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While curved waveguides are fundamental elements in photonics, those induced all-optically in nonlin-
ear uniform dielectrics tend to be straight. In uniaxial soft matter with a reorientational response, such
as nematic liquid crystals, light beams in the extraordinary polarization undergo self-focusing via an
increase in refractive index and eventually form spatial solitons, i.e., self-induced waveguides. Hereby
we investigate the bending of such waveguides by analyzing the trajectory of solitons in nematic liquid
crystals— nematicons— in the presence of a linearly varying transverse orientation of the optic axis. To
this extent we use and compare two approaches: i) a slowly varying (adiabatic) approximation based on
momentum conservation of the nematicon in a Hamiltonian sense; ii) the Frank-Oseen elastic theory cou-
pled with a fully vectorial and nonlinear beam propagation method. The models provide comparable
results in such a non-homogeneously oriented uniaxial medium and predict bent soliton paths with ei-
ther monotonic or non-monotonic curvatures, enabling the design of curved channel waveguides induced
by light beams. © 2017 Optical Society of America

OCIS codes: (190.6135) Spatial solitons; (230.3720) Liquid-crystal devices; (160.3710) Liquid crystals; (190.3270)
Kerr effect

This paper is dedicated to one of its coauthors, Pro-
fessor Antonmaria (Tim) A. Minzoni, who prematurely
passed away during its preparation. N.F.S. and G.A. re-
member Tim as a generous person of vast culture, a dear
friend and an outstanding colleague.

INTRODUCTION

All-optical or light-induced waveguides through the self-
focusing response of optical materials are commonly re-
ferred to as spatial optical solitons and have been studied
in several media [1], including liquid crystals [2]. Nematic
liquid crystals (NLCs) are anisotropic, typically uniaxial,
soft matter consisting of thread-like molecules which ex-
hibit orientational but no spatial order [3]. The anisotropic
molecules are in a fluid state, linked by elastic forces, and
exhibit two refractive index eigenvalues, ordinary and

extraordinary, for light polarized perpendicular or paral-
lel to the optic axis, termed the molecular director and
usually denoted by the unit vector~n. The refractive index
of extraordinary polarized light has a nonlinear optical
dependence through the reorientational response: the
electric field of the light beam induces dipoles in the NLC
molecules, so that they tend to rotate towards the field
vector to minimize the system energy until the elastic re-
sponse balances this electromechanical torque [3]. The re-
sulting change in molecular orientation then changes the
extraordinary refractive index towards the largest eigen-
value, so that the beam undergoes self-focusing. When the
latter compensates linear diffraction, a (2 + 1)D solitary
wave can form, often termed a nematicon [2, 4]. Nemati-
cons are non-diffracting solitary beams in nematic liquid
crystals, confined by their own graded-index waveguides.
They have been extensively investigated over a number of
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years in many different scenarios, including planar cells
[5–10], capillaries [11, 12], one-dimensional waveguides
[13], coupled waveguides [4] and bulk [14]. When the
wavevector of the light beam and the molecular director
are neither perpendicular nor parallel, the Poynting vec-
tor of the nematicon walks-off the wavevector at a finite
angle owing to the tensorial nature of the dielectric sus-
ceptibility [15]. Such an angular deviation of the energy
flux depends on the refractive index eigenvalues, n‖ and
n⊥ for electric fields parallel and perpendicular to the di-
rector, respectively, and the angle ψ between the director
and wavevector. Nematicon walk-off can be exploited
in optical devices, for instance, signal demultiplexers or
routers [2, 16–19].

Similarly to other nonlinear optical media [1], in uni-
form NLCs nematicons propagate in rectilinear trajec-
tories along their Pointing vector. The graded index
waveguides associated with these spatial solitons are
therefore straight. Curved nematicons have been inves-
tigated by introducing extra elements, such as graded
interfaces [17, 18, 20], localized refractive index perturba-
tions [2, 16, 21], interactions with boundaries [8, 22] as
well as other solitons [2, 5, 9, 23, 24]. A detailed approach
to designing and modeling beam-induced waveguides
undergoing bending versus propagation in a medium
without external perturbations, however, has never been
developed before.

In this article we introduce and study -for the first time
to the best of our knowledge- curved solitons as they
propagate in nematic liquid crystals subject to a linearly
varying orientation of the optic axis across one of the trans-
verse coordinates, in the principal plane defined by optic
axis and wavevector. We consider nematicons excited in a
planar cell of fixed (uniform) thickness, with upper and
lower interfaces treated to ensure planar anchoring of the
NLC molecules. This geometry is radically different from
those entailing spin-orbit interactions of light with matter
[25, 26], as the optic axis and the wavevector are not mutu-
ally orthogonal because the light beam is an extraordinary
wave . As the molecular alignment varies across the sam-
ple, both the extraordinary refractive index and the bire-
fringent walk-off vary as well. These two variations deter-
mine the resulting trajectory of extraordinarily polarized
beams in the cell, including the path of self-confined ne-
maticons. To investigate non-rectilinear nematicon paths
in a transversely modulated uniaxial we use two different
approaches in the weakly nonlinear regime (i.e. power
independent walk-off): (i) numerical solutions of the full
governing Maxwell’s equations employing a fully vec-
torial beam propagation method for the beam and the
Frank-Oseen elastic theory for the NLC response [2]; (ii)
an adiabatic (slowly varying) approximation to yield sim-
plified forms of these equations, invoking momentum
conservation [2, 27, 28]. The adiabatic approximation is
based on the high nonlocality of the NLCs, which im-
plies that the nonlinear response extends far beyond the
transverse size of the optical wavepacket [2, 29] and de-

couples the amplitude/width evolution of the beam from
its trajectory [28]. In this study the background director
angle is slowly varying, typically 0.002 rad/µm in a cell
of width 200 µm, so that the nematicon trajectory can be
determined by “momentum conservation”, in the sense of
invariances of the Lagrangian for the NLC equations. The
latter approach yields simple equations which have an
exact solution and provides excellent agreement with the
full numerical solutions, proving more than adequate to
model beam evolution in non-uniform birefringent media.

GEOMETRY AND GOVERNING EQUATIONS
We consider the propagation of a linearly polarized, co-
herent light beam in a planar cell with undoped, positive
uniaxial, nematic liquid crystals. The extraordinary polar-
ized beam is taken to initially propagate forward in the
z direction, with electric field E oscillating in the y trans-
verse direction and x completing the coordinate triad. To
eliminate the Freédericksz threshold [3] and maximize
the nonlinear optical response [2], the cell interfaces per-
pendicular to x are rubbed so that the molecular director
makes an angle θ0 with z in the (y, z) plane everywhere in
the bulk owing to elastic interactions, as sketched in Fig.
1. An additional y-dependent rotation θb(y) is given to
the nematic director to modulate the uniaxial medium, as
illustrated in Fig. 2(b). Due to the nonlinearity, the light
beam can rotate the optic axis by an extra angle θ, so that
the director forms a total angle ψ(y) = θ0 + θb(y) + θ(y)
to the z axis in the (y, z) plane [2].

E

k
θ0+θb 

Z
X

Y

Fig. 1. (Color online) Sketch of the configuration and
NLC alignment. The input Gaussian beam is linearly
polarized along y.

Beam propagation method and elastic theory
One of the approaches used to study the nonlinear evo-
lution of a light beam in nematic liquid crystals is the
fully vectorial beam propagation method (FVBPM) [30] in
conjunction with elastic theory based on the Frank-Oseen
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Fig. 2. (Color online) (a) Uniform and (b) linearly modu-
lated anchoring conditions across y.

model for the NLC response [3, 31, 32]. The FVBPM can
be derived directly from Maxwell’s equations [33, 34], con-
sidering harmonically oscillating electric and magnetic
fields in an anisotropic dielectric

∂Hz

∂y
−

∂Hy

∂z
= iωε0

(
ε11Ex + ε12Ey + ε13Ez

)
,

∂Hx

∂z
− ∂Hz

∂x
= iωε0

(
ε21Ex + ε22Ey + ε23Ez

)
,

∂Hy

∂x
− ∂Hx

∂y
= iωε0

(
ε31Ex + ε32Ey + ε33Ez

)
,

Hx = − 1
iµ0ω

(
∂Ez

∂y
−

∂Ey

∂z

)
, (1)

Hy = − 1
iµ0ω

(
∂Ex

∂z
− ∂Ez

∂x

)
,

Hz = − 1
iµ0ω

(
∂Ey

∂x
− ∂Ex

∂y

)
.

Here the complex amplitudes ~E and ~H are the electric and
magnetic fields, respectively, ε is the electric permittivity
tensor, ω is the angular frequency and µ0 is the vacuum
permeability. These coupled partial differential equations
can be solved numerically, as the x and y derivatives can
be approximated using standard central differences and
the solution can be propagated forward along z using a
standard fourth-order Runge-Kutta scheme. In this work
the step size is chosen to be dz = 10 nm. At the cell
boundaries, reflective Dirichlet boundary conditions are
imposed, so that E = 0 and H = 0 at the NLC/glass
interfaces. The electric tensor in equations (1) is

ε =


ε⊥ 0 0

0 ε⊥ + ∆ε sin2 ψ ∆ε sin ψ cos ψ

0 ∆ε sin ψ cos ψ ε⊥ + ∆ε cos2 ψ

 , (2)

with ∆ε = n2
‖ − n2

⊥ the optical anisotropy. These elec-
tromagnetic equations are coupled to the NLC response,
given by the Frank-Oseen expression for the energy den-

sity in the non-chiral case [3, 31, 32]

f =
1
2

K11(∇~n)2 +
1
2

K22(~n · (∇×~n))2

+
1
2

K33(~n× (∇×~n))2 − 1
2

ε0∆ε(~n · ~E)2. (3)

Here, K11, K22, K33 are the Frank elastic constants for bend,
twist and splay deformations of the molecular director
~n, respectively [2]. The equation for the NLC elastic re-
sponse is obtained by taking variations of this free en-
ergy. However, doing so results in a large system of equa-
tions [35]. To overcome this complexity, we note that in
the examined configuration the molecular director and
the electric field of the beam lie in the same (principal)
plane (y, z); hence, as nonlinear reorientation occurs in
this same plane and the azimuthal components can be
neglected, the director~n can be expressed in polar coordi-
nates~n = [0, sin ψ, cos ψ]. Since the changes in molecular
orientation along z are slow as compared with the wave-
length of light, the derivatives with respect to z can also
be neglected. In this approximation, the variations of the
free energy (3) yield the Euler-Lagrange equation, where
the subscripts on ψ denote derivatives,

∂

∂x
∂ f

∂ψx
+

∂

∂y
∂ f

∂ψy
− ∂ f

∂ψ
= 0, (4)

leading to the director rotation in the form

K22
∂2ψ

∂x2 + (K11 cos2 ψ + K33 sin2 ψ)
∂2ψ

∂y2

− 1
2

sin 2ψ(K11 − K33)

(
∂ψ

∂y

)2

+
ε0∆ε

2

[
2EyEz cos 2ψ + sin 2ψ(E2

y − E2
z)
]
= 0. (5)

Numerical solutions of this elliptic equation (5) are found
using successive over-relaxations (SOR) with relaxation
parameter Ω = 1.8 [36]. When combined with the numeri-
cal solution of the electromagnetic model (1), solutions for
beam propagation in nematic liquid crystals with varying
orientation can be obtained. The director reorientation
is recalculated after each 100 nm of propagation; after
the first step in z, the solution for ψ is the initial guess
for the SOR iterations, ensuring rapid convergence. The
accuracy of the method described above can be estimated
from the ratio of total input and output powers, which
should be unity because absorption is neglected and the
boundary conditions are purely reflective. Defining the
relative error as η = (Pout − Pin)/Pin, we aim to achieve
|η| < 0.5% for all the cases considered here. In this work,
the typical cell dimensions (thickness × width × length)
are 30 µm× 200 µm× 500 µm and two simple anchoring
conditions are analyzed, uniform and linearly varying,
see Fig. 2. For the sake of a realistic analysis, we choose
the material parameters corresponding to the common ne-
matic liquid crystal 6CHBT, with Frank elastic constants



 4

K11 = 8.57 pN, K22 = 3.7 pN and K33 = 9.51 pN and in-
dices n‖ = 1.6335 and n⊥ = 1.4967 at temperature T=20◦C
and wavelength λ = 2π/k0 = 1.064 µm [15, 37]. The in-
put beam is Gaussian and y-polarized, with a full width
half maximum FWHM = 7 µm and power 1 mW. Typical
computer runs to obtain the results presented hereby in a
single Intel Core i7 at 3.60 GHz took between 100 and 120
minutes for propagation lengths of 500 µm.

Momentum conservation

The full system (1) and (5) governing the propagation of
a light beam in a non-uniform NLC cell is extensive and
amenable to numerical solutions only. However, these
equations can be simplified to yield a reduced system for
which an adiabatic approximation applies based on the
slow variation of the director orientation. This adiabatic
approximation shows that the beam trajectory is deter-
mined by an overall “momentum conservation” (MC)
equation. This is not physical momentum, but momen-
tum in the sense of the invariances of the Lagrangian in
the reduced system. Such reduction of the full system and
the resulting momentum conservation equation will now
be derived.

The first approximation is that the imposed linear mod-
ulation θb in the director orientation is much smaller than
the constant background θ0, |θb| � θ0. For the examples
considered here, typical values are θ0 = 45◦ and maxi-
mum |θb| ranging from 5◦ to 20◦. While the largest |θb| is
not strictly much smaller than θ0, nevertheless the asymp-
totic results are found to be in good agreement with the
numerical ones even at this upper limit. As discussed in
the previous section, we denote the additional nonlinear
reorientation by θ, so that the total pointwise orientation is
ψ = θ0 + θb + θ. In the paraxial, slowly varying envelope
approximation, the equations (1) and (5) governing the
propagation of the light beam through the NLC can be
reduced to [2]

ik0ne
∂Ey

∂z
+ 2ik0ne∆(ψ)

∂Ey

∂y
+∇2Ey

+ k2
0

(
n2
⊥ cos2 ψ + n2

‖ sin2 ψ

−n2
⊥ cos2 θ0 − n2

‖ sin2 θ0

)
Ey = 0, (6)

K∇2ψ +
1
4

ε0∆ε|Ey|2 sin 2ψ = 0. (7)

As for the full equations of Section A, Ey is the complex
valued envelope of the electric field of the beam, since
in the paraxial approximation the components Ex and
Ez are neglected. The Laplacian ∇2 is in the transverse
(x, y) plane. In the single constant approximation, the
parameter K is a scalar on the assumption that bend, splay
and twist in the full director equation (5) have compa-
rable strengths. The wavenumber k0 of the input light
beam is intended in vacuum and ne is the background

extraordinary refractive index of the NLC [2]

n2
e (ψ) =

n2
⊥n2
‖

n2
‖ cos2 ψ + n2

⊥ sin2 ψ
, (8)

in the linear limit θ = 0. The coefficient ∆ is related to the
birefringent walk-off angle δ of the extraordinary-wave
beam, with tan δ = ∆ in the (y, z) plane, and is given by

∆(ψ) =
∆ε sin 2ψ

∆ε + 2n2
⊥ + ∆ε cos 2ψ

. (9)

Throughout this work, despite the nonlinear dependence
of ∆ on the beam power through the reorientation θ [38],
we assume ∆ = ∆(θ0 + θb) in the low power limit. In
the single elastic constant approximation, the director
equations (5) and (7) differ by a factor of 1/2 in the dipole
term involving ε0∆ε, owing to definitions of the electric
field based on either the maximum amplitude or the RMS
(Root Mean Square) value. In this context, this difference
is equivalent to a rescaling of K, with the latter constant K
cancelling out in the adiabatic momentum conservation
approximation.

The reduced equations (6) and (7) can be set in non-
dimensional form via the variable and coordinate trans-
formations

x = WX, y = WY, z = BZ, Ey = Au, (10)

where

W =
λ

π
√

∆ε sin 2θ0
, B =

2neλ

π∆ε sin 2θ0
,

A2 =
2P0

πΓW2 , Γ =
1
2

ε0cne (11)

for a Gaussian input beam power of P0 and wavelength λ
[27]. With these non-dimensional variables, Eqs. (6) and
(7) become

i
∂u
∂Z

+ iγ∆(θ0 + θb)
∂u
∂Y

+
1
2
∇2u

+ 2 (θ0 + θb + θ) u = 0, (12)

ν∇2θ = −2|u|2. (13)

In deriving these equations we assumed that the NLC
director rotation from θ0 is small, i.e., |θb| � θ0, as dis-
cussed above. We further assumed that the nonlinear
response is small, with |θ| � θ0. The trigonometric func-
tions in the dimensional equations (6) and (7) have been
expanded in Taylor series. The scaled parameters in these
non-dimensional equations are

γ =
2ne√

∆ε sin 2θ0
and ν =

8K
ε0∆εA2W2 sin 2θ0

. (14)

The equations (12) and (13) have the Lagrangian for-
mulation

L = i (u∗uZ − uu∗Z) + iγ∆(θ0 + θb) (u∗uY − uu∗Y)

− |∇u|2 + 4 (θ0 + θb + θ) |u|2 − ν|∇θ|2, (15)
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where the ∗ superscript denotes the complex conjugate
and the sub-indexes Z and Y denote derivatives. Equa-
tions (12) and (13) have no general exact solitary wave,
or nematicon, solution; the only known exact solutions
are for specific, related values of the parameters [39]. For
this reason, variational and conservation law methods
have proved to be useful to study nematicon evolution
[39, 40], as they give solutions in good agreement with nu-
merical and experimental results [27, 39, 40]. In particular,
they provide accurate results for the refraction of nemati-
cons due to variations in the dielectric constant [21, 41–43].
Conservation laws based on the Lagrangian (15) are used
below to determine the nematicon trajectory in a cell with
an imposed linear modulation of the orientation angle
θ0 + θb.

The easiest way to obtain the approximate momentum
conservation equations for Eqs. (12) and (13) is from the
Lagrangian (15) [28]. We assume the general functional
forms

u = ag(ρ)eiσ+iV(Y−ξ) and θ = αg2(µ), (16)

where

ρ =

√
X2 + (Y− ξ)2

w
, µ =

√
X2 + (Y− ξ)2

β
, (17)

for the nematicon and the director responses, respectively
[28]. The actual beam profile g is not specified, as the tra-
jectory is found to be independent of this functional form.
In response to the change in the NLC refractive index, the
extraordinary wave beam undergoes refraction, as well
as amplitude and width oscillations. If the length scale of
the refractive index change is larger than the beam width,
the beam refraction decouples from the amplitude/width
oscillations [21, 28, 42]. Consistent with this decoupling,
the electric field amplitude a and the width w of the beam,
the amplitude α and width β of the director response can
be taken as constant if just the beam trajectory is required.
Only the beam center position ξ and (transverse) “veloc-
ity” V are then taken to depend on Z, as well as the phase
σ. This approximation is equivalent to momentum con-
servation for the Lagrangian (15) [44].

Substituting the profile forms (16) into the Lagrangian
(15) and averaging by integrating in X and Y from −∞ to
∞ [45] gives the averaged Lagrangian [40]

Lm = −2S2
(
σ′ −Vξ ′

)
a2w2 − S22a2

− S2

(
V2 + 2VF1 − 4F

)
a2w2 +

2A2B2αβ2a2w2

A2β2 + B2w2

− 4νS42α2 − 2qS4α2β2, (18)

where primes denote differentiation with respect to Z.
Here F and F1, which determine the beam trajectory, are

expressed by

F(ξ) =

∫ ∞
−∞

∫ ∞
−∞ (θ0 + θb) g2 dXdY∫ ∞
−∞

∫ ∞
−∞ g2 dXdY

, (19)

F1(ξ) =

∫ ∞
−∞

∫ ∞
−∞ γ∆ (θ0 + θb) g2 dXdY∫ ∞
−∞

∫ ∞
−∞ g2 dXdY

. (20)

The integrals S2, S4 and S22 and S42 appearing in this
averaged Lagrangian are

S2 =
∫ ∞

0
ζg2(ζ) dζ, S22 =

∫ ∞

0
ζg′2(ζ) dζ,

(21)

S4 =
∫ ∞

0
ζg4(ζ) dζ, S42 =

1
4

∫ ∞

0
ζ

[
d

dζ
g2(ζ)

]2
dζ.

Taking variations of this averaged Lagrangian with re-
spect to ξ and V yields the modulation equations

dV
dZ

= 2
dF
dξ
−V

dF1

dξ
, (22)

dξ

dZ
= V + F1, (23)

which determine the beam trajectory. Eq. (22) is the mo-
mentum equation.

A simple reduction of the trajectory Eqs. (22) and (23)
can be carried out when the beam width is much less than
the length scale for the variation of the refractive index,
that is the length scale of the variation of θb [28]. For
the examples in this work, θ′b ∼ 0.002 rad/µm. Hence, a
length scale for the variation of θb is 500 µm, while the
typical beam width is 7 µm. The linear variation of the
angle θb from the background angle θ0 starts at θb = 0 at
Y = 0. Since the beam is launched at the mid-section of
the cell Y = L/2, where the total angle in the absence of
light is θ0 + θb(L/2) = θm, it is more accurate to expand
the walk-off ∆ in a Taylor series about θm rather than θ0.
If we set θ̃b = θb − θb(L/2), the integrals F (19) and F1 (20)
can be approximated by

F(ξ) ∼ θ0 + θb(ξ),
F1(ξ) ∼ γ∆(θ0 + θb(ξ))

= γ∆(θm) + γ∆′(θm)θ̃b(ξ) + . . . (24)

We note that F1 has been further approximated by ex-
panding ∆ in a Taylor series about θ0 on taking |θb| � θ0,
discussed above. With this simplification, the trajectory
equations (22) and (23) become

dV
dZ

=
(
2−Vγ∆′(θm)

)
θ′b(ξ), (25)

dξ

dZ
= V + γ∆(θm) + γ∆′(θm)θ̃b(ξ). (26)

The simplicity of the beam trajectory equations (25) and
(26) enables exact solutions for simple angle modulations
θb. The simplest is the linear case

θb(Y) =
θr

L
Y, (27)
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Fig. 3. (Color online) Numerical solutions of the NLC
equations using FVBPM and elastic theory (dashed
lines) and momentum conservation (28) (solid lines),
describing nematicon evolution in a linearly modulated
NLC anchoring in the cell. Red lines (labeled 2) θ0 = 40◦

to θr = 50◦, green lines (labeled 3) θ0 = 35◦ to θr = 55◦,
blue lines (labeled 4) θ0 = 30◦ to θr = 60◦ and violet
lines (labeled 5) θ0 = 25◦ to θr = 65◦. The black curve
(labeled 1) refers to the uniform orientation case, with
θ = 45◦.

sketched in Fig. 2(b). For this linear case, θb goes from 0
at Y = 0 to θr at Y = L. This variation of θb enables the
momentum equations (25) and (26) to be solved exactly
and give the position of the beam center ξ as

ξ =

[
ξ0 +

1 + γ2∆′(θm)∆(θm)

γ2∆′2(θm)θ′b

]
eγ∆′(θm)θ′bZ

− 2 + γ2∆′(θm)∆(θm)

γ2∆′2(θm)θ′b

+
1

γ2∆′2(θm)θ′b
e−γ∆′(θm)θ′bZ (28)

as θ̃′b = θ′b is a constant. We assumed that the beam is
launched at ξ = ξ0 with V = 0 at Z = 0.

Since θb is slowly varying, the trajectory solution given
by Eq. (28) can be expanded in a Taylor series to yield

ξ ∼ [ξ0 + γ∆(θm)Z]

+

[
ξ0

(
γ∆′(θm)θ

′
bZ +

1
2

γ2∆′2(θm)θ
′2
b Z2

)
+(

1 +
1
2

γ2∆(θm)∆′(θm)

)
θ′bZ2

]
+ . . . (29)

The first term in square brackets is the trajectory in a
uniform NLC and the terms in the second set of square
brackets are the correction due to a changing orientation.
For the examples hereby, θ′b ∼ 0.002 rad/µm and ∆′ ∼
0.05/µm. So, to first order in small quantities

ξ ∼ [ξ0 + γ∆(θm)Z] + θ′bZ2 (30)

as ∆′(θm) is small. Hence, the trajectory is described by
the term for a uniform medium and a quadratic correction;
the walk-off change due to the varying background di-
rector orientation dominates the change in the nematicon
trajectory.

To convert the non-dimensional solution (28) back to
dimensional variables, the scalings (11) are used. In partic-
ular, for the z scaling factor B, the angle for the extraordi-
nary index (8) needs to be calculated. The obvious choice
is to use the uniform background angle θ0. However,
while this leads to good agreement with the numerical
solutions, near exact agreement is obtained by using the
total director angle θ0 + θb in the absence of light. The
imposed component θb is not constant, but a slowly vary-
ing (linear) function of Y, as discussed above, so its local
value can be used to transform back to dimensional vari-
ables, consistent with a multiple scales analysis [46]. This
local variation in the scaling factor for z gives a metric
change in this coordinate, with a small, slowly varying
alteration of the trajectory. Nevertheless, the overall effect
of this small local change is significant over propagation
distances of 500 µm and larger.

RESULTS AND DISCUSSION
Figure 3 shows a comparison of nematicon trajectories in
the modulated NLC as given by the adiabatic momentum
approximation (28) and by the FVBPM solution of the full
system (1) and (5). The considered cell has a range of
linear variations in the background director angle θb of
the form (27). Each individual case, θ0 + θb, is indicated
in the figure. A Gaussian beam is launched at the center
of the cell, with its trajectory becoming curved due to the
non-uniform director alignment. In a uniform medium
the (straight) nematicon trajectory is determined solely
by the walk-off, which leads to a rectilinear path in the
(y, z) plane. For the modulated uniaxial medium, not
only the walk-off changes due to the varying anchoring,
but the phasefront of the wavepacket is also distorted as
the dielectric properties are modified and the NLC be-
haves like a lens with an index distribution ne given by
(8). Clearly, the momentum conservation approximation
gives trajectories in close agreement with the numerical
results. This validates the approximations made to ar-
rive at the momentum conservation equations (25) and
(26), in particular the assumption that the beam trajec-
tory is not influenced by its amplitude-width oscillations.
Furthermore, it shows how powerful such adiabatic ap-
proximations can be. Nonetheless, the momentum result
is a kinematic approximation and so does not give all
the information for the evolving beam, whereas the full
system (1) and (5) can also provide the amplitude-width
evolution. A final point regarding Figure 3 is that if the
background angle for the extraordinary refractive index
(8) in the z scaling (11) was chosen as θ0 rather than θ0 + θb,
there would have been a noticeable difference between
the momentum conservation and numerical results. The
local variation of the propagation metric z due to the mod-
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Fig. 4. FVBPM and elastic theory nematicon trajectory
in a modulated cell: (a) logarithmic scale with expo-
nential fitting and (b) linear scale after subtracting the
trajectory in a uniform NLC (θ = 45◦, θb = 0). Red line
(labeled 1) θ0 = 40◦ to θr = 50◦, green line (labeled 2)
θ0 = 35◦ to θr = 55◦, blue line (labeled 3) θ0 = 30◦ to
θr = 60◦ and violet line (labeled 4) θ0 = 25◦ to θr = 65◦.
Black dot-dashed line: (a) exponential fitting and (b)
quadratic power fitting. Data fitted for z > 100 µm.

ulated director angle in the absence of light, in fact, has a
significant effect on beam propagation.

These results are further analyzed in Fig. 4(a). The
data is plotted to a logarithmic scale with an exponen-
tial regression fitted through the numerical trajectories.
As z increases the trajectories are well approximated by
an exponential evolution, in agreement with the momen-
tum conservation solution (28) as for large z the decaying
exponential is negligible and the growing exponential
dominates. Furthermore, when the rectilinear nematicon
path in a uniform NLC is subtracted from the trajectory
in the modulated case, the resulting beam position has
a quadratic evolution in z, as shown in Fig. 4 (b). These
exponential and quadratic fittings of the trajectories are
consistent with θ′b and ∆′ being small, as demonstrated by
reducing the full trajectory (28) to the quadratic approxi-
mation (30) via (29).

For a positive change of the anchoring conditions, i.e.
θr > θ0, walk-off and phase distortion both increase the

beam deviation. In the opposite case for which θr < θ0
these two phenomena counteract. The influence of walk-
off and phase change on the nematicon path was ana-
lyzed for the case of the director orientation changing
by 30◦/200 µm, as shown in Fig. 5. When θr > θ0 the
beam bends strongly due to both the walk-off and phase
distortions acting in the same direction, as illustrated in
Fig. 5 (a). The phase change is strongest at the launch
position as the molecules are oriented at approximately
45◦ there, so walk-off (given by (9) with ψ = θ0 + θb) is
close to its maximum. All the trajectories are monotonic
and the beam transverse deviation increases with propa-
gation distance. As for the comparisons in Figure 3, the
agreement between the momentum conservation and nu-
merical trajectories is near perfect, except for the lowest
angle variation from 5◦ to 35◦, for which the agreement
is still satisfactory. In the latter case the initial director
angle at the input is far from the walk-off maximum at
45◦, so the trajectory bending is weak. Small errors in the
momentum approximation then become relevant.

In the opposite case θ0 > θr the walk-off and the phase
change along the cell counteract, resulting in the solitary
beam reversing its transverse velocity, as illustrated in the
comparison of Fig. 5 (b). The agreement between the mo-
mentum conservation and numerical trajectories is nearly
perfect, except for two noticeable cases. The first is for
the modulation from 35◦ to 5◦, same interval but oppo-
site sign than examined in the previous paragraph. The
reason for the disagreement is again the weak bending
of the beam and the enhanced role of small errors in the
momentum approximation. The other case is the 75◦ to
45◦ modulation. It can be seen from Fig. 5 (b) that as the
range of θb varies the beam reaches a maximum deviation
in y. The 75◦ to 45◦ variation is just after this turning point.
As for the 35◦ to 5◦ case, small errors in the momentum
conservation approximation can then result in large tra-
jectory deviations, in particular errors in the θb changes
required for the maximum displacement in y.

Finally, we note that comparable beam powers are
needed to obtain nematicons in uniform and linearly mod-
ulated NLCs, as a 1 mW input beam is sufficient to excite
them in both cases, i.e. the rate of change in anchoring
does not significantly modify the threshold power for
reorientational solitons.

CONCLUSIONS
We have studied the propagation of reorientational optical
spatial solitons in nematic liquid crystals encompassing a
transversely modulated orientation of the optic axis (di-
rector). Even in the simplest limit of a linear change in
anchoring angle, as considered here, non-uniform walk-
off and wavefront distortion determine the bending of the
resulting trajectory from the usual straight line, leading to
curved paths and correspondingly curved optical waveg-
uides induced by light beams through reorientation. Such
modulations of the molecular director anchoring could
be realized through electron-beam photolithography or
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Fig. 5. Comparison of nematicon trajectories for (a) θr >
θ0 and (b) θr < θ0. Numerical solutions of the nematic
equations using FVBPM with elastic theory (dashed
lines) and the momentum conservation (28) (solid lines).
(a) Red lines (labeled 1) θ0 = 5◦ to θr = 35◦; green lines
(labeled 2) θ0 = 15◦ to θr = 45◦; blue lines (labeled 3)
θ0 = 30◦ to θr = 60◦; yellow lines (labeled 4) θ0 = 45◦

to θr = 75◦. (b) Red lines (labeled 1) θ0 = 35◦ to θr = 5◦;
green lines (labeled 2) θ0 = 45◦ to θr = 15◦; blue lines
(labeled 3) θ0 = 60◦ to θr = 30◦; yellow lines (labeled
4) θ0 = 75◦ to θr = 45◦. In all cases the rate of change is
30◦/200 µm.

photo-alignment techniques with light sensitive layers in
order to define the boundary conditions in a point-wise
manner. Experimental results have been recently reported
in Ref. [47] using the former approach. Based on com-
parisons with numerical solutions obtained by FVBPM
and elastic theory for self-localized light beam propaga-
tion in non-uniform nematic liquid crystals, we found
that “momentum conservation” is an excellent approx-
imation for modelling soliton paths in highly nonlocal
media. It provides simple results for these trajectories
and a highly intuitive explanation for their evolution, at
variance with the highly coupled form of the full govern-
ing equations. While full numerical solutions can well
describe nematicon evolution under generic conditions,
the simplicity of the momentum conservation theory and
its analytical solution speak in its favour for specific limits
within the adiabatic category. Due to the slow variation
of the anchoring conditions, both models show that the
nematicon trajectory can be described as propagation in a
uniform medium with a quadratic correction. Addition-
ally, the power needed to excite reorientational solitons in
either uniform or linearly non-uniform NLCs is compara-
ble. Ongoing studies will address the role of longitudinal
director modulations, as well as combinations of trans-
verse and longitudinal changes, unveiling scenarios for
the design of arbitrary soliton paths and corresponding
all-optical waveguides. The latter results pave the way to
novel generations of light-induced and light-controlled
guided-wave circuits with two- and three-dimensional
architectures.
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