

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia

Citation for published version:

Anderson, RP, Macdonald, FA, Jones, DS, McMahon, S & Briggs, DEG 2017, 'Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia' Geology, vol. 45, pp. 1079-1082. DOI: DOI:10.1130/G39576.1

Digital Object Identifier (DOI):

DOI:10.1130/G39576.1

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Geology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Geology

Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia --Manuscript Draft--

Manuscript Number:	G39576R1
Full Title:	Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia
Short Title:	Latest Ediacaran Doushantuo-type microfossils from Mongolia
Article Type:	Article
Keywords:	Ediacaran; Doushantuo; fossil embryos; acritarchs; phosphatization
Corresponding Author:	Ross Peter Anderson Yale University New Haven, Connecticut UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Yale University
Corresponding Author's Secondary Institution:	
First Author:	Ross Peter Anderson
First Author Secondary Information:	
Order of Authors:	Ross Peter Anderson
	Francis Alexander Macdonald
	David S Jones
	Sean McMahon
	Derek Ernest Gilmor Briggs
Order of Authors Secondary Information:	
Manuscript Region of Origin:	MONGOLIA
Abstract:	Phosphorites of the latest Ediacaran upper Khesen Formation in the Khuvsgul Group of northern Mongolia preserve a newly discovered, three-dimensionally phosphatized Doushantuo-type microfossil assemblage. Eight genera include the second occurrence of the putative multicellular fossil animal embryo Megasphaera outside South China, the Doushantuo-Pertatataka-type acanthomorphic acritarchs Appendisphaera, Cavaspina, and Variomargosphaeridium, and the possible alga Archaeophycus yunnanensis. The assemblage occurs in the lowermost phosphorite horizon in foreland basin deposits on the Khuvsgul terrane; lithostratigraphic and 13C correlation with the Zavkhan terrane of southwestern Mongolia establish a latest Ediacaran age for the fossiliferous phosphorites. Thus, this is the youngest Doushantuo-type assemblage yet reported. It extends the range of Megasphaera, filling a gap in the record of phosphatized embryo-like forms between the ~600 Ma Doushantuo Weng'an Biota and Cambrian examples. The Khesen fossil assemblage emphasizes the potential of Mongolian phosphorites to provide new paleontological data on the Ediacaran-Cambrian transition, and to resolve the phylogenetic debate surrounding Megasphaera embryo-like taxa.
Response to Reviewers:	Response to reviewer's comments Line 116. I believe that the specimens in Fig. 3B and 3C represent Cavasipna acuminata. They have too short and small processes to be Tanarium. We have removed the reference to Tanarium. However, our fossils most closely resemble Cavaspina basiconica from the Doushantuo Formation (Xiao et al., 2014, J. Paleo.) which has larger numbers of more densely packed processes and can reach

larger sizes more similar to those of our specimens than to the type material of Cavaspina acuminata from Siberia. Please see lines 102–108 in the revised manuscript.

Line 137. Correct the citation: it is fig. 103 parts 6, 7, and 18 in Liu et al., 2014 (not fig. 117).

We have corrected the citation as suggested. Please see lines 126–127 in the revised manuscript.

Lines 162-164. The morphologically complex acanthomorphic microfossils of the Pertatataka-Doushantuo type are actually known from the late Ediacaran strata in Siberia and were reported by Moczydlowska and Nagovitsin (2012 in Precambrian Research 198-199, 1-24) and Moczydlowska (2015, Palynology online, and 2016 Palynology 40, 1, 83-121). The cited publication Golubkova et al., 2015, deals with the East European Platform, Baltica, record of microfossils.

In the text we note that Doushantuo-Pertatataka-type acanthomorphs are generally known from strata deposited prior to or synchronously with carbon isotope excursions interpreted to be equivalent to the Shuram carbon isotope excursion. The fossils reported in the publications of the reviewer come from the Ura and Chencha Formations in Siberia. The younger of these, the Chencha, was deposited synchronously with the Shuram isotope excursion (see Pokrovskii et al. 2006, Lithology and Mineral Resources for carbon isotope stratigraphy). In contrast the fossils of Golubkova et al. (2015) may be in the "high horizons of the Upper Vendian (Ediacaran)" presumably above the Shuram excursion. Xiao et al. (2016, Episodes), in their review of acanthomorph biostratigraphy for the Subcommission on Ediacaran Stratigraphy, detail this stratigraphic arrangement: "Doushantuo-Pertatataka-type acanthomorphs as a whole seem to be restricted to the lower Ediacaran System, below the Gaskiers-age Moelv diamictite in southern Norway and below negative 13C excursions in South China, South Australia, and Siberia that are interpreted as equivalent to the Shuram excursion. However, as mentioned above, recent reports of elements of Doushantuo- Pertatataka-type acanthomorphs in terminal Ediacaran rocks (Golubkova et al., 2015) need to be assessed critically."

We have altered the text to make clear that the Doushantuo-Pertatataka-type assemblage is "generally" found prior to "or synchronously with carbon isotope excursions interpreted to be equivalent to the Shuram carbon isotope excursion". Please see lines 157–160 in the revised manuscript.

We have also corrected the text by stating that the Golubkova et al. (2015) publication refers to the East European Platform rather than Siberia. Please see lines 154–156 in the revised manuscript.

Lines 165-166. I would rather say "predate the Shuram excursion" not the end of the excursion. The "end of the Shuram excursion" means that the successions of the EN3/Shuram excursion intervals contain the microfossils. In fact only the terminal Ediacaran member IV of the Doushantuo Formation is devoid insofar of the Doushantuo type microfossils in China. In Siberia and the EEP, and now in Mongolia, this type of microfossils occurs in the terminal Ediacaran strata. I agree that the record in Mongolia may be the youngest.

We have reworded this sentence to read: "Elsewhere in the world Doushantuo-Pertatataka-type acanthomorphs occur generally in rocks that predate or are synchronous with carbon isotope excursions interpreted to be equivalent to the Shuram carbon isotope excursion (Zhou et al., 2007; Xiao et al., 2016; Zhou et al., 2017)" for the reasons detailed in our response to the comment on lines 162-164 above. Please see lines 157–160 in the revised manuscript.

Line 166. I would add the recent reference to Zhou et al, 2017, Precambrian Research

288, 23-38.
We have added the reference as suggested. Please see lines 160 and 335–339 in the revised manuscript.
Lines 171 172 Absolutely in Ciberia and EED, and now in Mangalia at the latest
Ediacaran.
Please see our responses above to the reviewer's comments on lines 162–164 and
165–166.
Line 272. Incorrect reference. The paper by Liu et al., 2014 is published in
Palaeontology Memoir 72, 1-133.
We have corrected the reference as suggested. Please see lines 261–264 in the
revised manuscript.

- 1 Doushantuo-type microfossils from latest Ediacaran
- 2 phosphorites of northern Mongolia
- 3 Ross P. Anderson^{1*}, Francis A. Macdonald², David S. Jones³, Sean McMahon¹, and

4 Derek E.G. Briggs¹

- 5 ¹Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New
- 6 Haven, Connecticut 06511, USA
- 7 ²Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street,
- 8 Cambridge, Massachusetts 02138, USA
- 9 ³Geology Department, Amherst College, 11 Barrett Hill Road, Amherst, Massachusetts
- 10 01002, USA
- 11 *E-mail: ross.anderson@yale.edu

12 ABSTRACT

13 Phosphorites of the latest Ediacaran upper Khesen Formation in the Khuvsgul

14 Group of northern Mongolia preserve a newly discovered, three-dimensionally

15 phosphatized Doushantuo-type microfossil assemblage. Eight genera include the second

16 occurrence of the putative multicellular fossil animal embryo Megasphaera outside South

17 China, the Doushantuo-Pertatataka-type acanthomorphic acritarchs Appendisphaera,

18 Cavaspina, and Variomargosphaeridium, and the possible alga Archaeophycus

19 yunnanensis. The assemblage occurs in the lowermost phosphorite horizon in foreland

- 20 basin deposits on the Khuvsgul terrane; lithostratigraphic and $\delta^{13}C$ correlation with the
- 21 Zavkhan terrane of southwestern Mongolia establish a latest Ediacaran age for the
- 22 fossiliferous phosphorites. Thus, this is the youngest Doushantuo-type assemblage yet

23	reported. It extends the range of Megasphaera, filling a gap in the record of phosphatized
24	embryo-like forms between the ~600 Ma Doushantuo Weng'an Biota and Cambrian
25	examples. The Khesen fossil assemblage emphasizes the potential of Mongolian
26	phosphorites to provide new paleontological data on the Ediacaran-Cambrian transition,
27	and to resolve the phylogenetic debate surrounding Megasphaera embryo-like taxa.
28	INTRODUCTION
29	The Ediacaran Period represents a critical juncture in Earth's history with the
30	emergence of macroscopic eukaryotic communities with animal components (e.g., Xiao
31	et al., 2016). Ornamented spheroidal microfossils, known as Doushantuo-Pertatataka-type
32	acanthomorphic acritarchs, are found in Ediacaran successions globally (see Cohen and
33	Macdonald, 2015, and references therein). The discovery of similar fossils preserved in
34	phosphorites of the Doushantuo Formation at Weng'an in South China has yielded
35	critical insights into Ediacaran paleobiology (e.g., Xiao et al., 2014a). Some of the
36	Doushantuo fossils may be the oldest fossil animals, resembling embryonic forms,
37	although their phylogenetic affinities, even after ~20 years of study, remain
38	controversial—none of the characters used to marshal the evidence for an animal affinity
39	are unequivocally diagnostic (Cunningham et al., 2017). Similar phosphatized fossils
40	have been recovered recently elsewhere in South China (Zhang and Zhang, 2017).
41	However, despite the importance of Doushantuo-type preservation to studies of
42	Ediacaran diversity and animal evolution, few phosphatized fossils have been reported
43	from other global Ediacaran successions with the exception of the Biskopås Formation,
44	Norway and the Chambaghat Formation, India. Although the Biskopås Formation has
45	yielded a variety of acanthomorphs, embryo-like forms have not been discovered (see

46	DOI:10.1130/G39576.1 Vidal, 1990, and references therein), and possible embryo-like forms reported from the
47	Chambaghat Formation (Shome et al., 2014) are not preserved with the same fidelity as
48	those of the Doushantuo Formation. Here we report new Ediacaran phosphatized
49	microfossils, which include Doushantuo-Pertatataka-type acanthomorphs and most
50	notably multicellular embryo-like forms, from the upper Khesen Formation, Mongolia.
51	GEOLOGICAL SETTING
52	The Khesen Formation of the Khuvsgul Group (Fig. 1) is exposed discontinuously
53	along a 250 km north-south belt on the western margin of Lake Khuvsgul in northern
54	Mongolia (Macdonald and Jones, 2011). During Neoproterozoic and Cambrian time, the
55	Khuvsgul and Zavkhan terranes formed one contiguous margin (Fig. 1A). Both terranes
56	are characterized by ~800 Ma arc-volcanic rocks overlain by late Tonian rift-related
57	strata, Cryogenian-early Ediacaran carbonate platforms interrupted by two Snowball
58	Earth intervals, and latest Ediacaran to early Cambrian foreland basin successions
59	(Macdonald et al., 2009; Kuzmichev and Larionov, 2011; Macdonald and Jones, 2011;
60	Bold et al., 2016a; Bold et al., 2016b; Smith et al., 2016).
61	The Khesen Formation is divided into informal lower and upper members by a
62	major unconformity (Fig. 1D, 1E, and 1F) that separates Marinoan glacial deposits and a
63	basal Ediacaran cap carbonate succession from latest Ediacaran to early Cambrian
64	carbonate, shale, and phosphorite deposits (Donov et al., 1967; Ilyin, 1973; Ilyin et al.,
65	1986; Osokin and Tyzhinov, 1998; Macdonald and Jones, 2011). An equivalent
66	unconformity is present on the Zavkhan terrane (Fig. 1C), separating early Ediacaran
67	carbonates of the Ol and Shuurgat formations from latest Ediacaran phosphorite and
68	carbonate of the terminal Ediacaran Zuun-Arts Formation (Bold et al., 2016b; Smith et

69	al., 2016). Latest Ediacaran–Terreneuvian phosphorite-bearing foreland basins formed on
70	the Khuvsgul and Zavkhan terranes as the result of the collision of the Khantaishir-
71	Agradag arc (Bold et al., 2016a; Smith et al., 2016). On both terranes, two phosphorite-
72	rich successions bracket the Proterozoic-Phanerozoic boundary and additional
73	phosphorite is present in overlying early Cambrian strata (Ilyin, 2004; Smith et al., 2016).
74	The sediment-starved carbonate succession of the upper Khesen Formation preserves
75	reworked granular phosphorite grainstone beds and massive replacive phosphate beds
76	(Fig. 1). A minimum age constraint for the upper Khesen Formation is provided by
77	Cambrian archaeocyathids and trilobites in the overlying Erkhelnur Formation (Ilyin and
78	Zhuraveleva, 1968; Korobov, 1980).
79	A NEW FOSSIL ASSEMBLAGE
80	Eight genera of phosphatized microfossils (Figs. 2 and 3) were recovered from the
81	lowermost phosphorite horizon of the upper Khesen Formation (see supplementary
82	information for occurrences) with 5 genera confined to just two samples (Yale Peabody
83	Museum YPM 536747 and 536748) from granular phosphorites along the ridgeline east
84	of Urandush Uul (at 21 and 22 m, Fig. 1F). Probable cyanobacteria are found in most
85	fossiliferous samples. Filaments of Siphonophycus occur as clusters of a few individuals,
86	patchworks of hundreds of criss-crossing individuals, and clasts of microbial mat several
87	hundred micrometers in maximum dimension. A few individuals of the possible
88	oscillatoriacean cyanobacterium Obruchevella are also present (Fig. 3F).
89	Most of the fossil diversity in the assemblage is made up of probable eukaryotes.
90	Simple leiosphaerid acritarchs are present in almost all fossiliferous samples.
91	Archaeophycus yunnanensis occurs as solitary cells, or dyad, triad, tetrad, and octad

92	clusters (Figs. 2A and 3A). The tetrad form of this fossil was previously compared (as
93	Paratetraphycus giganteus) to carposporangia of the modern bangialean alga Porphyra
94	but convergent evolution among cyanobacteria and other algae cannot be ruled out (Xiao
95	et al., 1998; Dong et al., 2009; Xiao et al., 2014a). In addition to these simple forms, the
96	lower phosphorites yield a variety of Doushantuo-Pertatataka-type acanthomorphic
97	acritarchs, most notably Appendisphaera (Fig. 2B), Cavaspina (Figs. 3B and 3C), and
98	Variomargosphaeridium (Figs. 2C, 2D, 2E, and 2F). Appendisphaera is characterized by
99	a spheroidal vesicle with densely spaced, long, hollow, unbranched processes
100	(Moczydlowska et al., 1993; Moczydlowska, 2005). Three species are identified in the
101	Khesen phosphorites: A. grandis, A. fragilis, and A. tenuis. An area of dense, dark
102	organic matter can be present between the processes (Fig. 2B). Several Khesen fossils are
103	tentatively identified as Cavaspina, which has conical processes that are commonly
104	<10% of vesicle diameter (Moczydlowska et al., 1993). The Khesen specimens have
105	larger vesicle sizes (>250 μ m) than most reported examples of this genus, however, and
106	the length of their processes, while commonly <10% of vesicle diameter, can reach
107	~13%. They most closely resemble <i>C. basiconica</i> from the Doushantuo Formation (cf.
108	Fig. 8 parts 1–4 in Xiao et al., 2014b) in the number of processes and larger vesicle size.
109	The most abundant acanthomorph (tens of specimens) is assigned to
110	Variomargosphaeridium gracile. Variomargosphaeridium is characterized by
111	heteromorphic, hollow, multi-branched processes (e.g., Fig. 2E); V. gracile is small
112	(vesicle 30–150 μ m in maximum diameter) with thin processes (9–21 μ m in length).
113	Some of the Khesen specimens contain numerous cell-like structures (Fig. 2C) allowing
114	V. gracile to be added to a growing list of Ediacaran acanthomorphs which display

115	possible multicellular features (Xiao et al., 2014b). A number of specimens (<10
116	individuals) with branching processes that are <10% of the vesicle diameter may
117	represent a new species of Variomargosphaeridium (Fig. 2F).
118	Most notably, the assemblage includes the second reported occurrences (~50
119	specimens of which <10 are well-preserved) of the multicellular fossil Megasphaera
120	outside South China, where it occurs in the Doushantuo and Denying phosphorites (Xiao
121	et al., 2014b; Zhang and Zhang, 2017). The Khesen fossils (Figs. 2G, 2H, 2I, 3D, and 3E)
122	are readily accommodated by the emended diagnosis of Megasphaera (Xiao et al.,
123	2014b), which calls for a large vesicle without long processes and enclosing one or more
124	internal cells. However, the Khesen specimens also bear morphological similarities to
125	leiosphaerid acritarchs from the upper Khesen Formation, to "leiospheres with cellular
126	inclusions" from cherts of the Doushantuo Formation (cf. Fig. 103 parts 6, 7, and 18 in
127	Liu et al., 2014), and to Clonophycus from other cherts of Ediacaran and Cambrian age in
128	South China (Nantuo and Taozichong formations) (Oehler, 1977, 1978; Luo et al., 1982).
129	They differ from Leiosphaeridia in the upper Khesen Formation in the presence of
130	internal structures, are intermediate in size between species of Megasphaera found
131	elsewhere and Doushantuo leiospheres with cellular inclusions, and are significantly
132	larger than C. guizhouensis, the largest species of Clonophycus. The thick vesicle wall
133	(Fig. 3D and 3E) supports our identification of these fossils as Megasphaera.
134	THE AGE OF THE KHESEN ASSEMBLAGE

Macdonald and Jones (2011) interpreted the age of the fossil-bearing lowermost
phosphorite unit of the upper Khesen Formation as latest Ediacaran based on
lithostratigraphic correlation with the Zuun-Arts Formation of southwestern Mongolia,

138	which preserves the Proterozoic–Phanerozoic boundary (Smith et al., 2016), and with the
139	Zabit Formation of Siberia, which yields the latest Ediacaran fossil Cloudina
140	(Kherzaskova and Samygin, 1992). The stratigraphy of the upper Khesen Formation is
141	remarkably similar to that of the Zuun-Arts Formation and the basal Bayangol Formation
142	(also southwestern Mongolia), comprising fossiliferous lower granular phosphorite beds,
143	limestone, and upper bedded phosphorites (Macdonald and Jones, 2011; Smith et al.,
144	2016). This correlation implies that the carbon isotope excursion between the
145	phosphorite-rich successions in the upper Khesen Formation (Ilyin, 2004; Vishnevskaya
146	and Letnikova, 2013, and Figure 1 herein) represents the Proterozoic-Phanerozoic
147	boundary as it does in the Zuun-Arts Formation (Smith et al., 2016; Fig. 1). Such a
148	correlation is consistent with the geodynamics of foreland basin development (Sinclair
149	and Naylor, 2012) in which the migration of loads can create diachronous deposition over
150	a few million years but not over tens of millions of years, as would be required for an
151	early Ediacaran (i.e., older than the Shuram carbon isotope excursion) age for the Khesen
152	fossils. Thus, geological evidence, as well as chemostratigraphic data, suggest that the
153	Khesen fossil assemblage lies immediately below the Proterozoic–Phanerozoic boundary.
154	This inference is consistent with recent reports of Doushantuo-Pertatataka-type
155	acanthomorphs from possible late Ediacaran strata on the East European Platform
156	(Golubkova et al., 2015).
157	Elsewhere in the world Doushantuo-Pertatataka-type acanthomorphs occur
158	generally in rocks that predate or are synchronous with carbon isotope excursions
159	interpreted to be equivalent to the Shuram excursion (Zhou et al., 2007; Xiao et al., 2016;
160	Zhou et al., 2017). The similarity between the Khesen assemblage reported here and that

161	of the older Doushantuo Formation includes the presence of Appendisphaera grandis and
162	A. tenuis, Cavaspina ?basiconica, Megasphaera, and Variomargosphaeridium gracile
163	(Xiao et al., 2014b). Such similarities can be accounted for by conditions favoring similar
164	preservation in phosphate rather than coeval deposition, and imply longer ranges than
165	previously recorded for some taxa. Thus, the Khesen fossils suggest that Doushantuo-
166	Pertatataka-type acanthomorphs are not confined to pre-Shuram strata, but extend into
167	latest Ediacaran time.
168	DISCUSSION AND CONCLUSIONS
169	The fossils of the upper Khesen Formation represent a new discovery of embryo-
170	like forms (e.g., Megasphaera) in Ediacaran phosphorites, adding to those of the
171	Doushantuo and Denying Formations, South China (Xiao et al., 2014b; Zhang and
172	Zhang, 2017) and the Chambaghat Formation, India (Shome et al., 2014). Megasphaera
173	is >200 μ m in diameter in China and India (Shome et al., 2014; Xiao et al., 2014b; Zhang
174	and Zhang, 2017). The Khesen fossils (Figs. 2G, 2H, 2I, 3D, and 3E) include specimens
175	with a maximum diameter as low as 80 μ m and probably represent a new species. The
176	spheroidal cellular inclusions are rarely in contact, presumably due to some degradation
177	and shrinkage. The number in each vesicle ranges from 20 to 106 but thin sections do not
178	reveal them all. Although this new material does not settle the question of whether or not
179	Megasphaera represents the earliest animal fossils, the exceptional preservation, diversity
180	of form, and age range provide new constraints on the paleobiology of this iconic taxon.
181	The discovery of possible fossil embryos in latest Ediacaran strata fills the gap in
182	exceptional phosphatic preservation between the older South China occurrences (and
183	possible equivalents in India) and unequivocal embryos in Cambrian successions (e.g.,

184	Donoghue et al., 2006; Brasier and Callow, 2007; Muscente et al., 2015). Doushantuo-
185	type preservation involves the concentration of phosphate and organic matter through
186	siliciclastic sediment starvation and the Doushantuo Formation at Weng'an comprises
187	phosphatic grainstones resulting from reworking and winnowing (Xiao et al., 1998; Xiao
188	and Knoll, 1999; Muscente et al., 2015). The Khesen assemblage is preserved in similar
189	facies, with both massive replacive and granular phosphorites preserved within a
190	condensed sediment-starved carbonate succession. The preservation of the Khesen fossils
191	rivals that in the Doushantuo Formation: cell-division is evident in extracted specimens
192	of Archaeophycus yunnanensis (Fig. 3A), and processes on other acanthomorphs are
193	preserved with exceptional fidelity (Figs. 2C, 2D, 3B, and 3C). This similarity
194	emphasizes the potential of Mongolian phosphorites to provide new paleontological data
195	on the Ediacaran–Cambrian transition, and to resolve the phylogenetic debate
196	surrounding Megasphaera embryo-like taxa.
197	ACKNOWLEDGMENTS
198	S. Butts and J. Utrup managed collections. U. Bold helped with logistics in
199	Mongolia. This work was supported by a GSA ExxonMobil Student Grant, the NASA
200	Astrobiology Institute [NNA13AA90A], a NASA Earth and Space Science Fellowship
201	[NNX14AP10H], and the Yale Institute for Biospheric Studies and Peabody Museum.
202	We thank Malgorzata Moczydlowska, Shuhai Xiao, and an anonymous reviewer for
203	helpful comments.

204 **REFERENCES CITED**

- 205 Bold, U., Crowley, J.L., Smith, E.F., Sambuu, O., and Macdonald, F.A., 2016a,
- 206 Neoproterozoic to early Paleozoic tectonic evolution of the Zavkhan terrane of

- 207 Mongolia: Implications for continental growth in the Central Asian orogenic belt:
- 208 Lithosphere, v. 8, p. 729–750, https://doi.org/10.1130/L549.1.
- 209 Bold, U., Smith, E.F., Rooney, A.D., Bowring, S.A., Buchwaldt, R., Dudás, F.Ö.,
- 210 Ramezani, J., Crowley, J.L., Schrag, D.P., and Macdonald, F.A., 2016b,
- 211 Neoproterozoic stratigraphy of the Zavkhan Terrane of Mongolia: The backbone for
- 212 Cryogenian and early Ediacaran chemostratigraphic records: American Journal of
- 213 Science, v. 316, p. 1–63, https://doi.org/10.2475/01.2016.01.
- 214 Brasier, M.D., and Callow, R.H.T., 2007, Changes in the patterns of phosphatic
- 215 preservation across the Proterozoic–Cambrian transition: Memoirs of the Association
- of Australasian Palaeontologists, v. 34, p. 377–389.
- 217 Cohen, P.A., and Macdonald, F.A., 2015, The Proterozoic record of eukaryotes:
- 218 Paleobiology, v. 41, p. 610–632, https://doi.org/10.1017/pab.2015.25.
- 219 Cunningham, J. A., Vargas, K., Yin, Z., Bengtson, S., and Donoghue, P. C. J., 2017, The
- 220 Weng'an Biota (Doushantuo Formation): An Ediacaran window on soft-bodied and
- 221 multicellular microorganisms: Journal of the Geological Society (London),
- doi:10.1144/jgs2016-142.
- 223 Dong, L., Xiao, S., Shen, B., Zhou, C., Li, G., and Yao, J., 2009, Basal Cambrian
- 224 microfossils from the Yangtze Gorges Area (South China) and the Aksy Area (Tarim
- Block, Northwestern China): Journal of Paleontology, v. 83, p. 30–44,
- 226 https://doi.org/10.1017/S0022336000058108.
- 227 Donoghue, P.C.J., Kouchinsky, A., Waloszek, D., Bengtson, S., Dong, X., Val'kov, A.K.,
- 228 Cunningham, J.A., and Repetski, J.E., 2006, Fossilized embryos are widespread but

- the record is temorally and taxonomically biased: Evolution & Development, v. 8,
- 230 p. 232–238, https://doi.org/10.1111/j.1525-142X.2006.00093.x.
- 231 Donov, N.A., Edemsky, H.B., and Ilyin, A.V., 1967, Cambrian phosphorites of Mongolia
- 232 Popular Republic: Sovetskaya Geologia, v. 3, p. 55–60.
- 233 Golubkova, E.Y., Zaitseva, T.S., Kuznetsov, A.B., Dovzhikova, E.G., and Maslov, A.V.,
- 234 2015, Microfossils and Rb-Sr age of glauconite in the key section of the Upper
- 235 Proterozoic of the northeastern part of the Russian Plate (Keltmen-1 Borehole):
- 236 Doklady Earth Sciences, v. 462, p. 547–551,
- 237 https://doi.org/10.1134/S1028334X15060045.
- 238 Ilyin, A.V., 1973, Khubsugul phosphorite-bearing basin: Moscow, Geolgicheskiy Institut,
- 239 Doklady Akademiya Nauk SSSR, p. 167.
- 240 Ilyin, A.V., 2004, The Khubsugul phosphate-bearing basin: New data and concepts:
- Lithology and Mineral Resources, v. 39, p. 454–467,
- 242 https://doi.org/10.1023/B:LIMI.0000040735.76025.80.
- 243 Ilyin, A.V., Zaitsev, N.S., and Bjamba, Z., 1986, Proterozoic and Cambrian phosphorites
- 244 deposits: Khubsugul, Mongolian People's Republic, in Cook, P. J., and Shergold,
- J. H., eds., Phosphate deposits of the world: Cambridge, Cambridge University
- 246 Press, p. 162–174.
- 247 Ilyin, A.V., and Zhuraveleva, I.T., 1968, On the boundary between the Cambrian and the
- 248 Precambrian at Prikhusugulie (Mongolian PR): Doklady Akademii Nauk SSSR,
- 249 v. 182, p. 1164–1166.

250	Kherzaskova, T.N., and Samygin, S.G., 1992, Tectonic conditions in the East Sayan
251	Vendian-Middle Cambrian terrigenous carbonate association: Geotectonics, v. 26,
252	p. 445–458.
253	Korobov, M.N., 1980, Lower Cambrian biostratigraphy and miomeroid trilobites of the
254	Lower Cambrian of Mongolia, in Menner, V. V., and Meyen, S. V., eds., Lower
255	Cambrian and Carboniferous biostratigraphy of Mongolia, Volume 26: Moscow,
256	Trudy Sovmestnou Sovetsoko-Mongol-skoy Paleontologicheskoy Exspeditsii, p. 5-
257	108.
258	Kuzmichev, A.B., and Larionov, A.N., 2011, The Sarkhoi Group in East Sayan:
259	Neoproterozoic (~770-800 Ma) volcanic belt of the Andean type: Russian Geology
260	and Geophysics, v. 52, p. 685–700, https://doi.org/10.1016/j.rgg.2011.06.001.
261	Liu, P., Xiao, S., Yin, C., Chen, S., Zhou, C., and Li, M., 2014, Ediacaran
262	acanthomorphic acritarchs and other microfossils from chert nodules of the Upper
263	Doushantuo Formation in the Yangtze Gorges Area, South China: Paleontology
264	Memoir, v. 72, p. 1–139, https://doi.org/10.1666/13-009.
265	Luo, Q., Wang, F., and Wang, Y., 1982, Uppermost Sinian–lowest Cambrian age
266	microfossils from Qingzhen-Zhijin County, Guizhou Province: Bulletin Tianjin
267	Institute of Geology and Mineral Resources: Chinese Academy of Sciences, v. 6,
268	p. 23–41.
269	Macdonald, F.A., and Jones, D.S., 2011, The Khubsugul Group, northern Mongolia, in
270	Arnaud, E., et al., eds., The Geological Record of Neoproterozoic Glaciations:
271	Geological Society, London, Memoirs, v. 36, p. 339–345.

Page 12 of 17

- 272 Macdonald, F.A., Jones, D.S., and Schrag, D.P., 2009, Stratigraphic and tectonic
- 273 implications of a newly discovered glacial diamictite-cap carbonate couplet in
- southwestern Mongolia: Geology, v. 37, p. 123–126,
- 275 https://doi.org/10.1130/G24797A.1.
- 276 Moczydlowska, M., 2005, Taxonomic review of some Ediacaran acritarchs from the
- 277 Siberian Platform: Precambrian Research, v. 136, p. 283–307,
- 278 https://doi.org/10.1016/j.precamres.2004.12.001.
- 279 Moczydlowska, M., Vidal, G., and Rudavskaya, V.A., 1993, Neoproterozoic (Vendian)
- 280 phytoplankton from the Siberia platform, Yakutia: Palaeontology, v. 36, p. 495–521.
- 281 Muscente, A.D., Hawkins, A.D., and Xiao, S., 2015, Fossil preservation through
- 282 phosphatization and silicification in the Ediacaran Doushantuo Formation (South
- 283 China): A comparative synthesis: Palaeogeography, Palaeoclimatology,
- 284 Palaeoecology, v. 434, p. 46–62, https://doi.org/10.1016/j.palaeo.2014.10.013.
- 285 Oehler, D.Z., 1977, Microflora of the H. Y. C. Pyrite Shale Member of the Barney Creek
- 286 Formation (McArthur Group), middle Proterozoic of northern Australia: Alcheringa,
- 287 v. 1, p. 315–349, https://doi.org/10.1080/03115517708527768.
- 288 Oehler, D.Z., 1978, Microflora of the middle Proterozoic Balbrini Dolomite (McArthur
- 289 Group) of Australia: Alcheringa, v. 2, p. 269–309,
- 290 https://doi.org/10.1080/03115517808527785.
- 291 Osokin, P.V., and Tyzhinov, A.V., 1998, Precambrian tilloids of the Oka-Khubsugul
- 292 phosphorite-bearing basin (Eastern Sayan, Northwestern Mongolia): Lithology and
- 293 Mineral Resources, v. 33, p. 142–154.

- 294 Sinclair, H., and Naylor, M., 2012, Foreland basin subsidence driven by topographic
- 295 growth versus plate subduction: Geological Society of America Bulletin, v. 124,
- 296 p. 368–379, https://doi.org/10.1130/B30383.1.
- 297 Shome, S., Mathur, V.K., Nath, S., Xiao, S., and Broce, J., 2014, Occurrence of
- 298 Neoproterozoic animal embryos in the Chambaghat Formation of Himachal Lesser
- Himalaya, India: Current Science, v. 106, p. 813–815.
- 300 Smith, E.F., Macdonald, F.A., Petach, T.A., Bold, U., and Schrag, D.P., 2016, Integrated
- 301 stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian
- 302 records from southwestern Mongolia: Geological Society of America Bulletin,
- 303 v. 128, p. 442–468, https://doi.org/10.1130/B31248.1.
- 304 Vidal, G., 1990, Giant acanthomorphic acritarchs from the upper Proterozoic in southern
- 305 Norway: Palaeontology, v. 33, p. 287–298.
- 306 Vishnevskaya, I.A., and Letnikova, E.F., 2013, Chemostratigraphy of the Vendian-
- 307 Cambrian carbonate sedimentary cover of the Tuva-Mongolian microcontinent:
- 308 Russian Geology and Geophysics, v. 54, p. 567–586,
- 309 https://doi.org/10.1016/j.rgg.2013.04.008.
- 310 Xiao, S., and Knoll, A.H., 1999, Fossil preservation in the Neoproterozoic Doushantuo
- 311 phosphorite Lagerstätte, South China: Lethaia, v. 32, p. 219–238,
- 312 https://doi.org/10.1111/j.1502-3931.1999.tb00541.x.
- 313 Xiao, S., Muscente, A.D., Chen, L., Zhou, C.-M., Schiffbauer, J.D., Wood, A.D., Polys,
- N.F., and Yuan, X.-L., 2014a, The Weng'an biota and the Ediacaran radiation of
- 315 multicellular eukaryotes: National Science Review, v. 1, p. 498–520,
- 316 https://doi.org/10.1093/nsr/nwu061.

- 317 Xiao, S., Narbonne, G.M., Zhou, C.-M., Laflamme, M., Grazhdankin, D.V.,
- 318 Moczydlowska-Vidal, M., and Cui, H., 2016, Towards an Ediacaran Time Scale:
- 319 Problems, Protocols, and Prospects: Episodes, v. 39, p. 540–555,
- 320 https://doi.org/10.18814/epiiugs/2016/v39i4/103886.
- 321 Xiao, S., Zhang, Y., and Knoll, A.H., 1998, Three-dimensional preservation of algae and
- animal embryos in a Neoproterozoic phosphorite: Nature, v. 391, p. 553–558,
- 323 https://doi.org/10.1038/35318.
- 324 Xiao, S., Zhou, C., Liu, P., Wang, D., and Yuan, X., 2014b, Phosphatized
- 325 acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo
- 326 Formation at Weng'an (South China) and their implications for biostratigraphic
- 327 correlation: Journal of Paleontology, v. 88, p. 1–67, https://doi.org/10.1666/12-157R.
- 328 Zhang, Y., and Zhang, X., 2017, New Megasphaera-like microfossils reveal their
- 329 reproductive strategies: Precambrian Research, v. 300, p. 141–150,
- 330 https://doi.org/10.1016/j.precamres.2017.08.006.
- 331 Zhou, C., Xie, G., McFadden, K.A., Xiao, S., and Yuan, X., 2007, The diversification
- and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and
- biostratigraphic significance: Geological Journal, v. 42, p. 229–262,
- 334 https://doi.org/10.1002/gj.1062.
- Zhou, C., Xiao, S., Wang, W., Guan, C., Ouyang, Q., and Chen, Z., 2017, The
- 336 stratigraphic complexity of the middle Ediacaran carbon isotope record in the
- 337 Yangtze Gorges area, South China, and its implications for the age and
- 338 chemostratigraphic significance of the Shuram excursion: Precambrian Research, v.
- 339 288, p. 23–38, https://doi.org/10.1016/j.precamres,2016,11,007.

340

341 FIGURE CAPTIONS

342

545 Figure 1. Geological setting of the Knesen fossil assemblage. A: Map showing the	ie extent
--	-----------

- of the Khuvsgul (Khuv.) and Zavkhan (Zav.) terranes. B: Geological map of the western
- 345 margin of Lake Khuvsgul. C: Simplified stratigraphy of the Tsagaan Olom Group of the
- 346 Zavkhan Basin (MU = Maikhan-Uul, BG = Bayangol). D: Simplified stratigraphy of the
- 347 Khuvsgul Group (phos. = phosphorite). E: Khesen Formation at Ongoluk Gol with
- 348 carbon isotope record. F: Khesen Formation stratigraphy from the ridgeline east of
- 349 Urandush Uul.

350

- 351 Figure 2. Paleontology of the Khesen Formation in thin-sections. A: Archeophycus
- 352 yunnanensis, YPM 536754. B: Appendisphaera grandis, YPM 536755. C:
- 353 *Variomargosphaeridium gracile* with possible internal structures, YPM 536772. D: V.
- 354 gracile, YPM 536800. E: V. gracile showing distal end of processes to the upper left,
- 355 YPM 536802. F: V. sp., YPM 536787. G–I: Megasphaera sp.. G: YPM 536794. H: YPM
- 356 536784. I: YPM 536766. Scale bars 50 μm.
- 357
- 358 Figure 3. Paleontology of the Khesen Formation revealed by 20% acetic acid maceration.
- 359 A: Archaeophycus yunnanensis showing T cell-division, YPM 538070. B-C: Cavaspina
- 360 *?basiconica*. B: YPM 538071 C: YPM 538072. D–E: *Megasphaera* sp.. D: YPM 538073.
- E: YPM 538074. F: *Obruchevella magna*, YPM 538075. Scale bars 100 μm.
- 362

- 363 1GSA Data Repository item 2017xxx, xxxxxxx, is available online at
- 364 http://www.geosociety.org/datarepository/2017/ or on request from
- 365 editing@geosociety.org.

±

Supplementary Information

Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia

Ross P. Anderson, Francis A. Macdonald, David S. Jones, Sean McMahon, Derek E.G. Briggs

Email: ross.anderson@yale.edu

Methods

The Khesen fossils were examined in thin-section and by scanning electron microscopy following 20% acetic acid maceration. All materials are deposited in the Yale Peabody Museum of Natural History (YPM). Carbon isotope ratios of micro-drilled carbonate powders were measured following methods described in Macdonald et al. (2009).

Biostratigraphy

Khesen Gol YPM 536746 and 536748 are at 0 and 3 m respectively in Fig. 1E.

Urandush Uul

YPM 536747 and 536748 are at 21 and 22 m respectively in Fig. 1F.

	Khesen Gol		Urandush Uul	
	YPM 536746	YPM 536749	YPM 536747	YPM 536748
Cyanobacteria				
Obruchevella delicata	R			
Obruchevella magna			R	R
Obruchevella parvissima				R
Obruchevella sp.				R
Siphonophycus spp.	С	С	С	С
?Algae				
Archaeophycus yunnanensis			R	
Acritarchs				
Appendisphaera grandis			R	
Appendisphaera fragilis		R		R
Appendisphaera tenuis			R	
Cavaspina ?basiconica			R	
Leiosphaeridia spp.	R	R	С	С
Megasphaera sp.			С	С
Variomargosphaeridium gracile			С	С
Variomargosphaeridium sp.				R

Table S1: Biostratigraphy of the upper Khesen Formation showing reported taxa from the four most diverse samples and their relative abundance within the assemblage. R = rare (isolated individuals, only a few specimens). C = common (10s of individuals). In the case of *Megasphaera* 10s of individuals are reported but only a few are preserved with enough fidelity to confidently interpret internal structures. YPM sample numbers are given for reference.

Figure S1: Expanded stratigraphy showing relationships between Khesen, Ongoluk, and Urandush Uul localities. See Figure 1 for locality information.

References

Macdonald, F.A., Jones, D.S., and Schrag, D.P., 2009. Stratigraphic and tectonic implications of a newly discovered glacial diamictite-cap carbonate couplet in southwestern Mongolia: Geology, v. 37, p. 123–126, https://doi.org/10.1130/G24797A.1.