
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hazard prevention in mission plans for aerial vehicles based on
soft institutions

Citation for published version:
Correa da Silva, FS, Chung, PWH, Zuffo, MK, Papapanagiotou, P, Robertson, D & Vasconcelos, W 2017,
'Hazard prevention in mission plans for aerial vehicles based on soft institutions' Civil Aircraft Design and
Research, no. 3.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Civil Aircraft Design and Research

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/195267103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/hazard-prevention-in-mission-plans-for-aerial-vehicles-based-on-soft-institutions(3580431b-00a5-462f-a98a-374ef5325dc3).html


Hazard prevention in mission plans for aerial
vehicles based on soft institutions

Flavio S. Correa da Silva1, Paul W. H. Chung2, Marcelo K. Zuffo1, Petros
Papapanagiotou3, David Robertson3, and Wamberto Vasconcelos4 ?

1 University of Sao Paulo, Sao Paulo Brazil
2 Loughborough University, Loughborough UK

3 University of Edinburgh, Edinburgh UK
4 University of Aberdeen, Aberdeen UK

Abstract. Hazard prevention in mission plans requires careful analysis
and appropriate tools to support the design of preventive and/or correc-
tive measures. It is most challenging in systems with large sets of states
and complex state relations. In the case of sociotechnical systems, haz-
ard prevention becomes even more difficult given that the behaviour of
human centric components can at best be partially predictable. In the
present article we focus on a specific class of sociotechnical systems –
namely air spaces containing pilot controlled as well as autonomous air-
crafts – and introduce the notion of relevant hazards. We also introduce
soft institutions as an appropriate basis for analysis, with the aim of ad-
dressing relevant hazards. The concept of soft institutions is drawn from
specification languages for interaction between agents in multi-agent sys-
tems but, in our case, is adapted for use in systems that combine human
and automated actors.

Keywords: Safety engineering, hazard prevention, sociotechnical systems, soft
institutions.

1 Introduction

Hazard prevention requires the assessment of all possible behaviours of a sys-
tem so that safety engineers can intervene in the system design to ensure that
each behaviour leads to planned, foreseen and safe states [1], providing informa-
tion support to design preventive and/or corrective measures for each potential
hazard.

? This work has been partially supported by FAPESP-Brazil and by the EPSRC-
UK. The present article is a revised and extended version of the article Hazard
identification for UAVs based on soft institutions, by the same authors, presented at
the workshop Coordination, Organisations, Institutions and Norms – AAMAS 2017.
Many important comments and criticisms on early versions of this work have been
generously provided by Dr. David Murray-Rust (Edinburgh, UK) and Dr. Amanda
Whitbrook (Derby, UK).



Hazard prevention is most challenging in systems with large sets of states
and complex state relations, which require careful planning and appropriate
tools to generate and analyse potential hazard states, avoiding issues related to
undecidability or combinatorial explosion during exhaustive scan of state spaces.
In the case of sociotechnical systems, hazard prevention becomes even more
difficult given that the behaviour of human centric components can at best be
partially predictable.

The concept of sociotechnical systems was coined in the early 50s to analyse
the impact of the introduction of novel technologies in coal mining, after the
empirical observation that gains in productivity were not uniform in all studied
workgroups. Its roots can be traced back to the analysis of the introduction of
mechanisation in jute milling in Scotland during the 30s [3, 11]. Sociotechnical
systems can be characterised as open asynchronous concurrent systems in which
some entities are humans and others are machines. Hence, interactions involving
heterogeneous entities are a central concept to design, implement and analyse
sociotechnical systems.

In the present article we focus on safety and reliability and, more specifi-
cally, on the construction of tools to support systems design based on hazard
prevention. Given that it can be impossible or too difficult to fully predict the
behaviour of a sociotechnical system as a whole, we introduce the notion of
relevant hazards to be considered during the design of a system.

In brief, we characterise a well determined subset of the set of all potential
hazards for a system and perform backward induction to identify all initial states
and chains of events that can lead to them. We then revise the system design in
order to identify points in which design interventions can either prevent hazards
or inject remedial procedures to be taken in case they occur.

We focus on a specific class of sociotechnical systems for which hazard pre-
vention is particularly relevant – namely, bounded air spaces containing pilot
controlled aircrafts as well as unmanned aerial vehicles (UAVs). We introduce
a diagrammatic language to support the characterisation of relevant hazards,
of sequences of events that can lead to them and of events to which can be
associated actions to be kept in store for each relevant hazard.

We also introduce soft institutions as an appropriate platform for hazard
prevention based on relevant hazards, and illustrate how soft institutions can be
used as a formal counterpart to diagrams employed to design a system for safe
operations in bounded air spaces in which pilot controlled aircrafts share space
with UAVs.

This paper is organised as follows:

– In section 2 we detail a characterisation of sociotechnical systems, highlight-
ing as a relevant special case mission planning for coordinated UAVs with
diversified levels of autonomy.

– In section 3 we briefly introduce the main concepts related to hazard pre-
vention and characterise in detail the notion of relevant hazards. We also
introduce a diagrammatic language to represent sociotechnical systems aim-
ing specifically at the prevention and analysis of failures.



– In section 4 we illustrate how the proposed diagrammatic language can be
used to characterise complex agent interactions in such way that hazard
prevention is supported. As a concrete example, we illustrate how it can be
used to support the design of missions in bounded air spaces in which pilot
controlled aircrafts share space with UAVs.

– In section 5 we introduce the concept of soft institutions, a corresponding
computational platform based on this concept and how it can be used as
a platform to support hazard prevention for the design of sociotechnical
systems.

– Finally, in section 6 we present a brief discussion, conclusions and proposed
future work.

2 Sociotechnical systems

A sociotechnical system can be characterised as an open network of heteroge-
neous interacting entities which can exchange messages and, therefore, coordi-
nate their actions. Some of these entities are engineered and can be programmed
to behave according to rules which are explicitly determined and fully under-
stood, even in the cases when they are not fully deterministic; other entities are
human centric and therefore their behaviour can, at best, be nudged towards
desired patterns of behaviour.

Following Davis et alli [3] we can characterise six facets of sociotechnical
systems:

1. People characterised as interacting entities who can have different compe-
tences, attitudes, skills and interests, based on which they coordinate their
actions with other entities as well as are considered by other entities in pro-
posals for coordination and collaboration;

2. Technologies and tools that characterise engineered interacting entities
which have different capabilities to sense, interpret and act upon the en-
vironment, based on which they can engage into interactions;

3. Processes/procedures embodied as programs and rules for engineered en-
tities as well as norms, regulative policies, sanctioning and incentive mecha-
nisms to steer people towards expected patterns of behaviour;

4. Buildings/infrastructure which characterise environmental resources as
well as constraints for interactions;

5. Goals and metrics to characterise whether the system as a whole as well as
its individual entities are approaching or diverting from goals; and

6. Culture which characterises defeasible assumptions and heuristics shared
and adopted by groups of entities participating in a sociotechnical system.

Depending on the combination and organisation of these facets, different
design strategies for sociotechnical systems are most appropriate and require
different strategies for design, implementation and management of sociotechnical
systems:



1. Openness to admit or dismiss entities: a system can be closed, partially
open or fully open to the admission or dismissal of entities. Partially open
systems can require certain conditions to be fulfilled in order to admit or
dismiss entities from it;

2. Coordination levels among entities: a system can be uncoordinated, locally
coordinated or globally coordinated. In other words, entities participating in
a sociotechnical system can act fully on their own, based on coordination
rules involving groups of entities or based on coordination rules that engage
the whole system to behave globally as a mechanism;

3. Heterogeneity of entities in a system: a system can be comprised primarily
of humans – thus characterising a social network in which human entities
communicate and interact; primarily of technological entities – thus char-
acterising a distributed computational system, possibly containing entities
whose behaviour is not fully deterministic; or have varying proportions of
humans and technological entities;

4. Statefulness: a sociotechnical system can be stateless, i.e. the global state of
the system as well as the internal states of entities are static, and therefore
do not need to be managed; globally stateful, i.e. the global state of the
system can change but the internal states of entities are static, and therefore
entities can be reactive and their modelling is simplified; or fully stateful, i.e.
the global state of the system as well as the internal states of entities are
dynamic and must be monitored and managed;

5. Context sensitiveness: updates in the environment can be irrelevant or
unnoticeable, in which case context needs not be managed; dynamic although
irrespective of the states of the system, in which case the system as a whole
as well as its components must be able to monitor changes in the environ-
ment and to adapt accordingly; and dynamic and sensitive to system states,
in which case system components must be able to monitor changes in the
environment, correlate these changes with their actions and adjust actions
to manage the environment while they pursue their goals.

In the present work we are specifically interested in bounded air spaces in
which pilot controlled aircrafts share space with UAVs. In this scenario, a system
is typically:

1. Partially open, as aircrafts are allowed in and out of the air space provided
that well specified rules and norms are followed;

2. Locally coordinated, as entities communicate and coordinate their actions
following strict protocols which induce a hierarchy of control;

3. Heterogeneous, as we are considering autonomous vehicles interacting with
pilot controlled vehicles and control systems comprised by sensors and actu-
ators as well as human operators;

4. Fully stateful, as the states of individual entities – especially engineered
entities – must be stored and managed in order to manage the whole system,
particularly with respect to hazard prevention and engineering;

5. Sensitive to system states and changes resulting from external factors as
well as from consequences of state updates of entities.



Our focus in the present article is on hazard prevention during system design.
We are interested in structuring the interactions among entities in this scenario
in such way that all relevant hazards are taken into account and design decisions
are made in order to avoid failures or to build readiness to fix them in case they
occur.

3 Hazard prevention based on relevant hazards

We adopt the simplifying assumption that all participating entities have been
admitted to the system by following the interaction protocols that characterise
it. Entities which do not follow certified interaction protocols are considered
as external entities which can influence but are not part of the system and,
therefore, are not subject to design decisions related to it.

We also assume that the behaviour of an entity can be completely described
by the interactions in which it is prepared to participate. The internal functioning
of any entity is not taken into account explicitly. This way, human centered
entities can be considered uniformly together with complex engineered entities,
and entities can be described using different levels of abstraction, according to
the level of detail used to specify each interaction protocol under consideration.

Two fundamental strategies can be considered for hazard prevention during
systems design [6]:

1. Avoiding that things go wrong, i.e. anticipating hazards and their cor-
responding causes, to allow system re-design in order to prevent those causes
to occur, and

2. Ensuring that things go right, i.e. identifying hazards and their corre-
sponding causes, and then looking ahead to events that can be a consequence
of those hazards, so that corrective measures can be included in the system
for each of the considered failures and/or their causes.

We focus on a subset of the set of all hazards, which are considered to be
the relevant ones, which are in fact the ones we are able to advance during
synthesis and scrutiny of a system design. The design of complex systems that
are resilient to failures must combine these two strategies in such way that all
relevant hazards are considered.

In summary, our proposed strategy for hazard prevention during the design
of a sociotechnical system is based on the principles outlined in Figure 1.

In order to support this strategy, we introduce a simple diagrammatic lan-
guage to abstract entities in a sociotechnical system based on interaction proto-
cols. The proposed language is presented in Figure 2.

Each element in the proposed language can be represented using standardised
notation as presented in Figures 3 and 4. Our purpose while designing this
language was to make it as simple and compact as possible, as well as easy to
translate as declarative executable specifications using the existing infrastructure
based on soft institutions, as detailed in section 5.



1. System entities are uniformly abstracted as components capable of reacting to in-
coming messages from other, interacting components. Their reactions correspond
to
(a) triggering internal, encapsulated behaviours which are influenced by environ-

mental events,
(b) updating internal states, and
(c) interfacing with well specified interaction protocols which can generate outgoing

messages to other components.
2. General system states and behaviour can be characterised by published states, mes-

sages and interaction protocols used by system entities.
3. Hazard prevention can be performed based on general system states.
4. Hazard prevention based on relevant hazards corresponds to the prevention of a set

of system states which are considered hazards, prevention of events that can lead
to these states, and prevention of events that can result from hazards.

Fig. 1. Principles for hazard prevention

In Figure 3 we depict an entity which can participate in several contexts
and assume several states within each of these contexts. For each state there
are several interaction protocols which can be triggered by the entity. Some
protocols have hand-offs in different contexts and/or states. Interaction protocols
are portrayed as graphs inside white rectangles and hand-offs are represented as
dashed arrows connecting graphs.

In Figure 4 we depict all possible types of actions that can belong to an
interaction protocol.

As a brief example to illustrate the use of the diagrams, we feature in Figure
5 two entities – namely, a UAV and the Air Traffic Control (ATC) – during a
simple interaction5. In this interaction, if necessary the UAV refuels and then
it asks for permission to take-off. The ATC confirms the permission to take-off,
and then the UAV changes state from standing to taxiing.

Hazard prevention can raise the possibility that the message from the ATC
never gets to the UAV. Backward reasoning could suggest that the exchange of
messages between the UAV and the ATC should contain additional steps, so that
the UAV would acknowledge receipt of the message and the ATC would not stop
sending copies of the permission to take-off until receiving an acknowledgment.
Forward reasoning could suggest the inclusion of a time-out sensing operation
as part of the interaction protocol for the UAV in standing state, to prevent
the UAV from staying idle in case the message from the ATC never arrives.
Both strategies could be combined in order to design a system that is resilient
to failures.

5 A detailed example is presented in section 4.



– System entities are represented as boxes. Each box is labeled by a unique ID that
identifies the corresponding entity.

– Inside an entity box we can have another boxes representing the set of contexts into
which the entity can enter.

– Inside a context box we can have another boxes representing the set of states ad-
mitted for the entity in that context.

– Inside a state box we can have another boxes representing the set of interaction
protocols allowed for an entity in a given context and state. An interaction proto-
col can make an entity change context and/or state. In this case, the interaction
protocol has a hand-off in a different context and/or state.

– Inside an interaction protocol we have a directed graph of actions, in which nodes
represent individual actions and edges characterise the order in which actions must
occur in the interaction protocol. Every graph of actions has a root node which
determines the first action to be performed, followed by its successor nodes in se-
quence. A branch represents a committed choice. A confluence represents a contin-
uation that can be performed once at least one of the conflating branches succeeds.
Hence, a graph of actions is a concise representation for a collection of alternative
chains of actions that comprise an interaction protocol. An action can correspond
to (1) querying the knowledge base of an entity, (2) performing a sensor-based oper-
ation in the environment, based on which the entity captures information from the
environment, (3) receiving a message from another entity. Incoming messages must
be sent by a specific entity in a given context and state, (4) updating a statement in
the knowledge base of an entity, (5) performing an actuator-based operation in the
environment, based on which the entity performs actions upon the environment,
(6) sending a message to another entity. Outgoing messages must be addressed to
a specific entity in a given context and state, or (7) changing context and/or state
of the entity, in which case a hand-off of the interaction protocol in a different
context and/or state is triggered.
Actions containing queries to the knowledge base, sensor-based operations and re-
ceipt of messages are called in-actions while actions corresponding to updates in
the knowledge base, actuator-based operations, remittance of messages and change
of context and/or state are called out-actions. Sequences of in-actions can work as
preconditions for individual out-actions to occur.

Fig. 2. Diagrammatic language to represent entities in sociotechnical systems



Entity ID

Context1 Context2 Context3

Context4 (...) Contextn

State11 (...) State21 (...) State31 (...)

State41 (...) Staten1 (...)

Fig. 3. Representation of an entity in the diagrammatic language

KB Update / actuator-based operation

KB Query / sensor-based operation

Outgoing msg

Incoming msg

OR

(...)(...)

in-actions

out-actions

out-actionin-action

in-action

(...)

in-action

preconditions
hand off

Fig. 4. Representation of actions in interaction protocols in the diagrammatic language



ID = UAV001

Context = UAV

State = standing

Int. Prot. = permission request

Refuel

NO YES

Fuel OK?

State = taxiing

Int. Prot. = normal taxiing

ID = ATC002

Context = ATC

State = operational

Int. Prot. = permission reply

(...)

(...)

Fig. 5. Message exchanges between an autonomous UAV and an ATC

Our purpose in building this diagrammatic language has been to support
system designers activities with a clear and intuitive pictorial language capable
of exposing hazards in a system which can then be considered accordingly.

In the next section we present a detailed example in which a UAV is followed
from standing off-lane through flying to landing. We use this example to illustrate
how the proposed diagrammatic language can be used to represent complex
systems in operation and how it can be used to identify hazards and help in the
refinement of system design to provide appropriate care to potential hazards.

4 An illustrative example

In order to show how the proposed diagrammatic language can be used for
hazard prevention, we consider a slightly more sophisticated example in which a
complete mission for a UAV is depicted and analysed. This mission corresponds
to a complete flight – from standing off-lane through flying to landing – and
requires interactions involving the UAV and an ATC. The number of states
through which the UAV passes is seven: Standing, Taxiing, Take-off, Initial climb,
En route, Approach and Landing.

The diagrams corresponding to each state are depicted in Figures 6 to 12.
In Figure 6 the entity UAV001 is initially switched off and off-lane. It is

assumed that it is listening to the appropriate channel for messages to receive
a message requiring it to start the engine, which takes entity UAV001 to the
context of UAV and standing state. The message triggers the interaction protocol
depicted in Figure 6. When it receives a message to start the engine, it updates



the knowledge base and performs the action of starting the engine. It then queries
the knowledge base to check whether the engine has started. If there is a failure,
then it tries again to start the engine, otherwise it updates the knowledge base
and checks fuel level and systems. If there is a problem, then it stops the engine
and tries to start again, otherwise it updates the knowledge base and hands off
control to an interaction protocol in Taxiing state.

The proposed strategies for hazard prevention and prevention/recovery have
resulted in the loops back to the engine start message, together with the action
to stop the engine in case fuel and system messages indicate that the UAV is
not ready for flying.

In Figure 7 we have two entities, resp. UAV001 and ATC001. UAV001 stays
in the context of UAV but now moves to taxiing state. ATC001 assumes context
ATC and state to authorise taxiing towards take-off.

The interaction protocol for UAV001 in context UAV and taxiing state is
slightly more complex than the protocol for standing state. UAV001 sends a
message to an entity that is available in the context of ATC. In our example,
ATC001 receives this message and replies back with either take-off OK or take-off
denied. If take-off is denied, then UAV001 loops back and re-sends the message,
until take-off is OK. When take-off is OK, then UAV001 checks whether power
back is required. In case it is, then it performs appropriate operations and checks
again. When power back is not required, then it finally performs taxiing and
hands off control to an interaction protocol in Take-off state.

In Figure 8, UAV001 moves to take-off state and requests authorisation to
take-off. If ATC001 authorises take-off, then UAV001 performs fuel and systems
verification. If there is something wrong, then take-off is aborted and a new
authorisation is requested; if verification succeeds then UAV001 proceeds to take-
off. If ATC001 does not authorise take-off, then UAV001 checks its knowledge
base to decide whether to hold take-off or to give up. If decision is to hold
take-off, then a new authorisation is requested, otherwise mission is aborted.

In Figure 9, UAV001 performs the transition from take-off to climb, which is
itself a transition state towards en route state.

In Figure 10, UAV001 moves to en route state and maintains communication
with ATC001 anytime it requests change in cruise level, until it identifies it is
time to start descent. When this situation arises, then UAV001 requests permis-
sion to start descent. When ATC001 grants permission for descent then UAV001
performs descent and state moves to approach.

In Figure 11, UAV001 moves to approach and maintains communication with
ATC001 to request permission to start approach for landing. In case meteorolog-
ical conditions are not adequate, permission is denied and, depending on what
conditions are occurring, appropriate measures are taken before a second at-
tempt to start approach for landing is started. In case meteorological conditions
are fine, permission is granted and approach is started. In case some operation
does not succeed during approach, UAV001 goes to circling and approach is
restarted, otherwise approach is finalised and the entity moves to landing, which
is the final state in this mission.



Finally, in Figure 12, UAV moves to landing and attempts to perform landing.
If it succeeds, then it goes to taxiing and switches off engines, otherwise it takes-
off again.

A design tool to support hazard prevention in these terms must allow the
representation of complex systems based on this vocabulary, and the exhaustive
simulation of interactions involving entities in a system once an event (or set of
events) is highlighted. In the next section we introduce soft institutions as an
appropriate platform to build one such tool.

5 Soft institutions

We argue that soft institutions can be used as a tool to design and implement
sociotechnical systems which is particularly useful for hazard prevention, given
that a translation from the diagrammatic language presented in the previous
sections to interactions protocols in a soft institution is immediate.

Soft institutions generalise the concept of electronic institutions [4, 5, 10] to
provide means to model complex systems comprised by human as well as engi-
neered peers [7]. They have been proposed as an appropriate platform to design
and implement sociotechnical systems [2].

Electronic institutions are a powerful framework to build systems comprised
by multiple entities based on the principle that the global behaviour of a complex
system can be managed by the establishment of norms, rewards for entities that
abide by these norms and sanctions for those who challenge them. In order for an
entity to participate in an electronic institution, it must be prepared to respond
to norms, rewards and sanctions, as well as interact with other participating
entities.

Norms, rewards and sanctions in an electronic institution form a normative
system which should be flexible in order to adjust to the observed behaviour of
participating entities in an institution. The normative system dictates the way
entities should behave in order to be allowed into an electronic institution and an
entity (or organisation comprised by entities) must comply with the normative
system in order to be able to request participation in an electronic institution.

Technological entities can be designed and built to comply with normative
systems and, therefore, participate in electronic institutions. Human entities,
however, may feel uncomfortable to need to learn and then to be submissive to
third party rules as a prerequisite to join into a network of peers.

Soft institutions, in contrast, allow entities to act freely and adjust their
behaviour in a minimalist way to be able to join into local interaction protocols.
Instead of having a centralised control around the normative system (as is the
case with electronic institutions), soft institutions have a decentralised, possibly
asynchronous control, centered on entities which choose to interact according to
available protocols. This way, the barrier to enter a soft institution is significantly
lower for humans, hence an interaction platform based on soft institutions can
be more appealing to human entities than one based on electronic institutions,



ID = UAV001

Context = UAV

State = standing

Int. Prot. = engine start

start

KB: standing/stopped/engine stopped

Action: start engine

Query: engine on?

no yes

no yes

KB: standing/starting/engine starting

Query: fuel and system OK?

KB: standing/started/engine normal

Action: stop engine

hand-off to taxiing

Fig. 6. Interaction protocol for entity in context of UAV and state as Standing



\ref{fig5}

ID = UAV001

Context = UAV

State = taxiing

Int. Prot. = taxiing UAV

hand-off from engine start KB: standing/request/engine on

Action: power back

hand-off to take-off 

\ref{fig5}

ID = ATC001

Context = ATC

State = authorise taxiing

Int. Prot. = auth. UAV

msg: request take-off
KB: request

Query: OK?

no yes

Query: require
power back?

yes no

KB: taxiing/taxiing/power back

Action: power back stopped

Action: taxi to runway

KB: taxiing/taxiing/operating

Query: take-off position OK?

no yes

msg: take-off denied

msg: take-off OK

Action: taxi stop

KB: taxiing/take-off/operating

Fig. 7. Interaction protocol for entities as UAV (Taxiing) and ATC (Auth. Taxiing)



\ref{fig5}

ID = UAV001

Context = UAV

State = take-off

Int. Prot. = take-off UAV

hand-off from taxiing UAV KB: standing/request/engine on

hand-off to climb

\ref{fig5}

ID = ATC001

Context = ATC

State = authorise take-off

Int. Prot. = auth. UAV

msg: request take-off
KB: request

Query: OK?

no yes

Query: fuel and
systems OK?

no yes

Action: take-off

KB: take-off/take-off/operating

msg: take-off denied

msg: take-off OK

Query: hold take-off?

yes no

Action: taxi from runway

KB: taxiing/taxiing/operating

Action: stop

KB: take-off/aborting/operating

Fig. 8. Interaction protocol for entities as UAV (Take-off) and ATC (Auth. Take-off)



ID = UAV001

Context = UAV

State = climb

Int. Prot. = climb UAV

hand-off from take-off

KB: take-off/take-off/engine operating

Action: initial climb

Query: power OK and systems OK and
altitute above threshold?

no yes

KB: climb/climb/engine operating

hand-off to En route

Fig. 9. Interaction protocol for entity as UAV (Climb)



\ref{fig5}

ID = UAV001

Context = UAV

State = En route

Int. Prot. = En route UAV

KB: climb/climb/engine on

hand-off to approach

\ref{fig5}

ID = ATC001

Context = ATC

State = authorise flight

Int. Prot. = auth. UAV

msg: change
cruise level

KB: request

Query: OK?

no yes

Action: descent

msg: change OK

msg: no change

hand-off from climb UAV

Action: reach cruise altitude

KB: En route/climb/engine on

Query: cruise altitude OK?

KB: En route/cruise/engine on

msg:descent

KB: request

Query: OK?

KB: En route/hold/engine on

msg: no

msg: yes

Action:climb

KB: En route/climb/engine on

Query: altitude OK?

no yes

Fig. 10. Interaction protocol for entities as UAV (En route) and ATC (Auth. change
level and Auth. descent)



\ref{fig5}

ID = UAV001

Context = UAV

State = approach

Int. Prot. = approach UAV

hand-off from En route UAV KB: En route/descent/engine on

hand-off to landing

\ref{fig5}

ID = ATC001

Context = ATC

State = authorise approach

Int. Prot. = auth. UAV

msg: request approach
KB: request

Query: OK?

no yes

Query: final
approach?

no yes

KB: approach/approach/operating

msg: approach denied

msg: approach OK

Query: crosswind?

yes no

Action: downwind circuit

KB: approach/downwind/engine on

Action: crosswind circuit

KB: approach/crosswind/engine on

Action: circuit

KB: En route/final/engine on

Action: approach

KB: approach/approach/operating

KB: approach/failed approach/operating

Action: circling

Fig. 11. Interaction protocol for entities as UAV (Approach) and ATC (Auth. ap-
proach)



ID = UAV001

Context = UAV

State = landing

Int. Prot. = landing UAV

hand-off from approach 

KB: approach/approach/engine on

Action: nose up

Query: landing OK?

yes no

KB: landing/flare/engine on

Action: touchdown

Action: abort landing

KB: landing/abort/engine on

Action: take-off

KB: take-off/take-off/engine on

KB: landing/landing/engine on

Action: taxi from runway

KB: standing/standing/engine off

KB: taxiing/taxiing/engine on

Action: stop

hand-off to take-off

Fig. 12. Interaction protocol for entitiy as UAV (Landing)



at the cost of only being able to have partial control over design, operation and
management of a system based on soft institutions.

From the perspective of hazard prevention, soft institutions are a good mod-
eling language for complex sociotechnical systems, well aligned with the strategy
for hazard prevention proposed in section 3. Soft institutions also consider as a
basic principle that a full account of all states of the systems being modeled
is not feasible, hence hazard prevention can only – and at best – be based on
relevant hazards as characterised in section 3.

Soft institutions are organised in four layers:

1. The entity controlled layer: this layer caters for individual capabilities
and actions corresponding to each entity. Entities can be human individu-
als (e.g. pilots and flight controllers), technological entities (e.g. aircrafts,
sensing and communicating devices), or organisations constituted of other
entities (e.g. teams of aircrafts flying in formation, teams of controllers);

2. The communications layer: this layer comprises the infrastructure and
processing power to manage message exchanges between entities. In princi-
ple, messaging is peer-to-peer with unique addressing. Additional message
control structures can be built using the entity controlled and the commu-
nications layer.

3. The coordination layer: this layer consists of social norms that constrain
and regulate interactions among selected peers (e.g. rules to enter a con-
trolled air space, navigate in it, interact with other entities and leave the air
space).

4. The environment: this layer comprises all other phenomena that can in-
fluence the behaviour and state of the soft institution.

We assume a language L used to describe facts and computational expres-
sions. The language consists of three constructs:

1. Terms: correspond to constant or atomic expressions of different types;
2. Variables: are uniquely identified strings to which different values can be

assigned;
3. Functions: are collections of mappings from tuples of terms to terms.

Value assignments to variables are expressed as substitutions σ of the form
{x1 7→ c1, · · · , xn 7→ cn}, which denote that the construct ci is assigned to the
variable xi. A substitution application function σ̂ is applied to whole constructs,
producing a new construct in which every variable in a construct c that is present
in a substitution σ is replaced by the corresponding construct. For example, if
σ = {x1 7→ y, x2 7→ 5} and c = (x1 + x2 + x3), then σ̂c = (y + 5 + x3).

Using substitutions we can naturally define unification (
σ̂
=). A substitution

application σ̂ unifies two constructs c1 and c2 if the application of σ̂ to both

constructs yields the same result, i.e. c1
σ̂
= c2 iff σ̂c1 = σ̂c2.

Each entity maintains a personal knowledge base that comprises its beliefs,
opinions, individual goals, actual knowledge, reasoning capabilities, actions etc.
It is assumed, as a design principle, that entities do not have access to each



others’ personal knowledge bases. It is also assumed, however, that each entity
participating in a soft institution maintains a part of its knowledge base stored
as a collection of L constructs, which we here name institutional knowledge base,
and which are updated and consulted using two operators:

1. A(c): this operator updates a fact c (KB Update in Figure 4). Depending on
specific institutions being designed, an update may correspond to inserting,
actual updating or deleting information from the institutional knowledge
base;

2. K(c, σ̂): this operator consults the institutional knowledge base (KB Query
in Figure 4). Similar to the A operator, variations on the semantics of the
K operator can be used for different soft institutions. Essentially, K(c, σ̂)
checks whether the construct c belongs to the institutional knowledge base
of an entity; if it does, then it is retrieved from the knowledge base, and the
substitution σ̂ is used to build the construct σ̂(c).

The institutional knowledge base contains a set of ground termsR = {R1, · · · ,
Rm} which represent a set of contexts available to the entity. Contexts are pa-
rameterised by states, so that e.g. Ri/sj refers to state sj in context Ri. It also
contains a set of constructs PROT using the syntax specified in the following
paragraphs, which characterise interaction protocols available to the entity given
a context and a state.

Given an implementation of a platform for soft institutions, contexts and
states are the means for an entity to enter a soft institution: an entity can pick
a context and then a state from R, which become the institutional context and
state of the entity and grant the entity the right to engage into interactions
using an appropriate protocol available in PROT . Contexts and states can be
retrieved and updated using the A and K operators.

Messages are passed from entity to entity via the communications layer. To
each entity is assigned a unique ID, and messages depend upon contexts and
states to be properly treated. A message M is assumed to have the format M =
〈Rsend, gT,Rrec, IDother〉, where Rsend is the context/state that the sending
entity must necessarily hold when the message is sent; gT is a ground term
which corresponds to the content of the message; Rrec is the context/state that
the receiving entity must hold in order for the message to be received; IDother

is the ID of the “other” entity: it is the ID of the receiver when a message is
being sent and the ID of the sender when a message is being received.

The institutional knowledge base also contains two constructs that represent
the state of the entity with respect to the soft institution:

1. Comm stores the status of communications. It contains the entity ID and
two message queues containing incoming and outgoing messages respectively.

2. Coord stores the status of coordination. It contains the list of contexts and
states already held by the entity including the current context/state as head
of the list, the protocol being followed, the stage of execution of the current
protocol and the set of variable assignments/substitutions.



Protocols are defined as a variation and extension of the Lightweight Coordi-
nation Calculus (LCC) [9] according to the specification presented in Figure 13.
Carefully crafted sets of protocols embedded into appropriate states and con-
texts can implement sophisticated patterns of interaction, servicing large and
complex sociotechnical systems. Interaction protocols work as support services
for entities to engage into well regulated and carefully designed interactions, but
they are not mandatory and they do not necessarily cover all aspects of all in-
teractions that connect entities participating in the same sociotechnical system.
System modeling based on soft institutions can be used to highlight facets of a
system that are considered most relevant. For hazard prevention, relevant haz-
ards can be characterised in detail and simulations can be performed, so that
forward and backward reasoning can be performed and the design of a system
can be refined and improved towards resilience with respect to failures.

– A protocol is a list of clauses. A clause defines a script to be followed in order for an
interaction to take place. Clauses have the format cl(R, [c1, · · · , cr]) ::= Def where
R ∈ R is a context parameterised by a state, c1, · · · , cr are optional parameters
and Def is the body of the clause:

Def := Closed | Out | Out← [In1, · · · , Ins] |Def then Def | Def or Def
Ini := rec(Msg) | cond(c)

Out := Null | snd(Msg) | chR(R′, [c′1, · · · , c′r′ ]) | A(c)

– Closed concludes an interaction.
– Out is an output action:
• Null is an empty action that does nothing.
• snd(Msg) sends message Msg to another entity.
• chR(R′, [c′1, · · · , c′r′ ]) either changes the context of the entity during the execu-

tion of a clause or changes the state of the entity within the same context.
• A(c) updates the construct c into the institutional knowledge base.

– Out← [In1, · · · , Ins] performs a list of input actions and then performs an output
action. An input action Ini is one of the following alternatives:
• rec(Msg) receives a message Msg from another entity.
• cond(c) checks whether there is a construct c′ in the institutional knowledge

base and a substitution σ̂ such that K(c′, σ̂) = c. The construct c is a condition
which can be satisfied if the answer is positive.

– then is a connective that represents sequential and, i.e. it joins two computational
steps in sequence.

– or is a connective that represents non-deterministic choice between two computa-
tional steps.

Fig. 13. Protocols in LCC



6 Conclusion and future work

In this work we have considered hazard prevention during the design of systems
for flight control of autonomous UAVs, based on a diagrammatic language that
can be translated to protocols in soft institutions.

Implementations of platforms for soft institutions have already been pre-
sented elsewhere [7], and frameworks for formal verification of interaction pro-
tocols with respect to desired properties have also been developed [8]. In future
work, we plan to employ these systems as a platform to support the activities of
safety engineers during the design of complex systems, by providing them with
tools to identify potential relevant hazards.

References

1. F. Belmonte, W. Schon, L. Heurley, and R. Capel. Interdisciplinary safety analysis
of complex socio-technological systems based on the functional resonance accident
model: An application to railway traffic supervision. Reliability Engineering and
System Safety, 96:237–249, 2011.

2. F. S. Correa da Silva, P. Papapanagiotou, D. Murray-Rust, and D. Robertson. Soft
institutions – a platform to design and implement sociotechnical systems (submit-
ted). In 20th International Conference on Knowledge Engineering and Knowledge
Management, Italy, 2016.

3. M. C. Davis, R. Challenger, D. N. W. Jayewardene, and C. W. Clegg. Advancing
socio-technical systems thinking: a call for bravery. Applied Ergonomics, 45:171–
180, 2014.

4. M. Esteva, J. A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos. On
the formal specification of electronic institutions. In Agent mediated electronic
commerce, pages 126–147. Springer, 2001.

5. M. Esteva and C. Sierra. Electronic Institutions: from specification to develop-
ment. Consell Superior d’Investigacions Cient́ıfiques, Institut d’Investigació en
Intel· ligència Artificial, 2003.

6. E. Hollnagel. A tale of two safeties. Nuclear Safety and Simulation, 2013.
7. D. Murray-Rust, P. Papapanagiotou, and D. Robertson. Softening electronic in-

stitutions to support natural interaction. Human Computation, 2(2), 2015.
8. P. Papapanagiotou, D. Murray-Rust, and D. Robertson. Evolution of the

lightweight coordination calculus using formal analysis. Personal communication,
2016.

9. D. Robertson. Multi-agent coordination as distributed logic programming, pages
416–430. Proceedings 20th International Conference on Logic Programming –
Springer LNCS 3132. 2004.

10. C. Sierra, J. A. Rodriguez-Aguilar, P. Noriega, M. Esteva, and J. L. Arcos. En-
gineering multi-agent systems as electronic institutions. European Journal for the
Informatics Professional, 4(4):33–39, 2004.

11. E. Trist. The evolution of socio-technical systems. Occasional paper, 2:1981, 1981.


