
study”, resubmitted to be considered for publication in Journal of Analytical and Applied 
Pyrolysis, which has been agreed by all authors.

As you may note we have carefully taken into account all the reviewer’s comments making 
necessary changes where possible or providing suitable rebuttals where relevant. 

Moreover, according to your recommendations, we have included more experimental results on 
MS analysis of the gaseous products (new Figs. 4 and 5) with the subsequent further improved 
discussion on the volatiles formation, thermally and catalytically. On the other hand, we have 
also moved some thermal modelling results to the new Supporting Information file (former Fig. 
4 appears now as Fig. S1, and Table 3 appears now as Table S1).

Therefore, as you may note in the revised version of our manuscript it is devoted to study the 
thermochemical coffee ground residues decomposition by TG-MS. Main evolved gases online 
analysed by MS were oxygenates (H2O, CO and CO2), which overlapped with main CGR 
degradation regime (250 – 425 ºC). Catalytic pyrolysis improved deoxygenation only negligibly 
but importantly enhanced vapours cracking increasing the light hydrocarbons (C1-C2) formation 
with the subsequent improvement in the heating value of the pyrolysis gas.

Kinetic parameters of the thermochemical decomposition of coffee ground residues (CGR) and 
those corresponding to the biopolymers comprising them were estimated by two model-free 
isoconversional dynamic methods: Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa 
(FWO) models. These, were satisfactorily employed resulting average apparent activation 
energy (Ea) values of 242 kJ/mol (for the entire CGR), and 214, 241 and 266 kJ/mol for its 
hemicellulose, cellulose and lignin components, respectively.

The use of model-free isoconversional dynamic methods proved to be valuable to assess the 
kinetic parameters of CGR as it is for other biomasses whatever their structural complexity. The 
Ea values for pyrolysis of CGR are important input parameters for modelling and design of 
reactors and their optimisation for production of biochar, fuels or high added-value chemicals.

Keywords: coffee ground residues; TG-MS; catalytic pyrolysis; cracking; kinetics; 
isoconversional methods.
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            Looking forward to hearing from you,
                        

Yours sincerely,
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Dear Dr Anthony Dufour,
We thank you and the reviewers for your helpful comments on our manuscript. We have 
carefully taken into account all of them making necessary changes where possible or 
providing suitable rebuttals where relevant. Below you can find our point-to-point response 
to the comments.
I hope that the revised manuscript can be accepted for publication.
Yours sincerely,
Dr. Javier Fermoso

Comments from the editors and reviewers:

* Reviewer 1 

This manuscript deals with thermogravimetric analysis of coffee ground residues. The 
evolved gases were analysed by using mass spectrometry. The manuscript is well prepared, 
and the discussion and presentations are clear. However, this work lacks novelty or even 
interesting findings. Several similar articles can be found elsewhere. Therefore, the 
manuscript is not recommended to be published in the Journal of Analytical and Applied 
Pyrolysis.

Answer: 

We thank Reviewer 1 for the time dedicated to reviewing our manuscript. However, we do not 
fully agree with the statement of lack of novelty or interesting findings. To start with, coffee 
is the second most traded commodity in the world after oil, and one of the most widely 
consumed beverages [1]; and therefore, we believe that the potential utilization of the 
generated residues for fuels or high value-added chemicals production by means of its 
pyrolysis can be an attractive solution for this residue, whose worldwide production is still 
increasing. Therefore, the first, but not last step for its utilization on the pyrolysis process 
would be its kinetics study to understand the complex reaction mechanism of its different 
biopolymers decomposition to help on the design of an adequate reactor. 
Although this kind of kinetics study is not new, it does not mean that it is no longer necessary 
and interesting for the research community, which helps to understand the pyrolysis process 
itself, whose complex reaction mechanism is still under debate and remains unknown. The 
importance of such kinetic studies can be evidenced in the available literature, where the 
number of published studies on pyrolysis showed exponential growth in the past 15 years as 
shown in the following figure (number of publications from 2000 to present based on search 
results from SCOPUS on: “thermogravimetric analysis”, “biomass pyrolysis” and “kinetics”).
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* Reviewer 2

This paper investigated the kinetic of coffee ground residues pyrolysis. But there are no 
any meanings about the 1-3 highlights, and distributed activation energy model (DAEM) is 
more suitable than Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) models 
for coffee ground residues pyrolysis. The review could not identify the challenges of the 
present topic and position of this study. What's more, the review could not see sufficient 
discussions and useful conclusion.

Answer: 

We thank Reviewer 2 for reviewing our manuscript. 
Firstly, we consider the statement: “the distributed activation energy model (DAEM) is more 
suitable than those employed in our work, Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–
Ozawa (FWO) models” as a personal assessment from the reviewer. We believe that there are 
still a lot of controversy and contradictory information in the literature regarding which 
models fit better the pyrolysis kinetics of lignocellulosic biomass. There are several review 
works published during the last 5-6 years in which those methods and some others are 
described and compared without any resolute statement selecting one over the others [2–4].
As we have already discussed answering to the Reviewer 1, we think that the focus covered in 
this work is actually of great interest within the research community as demonstrate the 
previous figure that shows the annual number of publications on this topic. 
On the other hand, more MS results and further discussion about the evolved gaseous species 
during the non-catalytic and catalytic pyrolysis of CGR have been included in the revised 
manuscript.

* Reviewer 3

A solid work on fundamental investigations concerning an interesting topic, the potential 
utilization of coffee ground residues for pyrolytic processes. I have only three points, which 
the authors should consider:

1) Figure 1B: The authors claim that there are "clearly three conversion peaks" in the DTG 
curve visible. However, the second and third "peak" are hardly visible as shoulders on the 
first larger peak. I also wonder why with lower heating rates the distinction between the 



peaks is not getting better, i.e. at 5K/min it is even less pronounced than at 25 and 50 K/min, 
respectively.

Answer: 

In accordance with the reviewer’s statement, we have modified our claims in the revised 
version of the manuscript. So, where it said:”…clearly showing three conversion peaks 
corresponding to the well-established order of biopolymers decomposition: hemicellulose, 
cellulose and lignin [28–30]. As the figure shows, the three peaks can be clearly distinguished 
for all the heating rates, with the exception of 100 ºC/min”; now it reads:“…showing a first 
large peak with two remarkable shoulders corresponding to the well-established order of 
biopolymers decomposition: hemicellulose, cellulose and lignin [28–30]. As the figure shows, 
the peak with the subsequent shoulders can be clearly distinguished for all the heating rates, 
with the exception of 100 ºC/min.”
Regarding the second question, it is well documented that it is not always the case that the 
lower the heating rate the better the separation of biomass decomposition peaks. It depends 
on the biomass source and other experimental conditions, etc. This has been demonstrated in 
the literature, where different types of biomass were thermally decomposed at different 
heating rates [5–8]. In these papers it can be also observed that the best distinction of the 
decomposition peaks does not correspond to the lowest heating rate.  

2) Figure 3: The temperature axis seems to be misplaced in this diagram, it should be on the 
x-axis parallel to the time axis, not to the MS-signal.

Answer: 

We agree with this reviewer that the suggested way could also be used, however we believe 
that the way we used is advantageous as in this figure we want to show how the TGA 
(conversion and DTG curves) and MS (different gaseous evolved from the CGR decomposition 
results), but also the sample temperature progress with reaction time. As can be seen in that 
figure there is a non-isothermal step (during the heating up of the sample) but also a 30 min 
isothermal step which could not be properly plotted if temperature were on the X-axis parallel 
to the time axis.   

3) It should be mentioned what type of ionization and mass analyser have been used for 
the MS analysis (I guess electron ionization and quadrupole). In this regard, have the 
authors considered to look deeper into the organic composition of the evolved gases by 
doing pyrolysis GC-MS for instance (or, if they have the opportunity, by coupling soft 
ionization MS or GC to the thermobalance)? 

Answer: 

In accordance with the reviewer’s suggestion, we have included in the revised version of the 
manuscript the type of ionization source and mass analyzer that was used for the MS analysis.
We thank the reviewer for the suggestions regarding further in-depth study of the pyrolysis 
gas and vapors and we will take these into consideration in future works focused on the bio-
oil production from coffee ground residues.

* Reviewer 4



1. The apparent activation energy for the whole process was estimated as 244 and 241 
kJ/mol for KAS and FWO methods, respectively. How this value was calculated from the 
activation energies of three components?

Answer: 

These values of the apparent activation energy for the whole pyrolysis process for KAS and 
FWO methods were calculated as the average value of the activation energies obtained at 
conversion levels from 5 to 90 % as summarizes Table 3, in a similar way to other works found 
in the literature [9,10].  

2. In "2.2. Analytical techniques," "asses" → "assess"

Answer: 

We have replaced “asses” by “assess” in the 2.2 Analytical techniques section according to the 
Reviewer comment. 
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Abstract

Dynamic pyrolysis tests of coffee grounds residues (CGR) at heating rates in the range 

from 5 – 100 ºC/min and at maximum temperature of 500 ºC were carried out using a 

thermogravimetric analyser coupled to a mass spectrometer (TG-MS), for online evolved 

gas analysis, to determine kinetic parameters of thermochemical decomposition of  CGR 

and its biopolymer constituents. During the pyrolysis, the maximum decomposition rate 

of each biomass component increased linearly with the heating rate. The slope increased 

with the biopolymer reactivity in the following sequence: hemicellulose > celluose > 

lignin. 

Main gases produced during the pyrolysis of CGR were oxygen containing species 

derived from parent biopolymers and primary and secondary vapours (250 – 425 ºC), 

primarily H2O, followed by CO and CO2. The use of the Beta zeolite had only negligible 

effect on deoxygenation reactions, however it significantly promoted cracking reactions 

of pyrolysis vapours increasing the light hydrocarbons (C1-C2) formation with the 

subsequent improvement in the heating value of the pyrolysis gas.

Kinetic parameters for any of the individual biopolymers in CGR were estimated using 

the model-free isoconversional dynamic methods: Kissinger–Akahira–Sunose (KAS) and 



Flynn–Wall–Ozawa (FWO) models. The average value for the apparent activation energy 

of the individual biopolymers (hemicellulose, cellulose and lignin) in CGR calculated  by 

KAS and FWO methods: were estimated as 214, 241 and 266 kJ/mol, respectively;  whilst 

for the CGR as a whole it was 242 kJ/mol. The two model-free isoconversional dynamic 

methods have been shown to be useful tools for assessment of biomass pyrolysis kinetic 

parameters, as they can provide Ea values for use in reactor design models.

Keywords: coffee ground residues; TG-MS; catalytic pyrolysis; cracking; kinetics; 

isoconversional methods.

1. Introduction

The depletion of fossil fuel reserves and the environmental problems derived from their 

utilization have made necessary the use of alternative fuels. Biomass is a clean and 

renewable energy source leading to environmental, technical and economic benefits. 

Residues from agricultural production and processing industries are readily available in 

large quantities. Coffee is the second most traded commodity in the world after oil, and 

one of the most widely consumed beverages in the world [1]. Moreover, the residues 

derived from its production are steadily increasing in proportion to the coffee 

consumption growth [1–3]. Coffee silverskin and spent coffee grounds are the main 

coffee industry residues [4]. The latter is a residue with fine particle size, high humidity 

(≈ 80 wt%), organic load and acidity, obtained during the treatment of raw coffee powder 

with hot water or steam for the instant coffee preparation. Therefore, this residue is 

generated in large amounts, with a worldwide annual generation of 8 million tons [3]. On 

an average one ton of green coffee generates about 650 kg of  spent coffee ground and 

about 2 kg of wet spent coffee ground are generated per kg of soluble coffee produced 

[5]. Coffee grounds are disposed as household waste that may be incinerated and/or 



moved to landfill [4]. Some alternative applications for coffee ground residues are their 

utilisation to produce compost [6], deodorizer or adsorbents [7,8], as well as source of 

renewable energy or for the synthesis of high value-added chemicals [9,10]. In this latter 

regard, the pyrolysis is a thermochemical conversion process that, depending on the 

reaction conditions, can be used to transform biomass directly into solid, gaseous or liquid 

biofuels, being the latter also a promising feedstock for chemicals synthesis [11]. In this 

respect, a systematic understanding of pyrolysis kinetics is a key factor for the assessment 

of feasibility, design, and scale-up of such biomass conversion processes for energy 

applications [12]. Therefore, we believe that the potential utilization of the generated 

residues for fuels or high value-added chemicals production by means of its pyrolysis 

results at least an attractive and challenging solution for this residue, whose worldwide 

production is still increasing. Therefore, the first, but not last step for its utilization on the 

pyrolysis process would be its kinetics study to understand the complex reaction 

mechanism of its different biopolymers decomposition to help on the design of an 

adequate reactor. Therefore, thermogravimetric analysis (TGA) is the most commonly 

used technique to study the solid-phase thermal decomposition reactions [13]. Although 

it typically operates in a different form in comparison to a real reactor (pyrolyzer, gasifier 

or combustor), it provides an understanding of thermal degradation processes occurring 

during the fuel conversion. In addition, as this study is focused on slow pyrolysis 

conversion of coffee grounds to solid and gaseous products, the conditions in the TGA 

represented real reactor conditions much more realistically that would be the case for 

processes deploying high heating rates, such as fast pyrolysis and gasification. 

The thermal decomposition of biomass proceeds via a very complex set of competitive 

and concurrent reactions and thus, the exact mechanism for biomass pyrolysis remains 

unknown. Each step likely has its own single apparent activation energy, and thus the use 



of an average, global apparent activation energy to define the kinetics of such processes 

could be interpreted as an inadequate simplification at best [14]. Furthermore, the DTG 

curves from these models may hide the true multi-stage character of pyrolytic reactions 

under a single peak [15]. 

During the second half of the 20th century several novel methods for determining 

Arrhenius parameters based on a single parameter emerged. These so-called “model-free” 

methods are founded on an isoconversional basis, wherein the degree of conversion, X, 

for a reaction was assumed to be constant and therefore the reaction rate, k, depended 

exclusively on the reaction temperature, T. By allowing apparent activation energy (Ea) 

to be calculated a priori, these approaches eliminate the need to initially hypothesize a 

form and rate order for the kinetic equation. Hence, isoconversional methods do not 

require previous knowledge of the reaction mechanism for biomass thermal degradation. 

Another advantage of such approaches is that the systematic error resulting from the 

kinetic analysis during the estimation of the Arrhenius parameters is eliminated [16]. 

Isoconversional models can follow either a differential or an integral approach to the 

treatment of TGA data. So, they are considered as a helpful solution for truly determining 

apparent activation energy [13]. 

During pyrolysis, due to the poor thermal conductivity of biomass, a temperature gradient 

is normally developed through the biomass sample between the external surface and the 

internal part. This gradient may be assumed to be proportional to the particle size, and 

decreases with reducing heating rate to the point that both, the external surface and the 

internal part of the biomass particles attains same temperature at a certain reaction time 

when appropriate time is given for heating [17]. Therefore, a defined particle size range 

was seleced in this study to avoid the effect of the particle size on the determination of 

kinetic parameters under dynamic conditions of different heating rates.



Therefore, the main objectives of this study were, on the one hand to determine the kinetic 

parameters for the slow pyrolysis of such promising lignocellulosic residue, coffee 

ground residues, and its individual biopolymer components (cellulose, hemicellulose and 

lignin) employing isoconversional model-free dynamic methods: Kissinger-Akahira-

Sunose (KAS) and Flynn-Wall-Ozawa (FWO), due to the advantages they offer in 

determining Arrhenius equation parameters without the need to make choices regarding 

kinetic models to be used [18]. The peak decomposition rates of biopolymers constituting 

the CGR and associated temperatures during pyrolysis process were evaluated. On the 

other hand, the non-condensable gases generated during the non-catalytic and catalytic 

tests were also monitored with reaction time and temperature by MS.

The obtained data and models provide important basis for design and operation of slow 

pyrolysis or estaged pyrolysis systems using coffee ground residues for production of 

biochar and biofuels or high value-added chemicals.

2. Materials and methods

2.1. Materials

The biomass employed in this study was coffee ground residue (CGR), collected from 

local canteen at the University, ensuring that one type of beans was used. As the pre-dried 

CGR still contained ≈ 15 wt% of moisture, the material was air dried for 24 hours at 105 

ºC in a laboratory oven before further use. To avoid the effect of the particle size on the 

kinetic parameters determination, the CGR was crushed and sieved to collect particles in 

the range of 250 – 500 µm. 

For the catalytic pyrolysis test, a Beta zeolite (Si/Al =150) in pellet form supplied by 

CLARIANT was employed. Prior to the catalytic pyrolysis test, the zeolite was crushed 

and sieved at same particle size as CGR sample.

2.2. Analytical techniques



The proximate analysis was determined according to European standards: moisture 

content (UNE-EN 14774-1:2010), ash content (UNE-EN 14775:2010), volatile matter 

(UNE-EN 15148:2010) and fixed carbon (determined by difference). A 

thermogravimetric analizer, TGA (Mettler-Toledo TGA/DSC1) equipped with automatic 

sample handling was employed to assess the volatile matter and the ash contents of the 

coffee ground residue. This is a well established thermoanalytical technique for thermal 

degradation studies of solid materials, such as biomass pyrolysis [13]. 

A quadrupole mass spectrometer, MS (HIDEN Analytical HPR-20) with an elecron 

ionisation source (70 eV) coupled to the TGA was employed for evolved gas analysis 

during the pyrolysis experiments. The ultimate analysis of feedstock and was carried out 

in a micro-elemental analyzer (Thermo Scientific) in order to determine content of C, H, 

N, S and O (by difference). The higher heating value (HHV) of CGR was calculated using 

the formula developed by Channiwala and Parikh [19]. The relative abundance of 

individual biopolymers (cellulose, hemicellulose and lignin) in CGR was determined by 

the sulfuric acid hydrolysis method [20].

2.3. Pyrolysis tests

The pyrolysis tests were performed in the same TGA previously mentioned, at 

atmospheric pressure. The CGR sample (around 15 mg) was deposited in an alumina 

crucible with a circular base and total volume of 150 µl. In this work, all the experiments 

were performed under non-isothermal conditions at  500 ºC and different heating rates 

(HR), 5–100 ºC/min, with a nitrogen flow rate of 100 ml/min. 

A zeolite to CGR ratio of 1:1 (g/g) was selected for the catalytic experiment, in which the 

Beta zeolite layer was deposited over the CGR sample in the crucible. 

2.4. Kinetic models



The one-step global model assumes that the devolatilization phenomena proceeds as a 

single reaction.

(1)𝐵𝑖𝑜𝑚𝑎𝑠𝑠 
𝑘
→𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑠 + 𝐶ℎ𝑎𝑟

where Volatiles represents the sum of the gas and bio-oil, and char is the remaining 

unreacted solid. The fundamental rate of transformation from solid-state to volatiles  is 

generally described by the following expression:

(2)
𝑑𝑋
𝑑𝑡 = 𝑘(𝑇)𝑓(𝑋)

where X is the degree of conversion of the fuel, t is the reaction time, k(T) is the reaction 

rate constant, and f(X) is a function that represents the reaction model.

The degree of conversion, X, is calculated as its relative weight loss as follows: 

(3)𝑋 =
𝑚0 ‒ 𝑚𝑡

𝑚0 ‒ 𝑚𝑓

where m0, mt and mf represents the initial mass, the mass at time t, and the final residual 

mass of the sample, respectively.

The reaction rate constant, k, is temperature dependent, and it obeys the fundamental 

Arrhenius rate expression: 

(4)𝑘 = 𝐴 ∙ 𝑒

‒ 𝐸𝑎
𝑅𝑇

where A is the pre-exponential factor (min-1), Ea is the apparent activation energy 

(kJ/mol), T is the absolute temperature (K) and R is the gas constant (8.314 J/mol·K).

Non-isothermal method employs a heating rate (), normally linear, to raise the 

temperature. A linear heating program follows: 

(5)𝑇 = 𝑇0 + 𝑡

 (6) =
𝑑𝑇
𝑑𝑡



where T0 is the starting temperature,  the constant heating rate (K/min), and T the 

temperature at time t. Then, substituting equations (4) and (6) in equation (2) gives:

(7)
𝑑𝑋
𝑑𝑇 =

𝐴


∙ 𝑒

‒ 𝐸𝑎
𝑅𝑇 𝑓(𝑋)

Equation (7) represents the differential form of the non-isothermal rate law.

Kinetics analysis is conventionally expected to produce a suitable kinetic description of 

the process in terms of the reaction model and the Arrhenius parameters. These three 

components, f(X), Ea, and A, are sometimes called the “kinetic triplet”. There are many 

methods for analysing solid-state kinetic data [21]. These methods can be classified 

according to the experimental conditions and the mathematical analysis implemented. 

The mathematical approaches employed can be divided into model-fitting and 

isoconversional (model-free) methods. However, as discussed in the introduction section, 

in this work only the isoconversional model-free dynamic methods were used to calculate 

the kinetic parameters for the CGR pyrolysis, which require a set of experimental tests at 

different heating rates. These methods are the Kissinger, Kissinger-Akahira-Sunose 

(KAS) and Flynn-Wall-Ozawa (FWO) methods. The advantages of the model-free 

analysis are: its simplicity, and the avoidance of errors associated to choices of a kinetic 

model [18].

2.5. Model-free methods

Kissinger method

This method allows for the kinetic parameters of a solid-state reaction without prior 

knowledge of the reaction mechanism. Kissinger [22] developed a model-free non-

isothermal method where Ea does not need to be calculated for each conversion value in 

order to evaluate kinetic parameters. The method equation is represented as follows:  

(8)𝐿𝑛( 𝛽

𝑇 2
𝑚

) = 𝐿𝑛(𝐴·𝑅
𝐸𝑎

) ‒
𝐸𝑎

𝑅𝑇𝑚



According to Kissinger, in the differential thermogravimetric curve (DTG), the 

temperature at which the peak weight loss velocity (in %/min) occurs for a given heating 

rate is determined by both A and Ea. Then, changing the heating rate the peak temperature 

will change. Hence, plotting Ln(/Tm
2) versus l /Tm, should give a straight line of slope 

-Ea/R.

Flynn-Wall-Ozawa method (FWO) 

The FWO method [23,24] is one of the most commonly accepted methods for the 

computation of kinetic parameters. It allows for the apparent activation energy to be 

obtained for each degree of conversion from the equation: 

(9)𝐿𝑛(𝛽) = 𝐿𝑛(𝐴𝑋·𝐸𝑎𝑋

𝑅·𝑔(𝑋)) ‒ 5.331 ‒ 1.052
𝐸𝑎𝑋

𝑅·𝑇𝑋

where EaX is the apparent activation energy for a fix degree of conversion X, and is 

calculated from the slope of the straight line obtained by plotting logarithm of heating 

rates, Ln, versus 1/TX, where TX is the reaction temperature at which this grade of 

conversion X is reached.

Kissinger-Akahira-Sunose method (KAS) 

The KAS method [22,25] is an integral isoconversional technique based on the following 

expression:

(10)𝐿𝑛( 𝛽

𝑇2
𝑋
) = 𝐿𝑛( 𝐴𝑋·𝑅

𝐸𝑎𝑋
·𝑔(𝑋)) ‒

𝐸𝑎𝑋

𝑅·𝑇𝑋

where EaX is the apparent activation energy for a fix degree of conversion X, and is 

calculated from the slope of the straight line obtained by plotting Ln(/TX
2), versus 1/TX, 

where TX is the reaction temperature at which this grade of conversion X is reached.

3. Results and discussion

3.1. Biomass analysis



Table 1 summarizes the proximate and ultimate analysis, as well as composition in terms 

of key biopolymers (hemicellulose, cellulose and lignin) of CGR. The pre-dried sample 

still showed 5 wt% of moisture because this material rapidly adsorbs moisture during 

transfer and storage. The table also shows that CGR contains more carbon and less oxygen 

(and therefore lower O/C ratio ≈ 0.66) than woody biomass and agricultural residues (O/C 

≈ 0.8-1.2) [26]. Such behaviour is attributed to the higher lignin contents in CGR, which 

reaches 40.6 wt% (whose O/C ratio ≈ 0.4 – 0.5), while hemicellulose and cellulose 

account for 36.6 and 10.6 wt%, respectively. This composition is rather similar to that 

reviewed by Obruca et al. [27] in terms of holocellulose biopolymers but with larger 

content of lignin. Consequently, the high heating value (HHV) of CGR, 23.4 MJ/kg, is 

higher than that of most biomass (17-20 MJ/kg) [26]. However, ultimate analysis also 

showed that CGR contains more nitrogen (2.3 wt%) than other more commonly used 

lignocellulosic biomass (0.1-1.0 wt%) due to high protein and caffeine content [4]. 

3.2. CGR thermochemical decomposition (TGA)

Fig. 1 shows both the conversion curves as weight loss in wt% (A), and their first 

derivative curves with time (DTG) as wt%/min (B) of the thermochemical decomposition 

of CGR as a function of reaction temperature under nitrogen atmosphere at 500 ºC and at 

five heating rates (HR): 5 – 100 ºC/min. The conversion curves at all heating rates indicate 

that mass loss of CGR mainly occurred at temperatures ranging from 250 to 500 ºC. The 

conversion curves shift to the right with increasing heating rate as can be observed in Fig. 

1(A), which implies higher values of initial decomposition temperature (see Table 2). 

However, this representation of the conversion data makes it difficult to identify the 

changes in the slope at different temperatures and reaction rates for the thermal 

decomposition of the three biopolymers contained in CGR. Therefore, the DTG curves, 

as shown in Fig. 1(B) were derived from the TG data, showing a first large peak with two 



remarkable shoulders corresponding to the well-established order of biopolymers 

decomposition: hemicellulose, cellulose and lignin [28–30]. As the figure shows, the peak 

with the subsequent shoulders can be clearly distinguished for all the heating rates, with 

the exception of 100 ºC/min. Although the identification of the maximum degradation 

rate of lignin in biomass is not commonly reported in the literature, as it usually overlaps 

with the cellulose decomposition peak [13,31,32], in the case of CGR it was possible, due 

to the large difference in cellulose and lignin contents, ≈ 11 and 42 wt%, respectively. 

Based on this initial observation it might be suggested that a more efficient staged 

pyrolysis process of these materials could be carried out to preferentially obtaining 

products of decomposition of individual biomass constituents separately when heating 

the material to different temperatures in stages. 

On the other hand, it is evident from the results that increasing the heating rate from 5 to 

100 ºC/min resulted in a progressive rise in the total volatile matter released at 500 ºC 

from 72.2 to 75.1 wt%, respectively as summarized in Table 2. This behaviour agrees 

with the theory that heating rate has an influence on the secondary reactions of the primary 

pyrolysis vapours. So, lower heating rates result in longer residence times of volatiles 

inside biomass particles and the reactor, favouring secondary reactions such as cracking, 

re-polymerization and re-condensation, which eventually lead to the char formation 

[13,17,33–35]. This is normally observed when comparing slow pyrolysis with fast/flash 

pyrolysis according to the product goal for the pyrolysis process; i.e., biochar production 

(for slow pyrolysis: 0.1-2 ºC/s) or bio-oil production for fast (10-200 ºC/s) and flash 

pyrolysis (>1000 ºC/s) [36]. However, it is interesting to see this effect even in the heating 

rate range still corresponding to slow (5-50 ºC/min) or at best intermediate (100 ºC/min) 

pyrolysis here studied because it could be used to modulate the reaction to the desire 

products.



Fig. 2(A) depicts the temperatures of maximum decomposition rate of CGR biopolymers 

during pyrolysis as a function of the heating rate. Here it can be observed that these peak 

temperatures logarithmically depend on the heating rate for the three biopolymers; which 

implies that at low heating rates the mass transfer limitations are more important than at 

high heating rates, at which the maximum decomposition rate for the different bipolymers 

occurs at similar temperatures.  

On the other hand, Fig. 2(B) shows that the maximum decomposition rate increased 

linearily with heating rate for all biopolymers in CGR. In addition, the observed 

difference in the slope of these lines suggests that the heating rate affected diverse 

biopolymers differently; thus, the more reactive the material (hemicellulose > celluose > 

lignin) the higher the slope. As lignin is the most stable and complex of biopolymers 

comprising biomass, its amount is assumed to be the main rate limiting factor in the 

thermochemical decomposition process of CGR.

Fig. 3 shows the TG-MS spectrum of the evolved gas species during the pyrolysis of CGR 

at 500 ºC and 15 ºC/min heating rate versus reaction time. This technique is the only one 

to simultaneously measure in real time the thermal decomposition and the gas product 

distribution of a very small sample. DTG curve and temperature profile are also plotted 

to show which gaseous compounds were evolved at each stage of the pyrolysis and at 

which temperatures. Water is the principal component, and it has two origins. Firstly, the 

physically adsorbed water, which is desorbed at ≈ 90 ºC; and secondly reaction water, 

produced at 250 – 400 ºC, with a maximum production at 314 ºC, originated from various 

dehydration reactions of the original CGR biopolymers and/or dehydration of the primary 

and secondary pyrolysis vapours from the removal of hydroxyl groups (–OH) overlapping 

with the main CGR degradation regime [37]. Fig. 4 displays the gases evolution trends at 

all the heating rates versus the reaction temperature. In this figure are also two water 



peaks regardless the heating rate, 5 – 50 ºC/min; though both peaks merged as a 

consequence of the fast heating at high heating rate. The other main gases, whose 

evolution also coincides with CGR decomposition rate profile are CO and CO2. On the 

one hand, CO is mostly produced from the removal of carbonyl groups from biopolymers. 

While CO2 is origninated from decarboxylation of –COOH and O–Acetyl groups from 

the original biopolymers, principally the hemicellulose. But also these oxygenates are 

originated from primary and secondary vapours; generated in the same range of 

temperatures, with maximum production shifted to a slightly higher temperature 330 ºC. 

These three oxygen containing gases seem to originate from the thermal degradation of 

the three biopolymers that constitute the CGR (hemicellulose, cellulose and lignin), 

which is visible on the DTG curve. Moreover, this is also demonstrated by the two small 

shoulders to the right from the main peak of these evolved gases. 

The removal of methoxyl groups (–O–CH3) from the lignocellulosic structure is 

associated with the CH4 production during pyrolysis. CH4 is released from the biomass 

structure as a consequence of multi-step reactions, so the removal of methoxyl 

substituents of the hemicellulose and lignin and the conversion of the alkyl chain of the 

lignin are attributed to the CH4 evolution during biomass pyrolysis [38–41]. The release 

of (C1-C2) and H2 is mainly due to the instability of intermediate condensable species 

produced during primary degradation. Thus, as temperature increased, the C–C and C–H 

bonds break to form free radicals, which are recombined into small molecular compounds 

like light hydrocarbons C2H4 and C2H6, while H2 was mainly produced from the breaking 

of C–H bonds. These species are evolved to a much lower extent, which might be related 

to the aromatization or the char structure during the secondary pyrolysis [13]. Fig. 4 also 

shows that the first appearance of the different gaseous species are shifted to lower 

reaction temperatures as the heating rate was raised. 



Fig. 5 displays de evolution with reaction time of the main evolved gases during a very 

preliminary catalytic pyrolysis test performed at 500 ºC and 15 ºC/min by placing a Beta 

zeolite layer over the CGR sample in the TGA crucible for comparison with its non-

catalytic performance. In this figure can be appreciated that the progression of the 

oxygenated species, H2O, CO and CO2, during the catalytic test matched relatively well 

with that obtained without catalyst at temperatures below 400 ºC, from which their 

production started to be slightly higher, especially CO. This means that the Beta zeolite 

employed herein shows certain deoxygenation activity for the pyrolysis primary vapors, 

but not much. However, is in the light hydrocarbons development where most significant 

differences are observed, reflecting a severe cracking activity of this zeolite over the 

pyrolysis primary and secondary vapours with temperature peaks around 475 – 500 ºC 

[42]. On the one hand, the production of CH4 and H2 deviated from the non-catalytic 

behaviour above 405 ºC, whilst the production of the C2 hydrocarbons significantly 

increased from 330 to 500 ºC, with peak productions of C2H4 and C2H6 at 470 amd 485 

ºC, respectively. The utilisation of this type of catalyst would significantly increase the 

heating value of the gas fraction due to its higher hydrocarbons content.

3.3.   Kinetic analysis

The TGA experimental data were analyzed in order to obtain the kinetic parameters using 

three model-free methods. To avoid any influence of the physically bound moisture 

desorption from CGR sample, the conversion (in wt%) was calculated from the 

experimental data collected at temperatures between 150 and 500 ºC, corresponding to 

the active pyrolysis stage where hemicellulose, cellulose and lignin decomposition 

occurs. Figs. S1(A – C) show the plots corresponding to the Kissinger, FWO and KAS 

models, respectively, used to calculate the kinetic parameters of the dynamic degradation 

of the biopolymers in CGR according to equations described in Section 2.3. Data in Fig. 



S1(A) were used to calculate the A and Ea according to the Kissinger method. This method 

has the disadvantage that these parameters are calculated just from the temperature that 

corresponds to the highest weight loss rate (DTGmax). So, it means that this method should 

be employed simply for those samples showing a single DTG peak. In the case of CGR, 

these parameters would purely correspond to the hemicellulose degradation, which is the 

most reactive biopolymer in this biomass, in terms of degradation rate as shown in Fig. 

2, disregarding the role of the other two biopolymers. However, the FWO and KAS 

methods calculate the kinetic parameters based on values of conversion from 5 to 90 wt%, 

with a 5 wt% step as shown in Figs. S1(B – C), which implies that the kinetic parameters 

for the individual biopolymers that comprise CGR may be estimated. These lines from 

linear fit at different conversion levels have fairly high linear correlation coefficients, > 

0.995 (as summarized in Table S1), suggesting that the values of Ea and A satisfy accuracy 

requirements. This can be observed in Fig. 6, where the calculated apparent Ea is plotted 

as a function of the conversion level for FWO and KAS methods in comparison with that 

constant value obtained with Kissinger method. Here, it can be seen that Ea increases with 

temperature and conversion level. This is characteristic of processes with different 

reaction mechanisms. Even when each of the biopolymers that constitutes the CGR 

(hemicellulose, cellulose and lignin) has its own apparent activation energy, its thermal 

decomposition proceeds via a very complex set of competitive and concurrent reactions, 

due to the synergistic effects between its biopolymers. However, an approximate 

estimation of the Ea of these components can be assessed from the average values of 

different steps shown in Fig. 6. Thus, hemicellulose, cellulose and lignin would present 

values of 213, 240 and 265 kJ/mol, respectively according to FWO method; while 215, 

242 and 268  kJ/mol, respectively for the KAS method as is summarized in Table S1. 



The results show that the values estimated for the decomposition of hemicellulose are 

very close to those obtained for CGR using the Kissinger method (212 kJ/mol), which is 

in concordance as this method uses the maximum decomposition rate to calculate the 

kinetic parameters. When the conversion increases further than 80 wt%, the apparent 

activation energy increased sharply from 273 kJ/mol to 347 kJ/mol for FWO, and from 

276 kJ/mol to 353 kJ/mol for KAS method as shown in Table S1, which could be due to 

the re-polymerization and re-condensation reactions leading to char formation. Then, 

taking into account all the steps in the pyrolysis process of the coffee ground residues, the 

apparent activation energy for the whole process was estimated as 244 and 241 kJ/mol 

for KAS and FWO methods, respectively. These Ea results are in correspondence with 

thermostability sequence analysis of these three CGR biopolymer components 

(hemicellulose, cellulose and lignin) [43]. Therefore, the lignin content would be the main 

controlling factor in biomass pyrolysis in industrial processes [44]. In this way, these kind 

of model-free isoconversional dynamic methods have been shown as a very useful tools 

to assess the kinetic parameters of CGR, as they can provide Ea values to be applied in 

models for designing reactors for its utilisation as fuel. Furthermore, due to the ability to 

obtain kinetic parameters for decomposition of individual biolopymenrs, the data could 

be used for designing a more efficient staged pyrolysis process allowing preferential 

recovery of decomposition products of individual biopolymers separately. Such process 

would enable more efficient production of high-value chemicals from biomass.

Conclusions

In this work, the utilisation of coffee ground residues, a lignocellulosic residue whose 

worldwide production is continuously increasing, has been explored for its pyrolysis 

application through the calculation of its kinetics parameters and those for its biopolymers 

constituents by thermogravimetric analysis. For that purpose, a thermogravimetric 



analyser coupled to a mass spectrometer (TG-MS) for the online detection of the evolved 

gases were employed to perform the pyrolysis tests at different heating rates (5 – 100 

ºC/min) and at maximum temperature of 500 ºC. The results show that the heating rate 

significantly affected the thermal decomposition of coffee ground residues during 

pyrolysis. The maximum decomposition rate increased linearly with the heating rate; but 

also, the more reactive the material (hemicellulose > celluose > lignin) the higher the 

slope. 

Main gases produced during the pyrolysis of CGR were oxygen containing species, and 

were evolved between 250 and 425 ºC, with H2O being the most important (from the 

removal of hydroxyl groups –OH), followed by CO (from decarbonylation reactions) and 

CO2 (from decarboxylation reactions) of parent biopolymers and primary and secondary 

vapours. The use of the Beta zeolite had only negligible effect on deoxygenation 

reactions, however it significantly promoted cracking reactions of pyrolysis primary and 

secondary vapours giving rise to a significant increase of light hydrocarbons formation 

(C1-C2) with the subsequent improvement in the heating value of the pyrolysis gas.

Kinetic parameters of the pyrolysis process were determined using isoconversional 

methods. While with the Kissinger method a single value for the apparent activation 

energy was obtained (212 kJ/mol), which correspond to the hemicellulose decomposition 

(as the most reactive component in this biomass), KAS and FWO methods showed that 

the Ea increases with the conversion level, revealing a complex set of competitive and 

concurrent reactions. The average value for the Ea of the hemicellulose, cellulose and 

lignin from these two methods were equal to 214, 241 and 266 kJ/mol, respectively. 

Whereas the apparent activation energy for the whole pyrolysis process would increase 

up to 242 kJ/mol. The use of model-free isoconversional dynamic methods proved to be 

valuable to assess the kinetic parameters of CGR. The Ea values for pyrolysis of CGR are 



important input parameters for modelling and design of reactors and their optimisation 

for production of biochar, fuels or high added-value chemicals.
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Highlights

- Maximum decomposition rate of each biopolymer increased linearly with heating rate. 

- Maximum biopolymers reactivity decreased in the order of: hemicellulose > cellulose > 

lignin.

- MS evolution of oxygenates (H2O, CO and CO2) overlaps with main CGR degradation 

regime (250 – 425 ºC).

- Catalytic pyrolysis improved deoxygenation only negligibly but importantly enhanced 

vapours cracking. 

 - KAS and FWO kinetic methods satisfactorily gave rise to Ea values of CGR individual 

biopolymers. 
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Abstract

A thermogravimetric analyser coupled to a mass spectrometer, for evolved gas analysis, 

were employed to perform pyrolysis tests at heating rates (5 – 100 ºC/min) and at 

maximum temperature of 500 ºC to determine kinetic parameters of thermochemical 

decomposition of the biopolymers comprising coffee ground residues. During the 

pyrolysis process, the maximum decomposition rate of each biomass component 

increased linearly with the heating rate used. The slope increased with the biopolymer 

reactivity in the following sequence: hemicellulose > celluose > lignin. Accordingly, 

kinetic parameters for any of these individual biopolymers in CGR were estimated using 

the model-free isoconversional dynamic methods: Kissinger–Akahira–Sunose (KAS) and 

Flynn–Wall–Ozawa (FWO) models. The average value for the apparent activation energy 

of the individual biopolymers (hemicellulose, cellulose and lignin) in CGR calculated  by 

KAS and FWO methods: were estimated as 214, 241 and 266 kJ/mol, respectively;  whilst 

for the CGR as a whole it was 242 kJ/mol. The two model-free isoconversional dynamic 

methods have been shown to be useful tools for assessment of biomass pyrolysis kinetic 

parameters, as they can provide Ea values for use in reactor design models.
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Keywords: coffee ground residues; kinetics; isoconversional methods; apparent 

activation energy

1. Introduction

The depletion of fossil fuel reserves and the environmental problems derived from their 

utilization have made necessary the use of alternative fuels. Biomass is a clean and 

renewable energy source leading to environmental, technical and economic benefits. 

Residues from agricultural production and processing industries are readily available in 

large quantities. Coffee is the second most traded commodity in the world after oil, and 

one of the most widely consumed beverages in the world [1]. Moreover, the residues 

derived from its production are steadily increasing in proportion to the coffee 

consumption growth [1–3]. Coffee silverskin and spent coffee grounds are the main 

coffee industry residues [4]. The latter is a residue with fine particle size, high humidity 

(≈ 80 wt%), organic load and acidity, obtained during the treatment of raw coffee powder 

with hot water or steam for the instant coffee preparation. Therefore, this residue is 

generated in large amounts, with a worldwide annual generation of 8 million tons [3]. On 

an average one ton of green coffee generates about 650 kg of  spent coffee ground and 

about 2 kg of wet spent coffee ground are generated per kg of soluble coffee produced 

[5]. Coffee grounds are disposed as household waste that may be incinerated and/or 

moved to landfill [4]. Some alternative applications for coffee ground residues are their 

utilisation to produce compost [6], deodorizer or adsorbents [7,8], as well as source of 

renewable energy [9,10]. In this latter regard, the pyrolysis is a thermochemical 

conversion process that, depending on the reaction conditions, can be used to transform 

biomass directly into liquid, solid or gaseous biofuels [11]. However, pyrolysis is also the 

first stage of other thermochemical processes, such as combustion and gasification. In 

this respect, a systematic understanding of pyrolysis kinetics is a key factor for the 
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assessment of feasibility, design, and scale-up of such biomass conversion processes for 

energy applications [12]. Thermogravimetric analysis (TGA) is the most commonly used 

technique to study the solid-phase thermal decomposition reactions [13]. Although it 

typically operates in a different form in comparison to a real reactor (pyrolyzer, gasifier 

or combustor), it provides an understanding of thermal degradation processes occurring 

during the fuel conversion. In addition, as this study is focused on slow pyrolysis 

conversion of coffee grounds to solid and gaseous products, the conditions in the TGA 

represented real reactor conditions much more realistically that would be the case for 

processes deploying high heating rates, such as fast pyrolysis and gasification. 

The thermal decomposition of biomass proceeds via a very complex set of competitive 

and concurrent reactions and thus, the exact mechanism for biomass pyrolysis remains 

unknown. Each step likely has its own single apparent activation energy, and thus the use 

of an average, global apparent activation energy to define the kinetics of such processes 

could be interpreted as an inadequate simplification at best [14]. Furthermore, the DTG 

curves from these models may hide the true multi-stage character of pyrolytic reactions 

under a single peak [15]. 

During the second half of the 20th century several novel methods for determining 

Arrhenius parameters based on a single parameter emerged. These so-called “model-free” 

methods are founded on an isoconversional basis, wherein the degree of conversion, X, 

for a reaction was assumed to be constant and therefore the reaction rate, k, depended 

exclusively on the reaction temperature, T. By allowing apparent activation energy (Ea) 

to be calculated a priori, these approaches eliminate the need to initially hypothesize a 

form and rate order for the kinetic equation. Hence, isoconversional methods do not 

require previous knowledge of the reaction mechanism for biomass thermal degradation. 

Another advantage of such approaches is that the systematic error resulting from the 
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kinetic analysis during the estimation of the Arrhenius parameters is eliminated [16]. 

Isoconversional models can follow either a differential or an integral approach to the 

treatment of TGA data. So, they are considered as a helpful solution for truly determining 

apparent activation energy [13]. 

Therefore, the main objective of this study was to determine the kinetic parameters for 

the slow pyrolysis of coffee ground residues (CGR) and its individual biopolymer 

components (cellulose, hemicellulose and lignin) employing isoconversional model-free 

dynamic methods: Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO), 

due to the advantages they offer in determining Arrhenius equation parameters without 

the need to make choices regarding kinetic models to be used [17]. 

During pyrolysis, due to the poor thermal conductivity of biomass, a temperature gradient 

is normally developed through the biomass sample between the external surface and the 

internal part. This gradient may be assumed to be proportional to the particle size, and 

decreases with reducing heating rate to the point that both, the external surface and the 

internal part of the biomass particles attains same temperature at a certain reaction time 

when appropriate time is given for heating [18]. Therefore, a defined particle size range 

was seleced in this study to avoid the effect of the particle size on the determination of 

kinetic parameters under dynamic conditions of different heating rates. 

The peak decomposition rates of biopolymers constituting the CGR and associated 

temperatures during pyrolysis process were evaluated. This was achieved by 

thermogravimetric analysis utilising different heating rates under inert (N2) atmosphere. 

The obtained data and models provide important basis for design and operation of slow 

pyrolysis or estaged pyrolysis systems using coffee ground residues for production of 

biochar and chemicals.

2. Materials and methods
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2.1. Materials

The biomass employed in this study was coffee ground residue (CGR), collected from 

local canteen at the University, ensuring that one type of beans was used. As the pre-dried 

CGR still contained ≈ 15 wt% of moisture, the material was air dried for 24 hours at 105 

ºC in a laboratory oven before further use. To avoid the effect of the particle size on the 

kinetic parameters determination, the CGR was crushed and sieved to collect particles in 

the range of 250 – 500 µm. 

2.2. Analytical techniques

The proximate analysis was determined according to European standards: moisture 

content (UNE-EN 14774-1:2010), ash content (UNE-EN 14775:2010), volatile matter 

(UNE-EN 15148:2010) and fixed carbon (determined by difference). A 

thermogravimetric analizer, TGA (Mettler-Toledo TGA/DSC1) equipped with automatic 

sample handling was employed to asses the volatile matter and the ash contents of the 

coffee ground residue. This is a well established thermoanalytical technique for thermal 

degradation studies of solid materials, such as biomass pyrolysis [13]. 

A mass spectrometer, MS (HIDEN Analytical HPR-20) coupled to the TGA was 

employed for evolved gas analysis during the pyrolysis experiments. The ultimate 

analysis of feedstock and was carried out in a micro-elemental analyzer (Thermo 

Scientific) in order to determine content of C, H, N, S and O (by difference). The higher 

heating value (HHV) of CGR was calculated using the formula developed by Channiwala 

and Parikh [19]. The relative abundance of individual biopolymers (cellulose, 

hemicellulose and lignin) in CGR was determined by the sulfuric acid hydrolysis method 

[20].

2.3. Pyrolysis tests

The pyrolysis tests were performed in the same TGA previously mentioned, at 

atmospheric pressure. The CGR sample (around 15 mg) was deposited in an alumina 
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crucible with a circular base and total volume of 150 µl. In this work, all the experiments 

were performed under non-isothermal conditions at different heating rates (HR), 5–

100ºC/min, with a nitrogen flow rate of 100 ml/min. 

2.4. Kinetic models

The one-step global model assumes that the devolatilization phenomena proceeds as a 

single reaction.

(1)𝐵𝑖𝑜𝑚𝑎𝑠𝑠 
𝑘
→𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑠 + 𝐶ℎ𝑎𝑟

where Volatiles represents the sum of the gas and bio-oil, and char is the remaining 

unreacted solid. The fundamental rate of transformation from solid-state to volatiles  is 

generally described by the following expression:

(2)
𝑑𝑋
𝑑𝑡 = 𝑘(𝑇)𝑓(𝑋)

where X is the degree of conversion of the fuel, t is the reaction time, k(T) is the reaction 

rate constant, and f(X) is a function that represents the reaction model.

The degree of conversion, X, is calculated as its relative weight loss as follows: 

(3)𝑋 =
𝑚0 ‒ 𝑚𝑡

𝑚0 ‒ 𝑚𝑓

where m0, mt and mf represents the initial mass, the mass at time t, and the final residual 

mass of the sample, respectively.

The reaction rate constant, k, is temperature dependent, and it obeys the fundamental 

Arrhenius rate expression: 

(4)𝑘 = 𝐴 ∙ 𝑒

‒ 𝐸𝑎
𝑅𝑇

where A is the pre-exponential factor (min-1), Ea is the apparent activation energy 

(kJ/mol), T is the absolute temperature (K) and R is the gas constant (8.314 J/mol·K).

Non-isothermal method employs a heating rate (), normally linear, to raise the 

temperature. A linear heating program follows: 
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(5)𝑇 = 𝑇0 + 𝑡

 (6) =
𝑑𝑇
𝑑𝑡

where T0 is the starting temperature,  the constant heating rate (K/min), and T the 

temperature at time t. Then, substituting equations (4) and (6) in equation (2) gives:

(7)
𝑑𝑋
𝑑𝑇 =

𝐴


∙ 𝑒

‒ 𝐸𝑎
𝑅𝑇 𝑓(𝑋)

Equation (7) represents the differential form of the non-isothermal rate law.

Kinetics analysis is conventionally expected to produce a suitable kinetic description of 

the process in terms of the reaction model and the Arrhenius parameters. These three 

components, f(X), Ea, and A, are sometimes called the “kinetic triplet”. There are many 

methods for analysing solid-state kinetic data [21]. These methods can be classified 

according to the experimental conditions and the mathematical analysis implemented. 

The mathematical approaches employed can be divided into model-fitting and 

isoconversional (model-free) methods. However, as discussed in the introduction section, 

in this work only the isoconversional model-free dynamic methods were used to calculate 

the kinetic parameters for the CGR pyrolysis, which require a set of experimental tests at 

different heating rates. These methods are the Kissinger, Kissinger-Akahira-Sunose 

(KAS) and Flynn-Wall-Ozawa (FWO) methods. The advantages of the model-free 

analysis are: its simplicity, and the avoidance of errors associated to choices of a kinetic 

model [17].

2.5. Model-free methods

Kissinger method

This method allows for the kinetic parameters of a solid-state reaction without prior 

knowledge of the reaction mechanism. Kissinger [22] developed a model-free non-
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isothermal method where Ea does not need to be calculated for each conversion value in 

order to evaluate kinetic parameters. The method equation is represented as follows:  

(8)𝐿𝑛( 𝛽

𝑇 2
𝑚

) = 𝐿𝑛(𝐴·𝑅
𝐸𝑎

) ‒
𝐸𝑎

𝑅𝑇𝑚

According to Kissinger, in the differential thermogravimetric curve (DTG), the 

temperature at which the peak weight loss velocity (in %/min) occurs for a given heating 

rate is determined by both A and Ea. Then, changing the heating rate the peak temperature 

will change. Hence, plotting Ln(/Tm
2) versus l /Tm, should give a straight line of slope 

-Ea/R.

Flynn-Wall-Ozawa method (FWO) 

The FWO method [23,24] is one of the most commonly accepted methods for the 

computation of kinetic parameters. It allows for the apparent activation energy to be 

obtained for each degree of conversion from the equation: 

(9)𝐿𝑛(𝛽) = 𝐿𝑛(𝐴𝑋·𝐸𝑎𝑋

𝑅·𝑔(𝑋)) ‒ 5.331 ‒ 1.052
𝐸𝑎𝑋

𝑅·𝑇𝑋

where EaX is the apparent activation energy for a fix degree of conversion X, and is 

calculated from the slope of the straight line obtained by plotting logarithm of heating 

rates, Ln, versus 1/TX, where TX is the reaction temperature at which this grade of 

conversion X is reached.

Kissinger-Akahira-Sunose method (KAS) 

The KAS method [22,25] is an integral isoconversional technique based on the following 

expression:

(10)𝐿𝑛( 𝛽

𝑇2
𝑋
) = 𝐿𝑛( 𝐴𝑋·𝑅

𝐸𝑎𝑋
·𝑔(𝑋)) ‒

𝐸𝑎𝑋

𝑅·𝑇𝑋
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where EaX is the apparent activation energy for a fix degree of conversion X, and is 

calculated from the slope of the straight line obtained by plotting Ln(/TX
2), versus 1/TX, 

where TX is the reaction temperature at which this grade of conversion X is reached.

3. Results and discussion

3.1. Biomass analysis

Table 1 summarizes the proximate and ultimate analysis, as well as composition in terms 

of key biopolymers (hemicellulose, cellulose and lignin) of CGR. The pre-dried sample 

still showed 5 wt% of moisture because this material rapidly adsorbs moisture during 

transfer and storage. The table also shows that CGR contains more carbon and less oxygen 

(and therefore lower O/C ratio ≈ 0.66) than woody biomass and agricultural residues (O/C 

≈ 0.8-1.2) [26]. Such behaviour is attributed to the higher lignin contents in CGR, which 

reaches 40.6 wt% (whose O/C ratio ≈ 0.4 – 0.5), while hemicellulose and cellulose 

account for 36.6 and 10.6 wt%, respectively. This composition is rather similar to that 

reviewed by Obruca et al. [27] in terms of holocellulose biopolymers but with larger 

content of lignin. Consequently, the high heating value (HHV) of CGR, 23.4 MJ/kg, is 

higher than that of most biomass (17-20 MJ/kg) [26]. However, ultimate analysis also 

showed that CGR contains more nitrogen (2.3 wt%) than other more commonly used 

lignocellulosic biomass (0.1-1.0 wt%) due to high protein and caffeine content [4]. 

3.2. CGR thermochemical decomposition (TGA)

Fig. 1 shows both the conversion curves as weight loss in wt% (A), and their first 

derivative curves with time (DTG) as wt%/min (B) of the thermochemical decomposition 

of CGR as a function of reaction temperature under nitrogen atmosphere at 500 ºC and at 

five heating rates (HR): 5 – 100 ºC/min. The conversion curves at all heating rates indicate 

that mass loss of CGR mainly occurred at temperatures ranging from 250 to 500 ºC. The 

conversion curves shift to the right with increasing heating rate as can be observed in Fig. 
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1(A), which implies higher values of initial decomposition temperature (see Table 2). 

However, this representation of the conversion data makes it difficult to identify the 

changes in the slope at different temperatures and reaction rates for the thermal 

decomposition of the three biopolymers contained in CGR. Therefore, the DTG curves, 

as shown in Fig. 1(B) were derived from the TG data, clearly showing three conversion 

peaks corresponding to the well established order of biopolymers decomposition: 

hemicellulose, cellulose and lignin [28–30]. As the figure shows, the three peaks can be 

clearly distinguished for all the heating rates, with the exception of 100 ºC/min. Although 

the identification of the maximum degradation rate of lignin in biomass is not commonly 

reported in the literature, as it usually overlaps with the cellulose decomposition peak 

[13,31,32], in the case of CGR it was possible, due to the large difference in cellulose and 

lignin contents, ≈ 11 and 42 wt%, respectively. Based on this initial observation it might 

be suggested that a more efficient staged pyrolysis process of these materials could be 

carried out to preferentially obtaining products of decomposition of individual biomass 

constituents separately when heating the material to different temperatures in stages. 

On the other hand, it is evident from the results that increasing the heating rate from 5 to 

100 ºC/min resulted in a progressive rise in the total volatile matter released at 500 ºC 

from 72.2 to 75.1 wt%, respectively as summarized in Table 2. This behaviour agrees 

with the theory that heating rate has an influence on the secondary reactions of the primary 

pyrolysis vapours. So, lower heating rates result in longer residence times of volatiles 

inside biomass particles and the reactor, favouring secondary reactions such as cracking, 

re-polymerization and re-condensation, which eventually lead to the char formation 

[13,18,33–35]. This is normally observed when comparing slow pyrolysis with fast/flash 

pyrolysis according to the product goal for the pyrolysis process; i.e., biochar production 

(for slow pyrolysis: 0.1-2 ºC/s) or bio-oil production for fast (10-200 ºC/s) and flash 
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pyrolysis (>1000 ºC/s) [36]. However, it is interesting to see this effect even in the heating 

rate range still corresponding to slow (5-50 ºC/min) or at best intermediate (100 ºC/min) 

pyrolysis here studied because it could be used to modulate the reaction to the desire 

products.

Fig. 2(A) depicts the temperatures of maximum decomposition rate of CGR biopolymers 

during pyrolysis as a function of the heating rate. Here it can be observed that these peak 

temperatures logarithmically depend on the heating rate for the three biopolymers; which 

implies that at low heating rates the mass transfer limitations are more important than at 

high heating rates, at which the maximum decomposition rate for the different bipolymers 

occurs at similar temperatures.  

On the other hand, Fig. 2(B) shows that the maximum decomposition rate increased 

linearily with heating rate for all biopolymers in CGR. In addition, the observed 

difference in the slope of these lines suggests that the heating rate affected diverse 

biopolymers differently; thus, the more reactive the material (hemicellulose > celluose > 

lignin) the higher the slope. As lignin is the most stable and complex of biopolymers 

comprising biomass, its amount is assumed to be the main rate limiting factor in the 

thermochemical decomposition process of CGR.

Fig. 3 shows the MS spectrum of the evolved gas species during the pyrolysis of CGR at 

500 ºC and 15 ºC/min heating rate versus reaction time. DTG curve and temperature 

profile are also plotted to show which gaseous compounds were evolved at each stage of 

the pyrolysis and at which temperatures. Water is the principal component, and it has two 

origins. Firstly, the physically adsorbed water, which is desorbed at ≈ 90 ºC; and secondly 

reaction water, produced at 250 – 400 ºC, with a maximum production at 314 ºC, 

originated from various dehydration reactions of the original CGR biopolymers and/or 

dehydration of the primary and secondary pyrolysis vapours [37]. The other main gases 
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are CO and CO2 produced from decarbonylation and decarboxylation reactions of same 

original biopolymers and primary and secondary vapours, respectively; generated in the 

same range of temperatures, with maximum production shifted to a slightly higher 

temperature 330 ºC. These three oxygen containing gases seem to originate from the 

thermal degradation of the three biopolymers that constitute the CGR (hemicellulose, 

cellulose and lignin), which is visible on the DTG curve. Moreover, this is also 

demonstrated by the two small shoulders to the right from the main peak of these evolved 

gases. In addition, H2 and light hydrocarbons (C1-C2) are evolved to a much lower extent, 

with two small peaks appearing at 330 and 480 ºC, which might be related to the 

aromatization or the char structure during the secondary pyrolysis [13]. These gas 

evolution trends apply to all the heating rates investigated in this study.

3.3.   Kinetic analysis

The TGA experimental data were analyzed in order to obtain the kinetic parameters using 

three model-free methods. To avoid any influence of the physically bound moisture 

desorption from CGR sample, the conversion (in wt%) was calculated from the 

experimental data collected at temperatures between 150 and 500 ºC, corresponding to 

the active pyrolysis stage where hemicellulose, cellulose and lignin decomposition 

occurs. Figs. 4(A – C) show the plots corresponding to the Kissinger, FWO and KAS 

models, respectively, used to calculate the kinetic parameters of the dynamic degradation 

of the biopolymers in CGR according to equations described in Section 2.3. Data in Fig. 

4(A) were used to calculate the A and Ea according to the Kissinger method. This method 

has the disadvantage that these parameters are calculated just from the temperature that 

corresponds to the highest weight loss rate (DTGmax). So, it means that this method should 

be employed simply for those samples showing a single DTG peak. In the case of CGR, 

these parameters would purely correspond to the hemicellulose degradation, which is the 
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most reactive biopolymer in this biomass, in terms of degradation rate as shown in Fig. 

2, disregarding the role of the other two biopolymers. However, the FWO and KAS 

methods calculate the kinetic parameters based on values of conversion from 5 to 90 wt%, 

with a 5 wt% step as shown in Figs. 4(B – C), which implies that the kinetic parameters 

for the individual biopolymers that comprise CGR may be estimated. These lines from 

linear fit at different conversion levels have fairly high linear correlation coefficients, > 

0.995 (as summarized in Table 3), suggesting that the values of Ea and A satisfy accuracy 

requirements. This can be observed in Fig. 5, where the calculated apparent Ea is plotted 

as a function of the conversion level for FWO and KAS methods in comparison with that 

constant value obtained with Kissinger method. Here, it can be seen that Ea increases with 

temperature and conversion level. This is characteristic of processes with different 

reaction mechanisms. Even when each of the biopolymers that constitutes the CGR 

(hemicellulose, cellulose and lignin) has its own apparent activation energy, its thermal 

decomposition proceeds via a very complex set of competitive and concurrent reactions, 

due to the synergistic effects between its biopolymers. However, an approximate 

estimation of the Ea of these components can be assessed from the average values of 

different steps shown in Fig. 5. Thus, hemicellulose, cellulose and lignin would present 

values of 213, 240 and 265 kJ/mol, respectively according to FWO method; while 215, 

242 and 268  kJ/mol, respectively for the KAS method as is summarized in Table 3. 

The results show that the values estimated for the decomposition of hemicellulose are 

very close to those obtained for CGR using the Kissinger method (212 kJ/mol), which is 

in concordance as this method uses the maximum decomposition rate to calculate the 

kinetic parameters. When the conversion increases further than 80 wt%, the apparent 

activation energy increased sharply from 273 kJ/mol to 347 kJ/mol for FWO, and from 

276 kJ/mol to 353 kJ/mol for KAS method as shown in Table 3, which could be due to 
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the re-polymerization and re-condensation reactions leading to char formation. Then, 

taking into account all the steps in the pyrolysis process of the coffee ground residues, the 

apparent activation energy for the whole process was estimated as 244 and 241 kJ/mol 

for KAS and FWO methods, respectively. These Ea results are in correspondence with 

thermostability sequence analysis of these three CGR biopolymer components 

(hemicellulose, cellulose and lignin) [38]. Therefore, the lignin content would be the main 

controlling factor in biomass pyrolysis in industrial processes [39]. In this way, these kind 

of model-free isoconversional dynamic methods have been shown as useful tools to assess 

the kinetic parameters of CGR, as they can provide Ea values to be applied in models for 

designing reactors for its utilisation as fuel. Furthermore, due to the ability to obtain 

kinetic parameters for decomposition of individual biolopymenrs, the data could be used 

for designing a more efficient staged pyrolysis process allowing preferential recovery of 

decomposition products of individual biopolymers separately. Such process would enable 

more efficient production of high-value chemicals from biomass.

Conclusions

In this work, the kinetic parameters of the thermochemical decomposition of biopolymer 

components of coffee ground residues were estimated by thermogravimetric analysis. For 

that purpose, a thermogravimetric analyser coupled to a mass spectrometer for the 

detection of the evolved gases were employed to perform the pyrolysis tests at different 

heating rates (5 – 100 ºC/min) and at maximum temperature of 500 ºC. The results shoed 

that the heating rate significantly affected the thermal decomposition of coffee ground 

residues during pyrolysis. The maximum decomposition rate increased linearly with the 

heating rate; but also, the more reactive the material (hemicellulose > celluose > lignin) 

the higher the slope. 
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Main gases produced during the pyrolysis of coffee ground residues were oxygen 

containing species, and were evolved between 250 and 425 ºC, with H2O being the most 

important, followed by CO (from decarbonylation reactions) and CO2 (from 

decarboxylation reactions) of parent biopolymers and primary and secondary vapours. 

Kinetic parameters of the pyrolysis process were determined using isoconversional 

methods (Kissinger, KAS and FWO). The apparent activation energy (212 kJ/mol) 

obtained from the Kissinger method would simply correspond to that of the hemicellulose 

biopolymer in coffee residues, as the most reactive component in this biomass. However 

with the other two methods, KAS and FWO, the apparent activation energy and pre-

exponential factors increase with the conversion level, revealing a complex set of 

competitive and concurrent reactions. The apparent activation energy estimated for the 

major constituents of coffee ground residues with the two isoconversional dynamic 

methods, FWO and KAS, were rather similar as shown in Fig. 5 and summarized in Table 

3. The average value for the Ea of the hemicellulose, cellulose and lignin from these two 

methods were equal to 214, 241 and 266 kJ/mol, respectively. Whereas the apparent 

activation energy for the whole pyrolysis process would increase up to 242 kJ/mol using 

the same methods.  Thus, these kind of model-free isoconversional dynamic methods 

have been demonstrated to be valuable tools to assess the kinetic parameters of CGR, as 

they can provide Ea values to be applied in models for designing reactors for its utilisation 

as fuel; but also, for a more efficient staged pyrolysis process.
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Figures

Figure Captions

Fig. 1. TG (A) and DTG (B) curves of the thermal decomposition of coffee ground residues 

(CGR) under N2 atmosphere at 500 ºC and at different heating rates (5 – 100 ºC/min).

Fig. 2. Temperature of maximum DTG (A) and DTGmax values (B) corresponding to the peaks 

associated to the thermochemical decomposition of three biopolymers (hemicellulose, 

cellulose and lignin) of coffee ground residues (CGR) under N2 atmosphere at 500 ºC and at 

different heating rates (5 – 100 ºC/min).

Fig. 3. Conversion and DTG curves, and evolved gaseous species (MS signal) versus reaction 

time during the pyrolysis of coffee ground residues (CGR) under N2 atmosphere at 500 ºC 

(heating rate: 15 ºC/min).

Fig. 4. Evolution of the gaseous species (MS signal) versus reaction time during the pyrolysis 

of coffee ground residues (CGR) under N2 atmosphere at 500 ºC and different heating rates.

Fig. 5. Evolution of the gaseous species (MS signal) versus reaction time during the non-

catalytic (red) and catalytic (blue) pyrolysis of coffee ground residues (CGR) under N2 

atmosphere at 500 ºC (heating rate: 15 ºC/min).

Fig. 6. Calculated apparent activation energy for pyrolysis of coffee ground residues (CGR) by 

the Kissinger, FWO and KAS kinetic methods for heating rates of between 5 and 50 ºC/min.
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Fig. 1. TG (A) and DTG (B) curves of the thermal decomposition of coffee ground residues 

(CGR) under N2 atmosphere at 500 ºC and at different heating rates (5 – 100 ºC/min).
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Fig. 2. Temperature of maximum DTG (A) and DTGmax values (B) corresponding to the peaks 

associated to the thermochemical decomposition of three biopolymers (hemicellulose, 

cellulose and lignin) of coffee ground residues (CGR) under N2 atmosphere at 500 ºC and at 

different heating rates (5 – 100 ºC/min).
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Fig. 4. Evolution of the gaseous species (MS signal) versus reaction temperature during the 

pyrolysis of coffee ground residues (CGR) under N2 atmosphere at 500 ºC and different heating 

rates.
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Fig. 5. Evolution of the gaseous species (MS signal) versus reaction time during the non-

catalytic (red) and catalytic (blue) pyrolysis of coffee ground residues (CGR) under N2 

atmosphere at 500 ºC (heating rate: 15 ºC/min).
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Fig. 6. Calculated apparent activation energy for pyrolysis of coffee ground residues (CGR) by 

the Kissinger, FWO and KAS kinetic methods for heating rates of between 5 and 50 ºC/min.
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Fig. S1. Plots of the Kissinger (A), FWO (B) and KAS (C) kinetic methods of CGR thermal 

decomposition from 150 to 500 ºC at different heating rates (5 – 50 ºC/min) to the calculation of the 

apparent activation energy (Ea). Conversion values of between 5 and 90 wt% were used for FWO and 

KAS methods.



Table S1. Kinetic parameters of coffee ground residues (CGR) obtained from the Kissinger, 
KAS and FWO models

KAS FWO
Conversion 
(wt%)

Ea (kJ mol-1) A (min-1) R2 Ea (kJ mol-1) A (min-1) R2

5 199.1 2.02E+19 0.9988 197.8 1.59E+19 0.9990
10 206.9 2.66E+19 0.9997 205.5 2.07E+19 0.9997
15 212.0 3.59E+19 0.9997 210.6 2.75E+19 0.9997
20 215.2 3.91E+19 0.9996 213.7 2.98E+19 0.9996
25 217.4 3.86E+19 0.9996 215.9 2.95E+19 0.9996
30 219.3 3.67E+19 0.9995 217.7 2.81E+19 0.9996
35 221.9 4.10E+19 0.9995 220.3 3.12E+19 0.9995
40 227.0 7.47E+19 0.9994 225.2 5.54E+19 0.9995
45 235.3 2.35E+20 0.9991 233.2 1.66E+20 0.9992
50 243.5 2.02E+19 0.9984 241.1 4.39E+20 0.9985
55 244.8 2.02E+19 0.9975 242.5 2.98E+20 0.9976
60 242.4 2.02E+19 0.9974 240.4 1.06E+20 0.9976
65 246.3 1.62E+20 0.9975 244.2 1.15E+20 0.9977
70 259.9 9.15E+20 0.9962 257.3 6.09E+20 0.9964
75 266.8 1.24E+21 0.9952 264.1 8.13E+20 0.9955
80 275.9 2.44E+21 0.9963 272.9 1.56E+21 0.9966
85 298.5 2.02E+19 0.9982 294.6 2.90E+22 0.9983
90 352.9 2.02E+19 0.9988 346.6 7.05E+25 0.9989
Estimated average values  

CGR 243.6 3.00E+20 241.3 3.92E+24

Hemicellulose 214.8 3.91E+19 213.3 2.98E+19

Cellulose 242.4 9.15E+19 240.3 2.25E+20

Lignin 267.5 1.53E+21 264.8 9.94E+20

KISSINGER 212.4 8.48E+18



Table 1. Proximate, ultimate and biopolymers analyses of dry coffee ground residues 

Analysis Coffee ground residues (CGR)
Moisture (wt%) 5.0
Proximate analysis, db (wt%)
Ash 0.9
Volatile Matter 76.4
Fixed Carbon 22.7
Ultimate analysis, db (wt%)
C 53.9
H 7.1
N 2.3
O 35.8
HHV (MJ kgdb

-1) 23.4
Cellulose 10.6
Hemicellulose 36.6
Lignin 40.6
Others* 12.2

db: dry basis
* Organic extractives unidentified compounds and ash determined by difference



Table 2. Decomposition characteristic of coffee ground residues (CGR) at different heating 

rates

Heating rate (ºC min-1) Ti (ºC) TDTGmax (ºC) DTGmax (wt% min-1) Xmax, 500ºC (wt%)
5 173 300 3.5 72.2
10 180 310 6.9 72.9
15 200 315 10.3 73.6
25 216 321 16.9 73.7
50 225 330 34.6 74.6
100 237 336 68.5 75.1


