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SYNOPSIS (100 words): 

The utility of MR parametric mapping is limited due to the lengthy acquisition time. A 
Maximum Likelihood Estimation (MLE) and Parallel Imaging (PI) method is presented for MR 
parameter mapping. The approach is based on a high Signal to Noise (SNR) assumption such 
that the noise can be modelled as Gaussian and estimates the parameters that maximizes the 
signal from a multichannel coil. The method was tested on a multi-echo gradient-echo T2* 
mapping experiment in a phantom and a human brain. Accurate T2* maps were 
reconstructed up to an acceleration factor of 6 with a small error for phantom and human 
brain. 

(750 words) 

Background: 

The estimation of MR parameters such as relaxation times (T1, T2, T2*) requires the 
acquisition of multiple images at different sequence parameters. Parameter estimation is 
achieved by fitting the signal evolution with a parameter-dependent model on a pixel-wise 
basis.  It has been demonstrated that the accurate estimation of relaxation times can be done 
over a wide range of SNR and phased array coil configurations with the MLE technique 1, 2. 
The aim of this study is to present a method based on MLE that can estimate the relaxation 
times in conjunction with PI methods.  

Theory:  

The mono-exponential model applied to decay of a multi-echo sequence is given by 

𝑀(𝑇𝐸)𝑖 = 𝑃𝐷. exp⁡(
−𝑇𝐸𝑖

𝑇
)   (1) 

Here, pseudo density PD represents the signal amplitude for an echo time TE = 0 and 𝑇 is the 
relaxation time. Because the repetition time is fixed, PD is the product of three unknown 
factors: T1 weighting, PD and receiver coil response2.  Conventionally parameters are 
estimated by least squares which minimizes the residual sum of squares between observed 
data 𝑦⁡ and exponential model at the 𝑖𝑡ℎ TE over N echoes:  

𝑋2 =⁡∑ [𝑦𝑖 − 𝑃𝐷. 𝑒𝑥𝑝
−𝑇𝐸𝑖

𝑇
]𝑁

𝑖=1    (2) 



Multichannel coils are used to enhance SNR3 and to accelerate the image acquisition by 
employing PI4,5. In the case of images acquired with parallel methods, the distribution of noise 
in the image is dependent upon the coil sensitivity profiles and varies spatially as well as with 
the reconstruction method. 

According to MLE, for a given number of coil channels 𝐶,⁡the best estimate of relaxation time 
T will be derived by maximizing with respect to 𝑃𝐷𝐶 ⁡and T   the joint probability distribution: 

Ιn⁡𝑃𝐶(𝑦𝐶; 𝑃𝐷, 𝑇) = ∏ 𝑃𝑁𝑖=1 {𝑦𝐶(𝑇𝐸𝑖); 𝑃𝐷𝐶 , 𝑇} = ⁡∑ ∑ [𝑦𝑖,𝑗−𝑃𝐷𝑗. 𝑒𝑥𝑝
𝑇𝐸𝑖
𝑇
]𝑁

𝑖=1
𝐶
𝑗=1  (3) 

 

where 𝑃{𝑦𝐶(𝑇𝐸𝑖); 𝑃𝐷𝐶 , 𝑇} is the joint signal probability distribution. In the case of higher SNR 
when the noise distribution can be considered normal, the approximation to the ML is 
equivalent to the weighted least squares solution because the variance of noise in case of 
multichannel coils is uncorrelated across the coils.  

Our MLE approach estimates the proton density which is weighted according to the sensitivity 
information of the coils and a relaxation time which maximizes the signal from all the coils 
according to the equation (3). For parallel imaging, SPIRiT operator (𝐺𝑝) with acquisition 

parameter 𝑝 that multiplies SPIRiT kernel in image space is used 6. To accelerate the 
parametric mapping, the problem can be solved using a projection onto convex sets (POCS) 
algorithm applying MLE and SPIRiT iteratively (Figure1) to undersampled data in order to 
impose both the exponential relaxation model and the SPIRiT multi-coil model.  

Methods:    

The proposed approach was demonstrated for T2* mapping in the phantom comprising nine 
compartments (T2* values 65-250 ms). Furthermore, an in-vivo experiment was performed 
in a healthy human brain. All measurements were performed on a 1.5T clinical scanner (GE 
Healthcare, Waukesha, WI, USA) using a 3D-enhanced fast gradient-recalled echo sequence 
with the following parameters(16 echoes, TR = 87 ms, FOV = 256mm, 256x256 matrix, readout 
bandwidth=31.56 KHz, flip angle 15°, 2mm slice thickness). The total acquisition time for 
acquiring 32 slices was approximately 18 min. The dataset was retrospectively undersampled 
by factors of 2, 3, 4, 5, and 6 with variable density Poisson disk patterns including an 
autocalibration region of 24 x 24 in the ky–kz plane. A 7x7 SPIRiT kernel was calibrated from 
the autocalibration region and the undersampled data was reconstructed by SPIRiT and MLE 
using proposed POCS reconstruction. To determine the error of the estimated T2* maps, the 
normalized root mean square error (nRMSE) was calculated for all the accelerated and fully 
sampled dataset.  

Results: 
Figure 2 (a&b) show results for the T2* maps obtained from the fully sampled data and the 
maps from undersampled data for the phantom and in-vivo measurements, respectively. The 
number of iterations needed for the reconstruction was between 10 and 15. The NRMSE with 
respect to the fully sampled map is given below each map. T2* maps from phantom and the 
volunteer showed the same trend with increased nRMSE with increasing acceleration factor. 



 
Conclusion: 
The proposed MLE-SPIRiT reconstruction allows reconstruction of T2* maps with a small 
number of iterations. The method allows significant reduction of the required data without 
compromising the quality of the parameter maps. This could be used to accelerate MR 
parameter mapping, which is important for applications in which scan time is limited, and 
further contributes to increasing patient comfort. 
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 Iterative POCS ALGORITHM FOR SPIRiT-MLE  
 
INPUTS: yp—k-space measurements with acquisition parameter p 
Dp—subsampling operator selecting acquired k-space with acquisition 
parameter p 
Gp—SPIRiT operator with acquisition parameter p 
OPTIONAL PARAMETERS:  
MaxIter—stopping criteria by number of iterations (default=30) 
TolDiff—stopping criteria by reconstruction difference between two iterations 
(default=10e-4) 
OUTPUTS: T, 𝑃𝐷𝑗—Parameters estimates from Eq. [3] 

% initialization 
 

𝑘 = 0, 𝑥𝑝
(𝑘) = 𝐹−1𝐷𝑝

𝑇 ,𝑦𝑝  ,𝑝 = 1,2,3,…𝑛𝑝  

%iterations 
 

𝑤ℎ𝑖𝑙𝑒 (𝑘 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 𝑎𝑛𝑑 ∥ 𝑥(𝑘) − 𝑥(𝑘−1) ∥2
2 /  ∥ 𝑥(0) ∥2

2> 𝑇𝑜𝑙𝑙𝐷𝑖𝑓𝑓) 

    𝑘 = 𝑘 + 1 
 
 
%SPIRiT operation 

𝑥𝑝
(𝑘)

= 𝐺𝑝𝑥𝑝
(𝑘−1)

,𝑝 = 1,2,3,…𝑛𝑝  

 
%MLE  

min 𝑥  𝑠. 𝑡.   𝑦𝑖 ,𝑗 − 𝑃𝐷𝑗 . 𝑒𝑥𝑝
𝑇𝐸𝑖
𝑇
 

𝑁

𝑖=1

𝐶

𝑗=1

 

 
%Data Consistency 
    

𝑥𝑝
(𝑘) = 𝐹−1[(1− 𝐷𝑝

𝑇𝐷𝑝)𝐹𝑥𝑝
(𝑘)

+ 𝐷𝑝
𝑇𝑦𝑝],𝑝 = 1,2,3,…𝑛𝑝  

 

Figure1: The convex optimization problem in Eq. [3] can be solved using a POCS algorithm, in which 
SPIRiT, the MLE and consistency with the data acquisition are enforced sequentially. The SPIRiT kernel 
is first calculated from the fully sampled central k-space before the POCS algorithm is carried out.  
 



 
 
 
 
 
 
 
 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: T2* maps of the fully sampled dataset of phantom (a) and human brain (b) and from the MLE-SPIRiT 

with acceleration factor of 2, 3,4,5,6 are shown in the top row. The corresponding difference of the T2* maps 

between fully sampled and the undersampled data are shown in the bottom row with the nRMSE. The colorbar 

shows the T2* values in ms.  
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