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Abstract 

Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, 

cognitive impairment and dementia. While there is considerable overlap between features of 

vascular cognitive impairment and dementia (VCID) and Alzheimer’s disease (AD), it 

appears that cerebral hypoperfusion is the common underlying pathophysiological 

mechanism which is a major contributor to cognitive decline and degenerative processes 

leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white 

matter attenuation, a key feature common to both AD and dementia associated with cerebral 

small vessel disease. White matter changes increase the risk for stroke, dementia and 

disability. A major gap has been the lack of mechanistic insights in the evolution and 

progress of VCID. However, this gap is closing with the recent refinement of rodent models 

which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and 

advantages of these models to elucidating the pathogenesis of VCID and explore the 

interplay been hypoperfusion and the deposition of amyloid β protein, as it relates to AD. We 

use examples of our recent investigations to illustrate the utility of the model in pre-clinical 

testing of candidate drugs and life-style factors. We propose that the use of such models is 

necessary for tackling the urgently needed translational gap from preclinical models  to 

clinical  treatments .  

 

 

Key words: Alzheimer’s disease; animal models; cerebral hypoperfusion; cognitive 

impairment; dementia; small vessel disease; stroke; vascular dementia 

 

 

 

 

Summary statement:  

Vascular cognitive impairment and dementia (VCID) is an important contributor to the global 

burden of disease. While there are no perfect animal models to recapitulate all the features 

of VCID, current laboratory rodent models which simulate cerebral hypoperfusion allow 

some aspects of VCID to be explored. Despite their limitations, rodent models are still useful 

to evaluate specific mechanisms for testing drug targets and close the translational gap 

between animal models and VCID.  
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Introduction 

Vascular disease has been invariably linked to cognitive impairment. There is increasing 

evidence that vascular risk factors contribute to neurodegeneration and dementia. Recent 

analysis on a large sample, as part of the Alzheimer’s Disease Neuroimaging Initiative, 

surprisingly revealed that early vascular dysfunction plays a role in Alzheimer’s disease (AD) 

(1). However, one of the most common causes of vascular cognitive impairment and 

dementia (VCID) is cerebral small vessel disease (SVD), which affects small arteries, 

arterioles, venules and capillaries in the brain leading to arteriolar occlusion, lacunes and 

white matter changes. The main clinical features of VCID may include pure motor, 

sensorimotor, pure sensory, ataxic hemiparesis or gait impairment, dysarthria, cognitive 

dysexecutive slowing and depression (2). Cerebral amyloid angiopathy (CAA), another form 

of SVD, is found in almost all AD patients and more than 50% of the elderly over 90 years 

old (2, 3). CAA mostly leads to lobar haemorrhage, white matter damage and cortical 

microinfarcts (4). Moderate to severe CAA is also considered an independent risk factor for 

dementia (5).   

 

It is now recognised that there is considerable overlap between VCID and AD. Several 

previous reports, including recent ones from the AD research centres in the USA, suggest 

that some form of brain vascular pathology exists in up to 80% of sporadic late onset AD (6). 

Moreover, cerebrovascular lesions increase the clinical expression of AD syndrome. 

Traditional risk factors for stroke and cardiovascular disease (e.g. hypertension, diabetes, 

hyperlipidaemia) are recognised as risks for both VCID and AD with salt intake, chronic 

inflammation and gut infection now emerging as additional risk factors (7,8). Although the 

mechanisms by which these different factors may impact on VCID and AD are currently ill 

defined, considerable evidence, including that derived from neuroimaging and pathology 

studies, indicates that endothelial dysfunction is pivotal to the pathophysiology (see reviews 

9, 10, 11). It is proposed that risk factors may alter vascular haemodynamics and impact on 

endothelial cell function. Endothelial dysfunction can in turn reduce vasomotor reactivity and 

impede cerebral hemodynamic changes. Related to this vascular factors may impair 

neurovascular coupling, leading to transient or chronic cerebral hypoperfusion which 

exacerbates small vessel pathology including white matter damage. Alternatively, it is 

proposed that the blood brain barrier (BBB) is initially compromised in VCID leading to a 

chronic hypoxic state and hypoperfusion (see reviews 9, 10, 11).  

 

Cerebral hypoperfusion is emerging as a major contributor to cognitive decline and 

degenerative processes leading to dementia. Reduced cerebral perfusion correlates with the 
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severity of dementia and also predicts which individuals with mild cognitive impairment (MCI) 

will progress to develop dementia (12, 13). Cross-sectional studies show that low cerebral 

blood flow (CBF) is related to the severity of white matter hyperintensities upon T2 weighted 

MRI (14-16). Neuropathological investigations have revealed marked reductions in myelin 

density in the white matter in AD but particularly in VaD compared to age-matched controls 

(17-19) with evidence that this may be related to reduced white matter perfusion (20, 21). It 

is unclear whether CBF changes are causal or secondary to white matter changes. 

Nonetheless, imaging studies suggest the extent and presence of these white matter 

changes, particularly in the frontal lobe are important determinants of cognitive function and 

impact on dementia (22, 23). Thus it is proposed that understanding the earliest events 

leading to white matter changes could provide vital opportunities to prevent brain damage at 

the earliest stages and ameliorate its impact on cognitive decline and precipitation of 

dementia (23). 

 

In addition to correlative pathological and imaging studies in human, there is a need to 

provide mechanistic insight of white matter changes through the development of relevant 

animal models and translate these findings to the clinic (24). Over the past five decades, 

various animal models have been described to examine the pathophysiology of global and 

focal ischaemic injury (25, 26) (Figure 1). Several of these models were developed to 

primarily test the acute effects of compounds administered within the therapeutic window, 

after occlusion, to reduce the effects of focal stroke injury and salvage the hypoperfused 

region or penumbra peripheral to the ischaemic core (25). Several models have since been  

developed to mimic specific aspects of the pathology relevant to VCID or genetic causes 

(most recently reviewed in 27). In this current review, we focus on rodent models which have 

been developed and refined over the last few years to mimic the chronic hypoperfusive state 

in VCID and which are used as a basis to probe mechanisms related to reduced perfusion of 

the brain. We have focussed on models of bilateral common carotid artery occlusion in rats 

(often referred to as 2 vessel occlusion), bilateral common carotid artery stenosis (BCAS) 

model in mice and the newly developed bilateral common carotid artery gradual occlusion 

model in rats and mice. We also explore the interplay between cerebral hypoperfusion and 

amyloid beta protein (Aβ), which is currently being evaluated as a model in which to explore 

mixed dementia.  Finally, we discuss approaches currently underway to close the 

translational gap between the rodent models of cerebral hypoperfusion and human VCID.  
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What have we learned from the rodent models of chronic cerebral hypoperfusion? 

Cerebral blood flow alterations in models 

In order to study early pathological events that may lead to VCID, rodent models of chronic 

cerebral hypoperfusion were first established using occlusion or ligation of both common 

carotid arteries in rats (2 vessel occlusion) (see review 28). The resulting reductions in blood 

flow are severe, whereby cortical blood flow drops by over 70% in the days immediately 

following surgery, recovering to a 40% reduction by one month (29). In C57Bl/6J mice, 

complete occlusion of both carotid arteries leads to death due to poor collateral flow through 

the Circle of Willis and as an alternative the carotid arteries are temporarily occluded for 

durations lasting no more than 30 minutes (30). This approach leads to transient global 

ischaemia with blood flow reduced by 80-90% (31, 32). As such, these occlusion models do 

not accurately recapitulate the more modest reductions in blood flow seen in chronic 

hypoperfusive conditions related to VCI where blood flow may only be reduced by ~20-30% 

(33-35).  

 

A refinement of rat models of cerebral hypoperfusion was introduced to more faithfully 

represent the subtle reductions in flow in VCI. Bilateral common carotid artery stenosis 

(BCAS), by application of microcoils, reduces luminal diameter to approximately 50% in 

young adult C57Bl/6J mice (36). This approach takes advantage of the poor Circle of Willis 

in C57Bl/6J mice and results in blood flow reductions of 30-40% immediately following 

surgery using microcoils of 0.18mm diameter (36, 37). With increasing time there is a 

recovery of blood flow in young mice to 15-20% baseline levels at 1 month when measured 

by laser Doppler ultrasound or laser speckle imaging (36, 37). These changes have been 

attributed to vascular remodelling in young mice (38) but as yet the effects in older (>1 year) 

mice remain unknown. Blood flow measures are normally conducted using laser speckle or 

Doppler flowmetry and constrained by limited depth of penetration and the restriction of 

these techniques to the cortical surface vasculature. Hattori et al. (39) performed arterial spin 

labelling MRI to measure blood flow in cortical and subcortical brain regions following BCAS 

in mice. From 1 day up to 14 days following surgery, blood flow was shown to be reduced to 

50% of baseline in both cortical and subcortical regions, however at 28 days blood flow had 

recovered to 70% of baseline. Boehm-Sturm et al. (40) also utilised arterial spin labelling to 

demonstrate global flow reductions of 50% at 24 hours following BCAS surgery, recovering 

to ~75% of baseline at 4 weeks. Despite the recovery of blood flow, these studies 

importantly highlight that hypoperfusion is not restricted to the cortical vasculature and 
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supports BCAS as a model for chronic cerebral hypoperfusion. Thus, the studies emphasise 

the utility of arterial spin labelling as a quantitative and non-invasive tool for assessing global 

and regional blood flow changes in models of hypoperfusion. 

 

A limitation of the BCAS model is the acute reduction in CBF that occurs on application of 

the microcoils (36). To overcome this a new gradual stenosis model was developed which 

uses ameroid constrictor devices applied on both common carotid arteries arteries in rats 

and mice (41, 42). These ameroid devices absorb extracellular fluid over time and as a result 

gradually expand to constrict the arteries resulting in a slower, more gradual onset of 

hypoperfusion. In rats, a maximum blood flow reduction of 30% is observed at 3 days 

following surgery followed by recovery of blood flow to 85% of baseline when assessed for 

28 days similar to levels reached in the 2 vessel occlusion rat model (41). In mice however, 

blood flow progressively reduces over 28 days, without recovery, to reach 70% of baseline 

levels after the application of the constrictor cuffs (42). The differing patterns of blood flow 

reductions between the microcoil induced stenosis and gradual stenosis were illustrated by 

Hattori et al. (42), in which BCAS mice were compared to those with ameroid constrictor 

devices applied to the common carotid arteries (Figure 2). A gradual reduction in CBF can 

clearly be seen in the gradual stenosis mice whereas an acute drop in CBF is detected in the 

BCAS mice. In another model an ameroid constrictor is applied to the right common carotid 

artery resulting in gradual occlusion of the vessel over 28 days, whereas placement of a 

microcoil to the left common carotid artery induces ∼50% arterial stenosis (43). To our 

knowledge, there are no published data available on blood flow reductions at longer time 

points (>1 month) in ameroid constrictor models, and whether these devices eventually go 

on to completely occlude the carotid arteries remains to be confirmed. 

 

Neuropathological changes 

Parenchymal alterations 

As indicated previously white matter alterations, a prominent feature of VCID, contribute to 

cognitive impairment and serve as a potential target to ameliorate the burden of dementia 

(23). Rat 2 vessel occlusion models have been extensively studied since they were first 

found to develop white matter rarefaction similar to that in humans (28). However, these 

pathological changes occur very quickly in conjunction with the severe and sudden drop in 

cerebral perfusion after occlusion (29). Furthermore, in the 2 vessel occlusion model 

ischemic neuronal damage may be present in the cerebral cortex and hippocampus 1-3 days 

and infarctions in the striatum at 7 days (29) albeit this can vary considerably between 

studies and groups (see review, 28). In parallel with white/grey matter pathology, microglia 
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markedly increase in number which can be detected from as early as 1 day after occlusion in 

the white matter and remain significantly elevated at 28 days (44). A prominent astrocytic 

response is also evident in this model but appears delayed compared to the other 

pathological changes (44).  

 

A refinement of these 2 vessel occlusion rat models was undertaken to overcome the severe 

reduction in blood flow with the development of the BCAS microcoil models in mice. 

Investigation of this model led to the discovery that white matter is damaged in the absence 

of overt ischaemic neuronal perikaryal damage. Shibata et al. (36) using the BCAS model in 

mice first reported white matter rarefaction and vacuolation (detected using Klüver-Barrera), 

which is evident from 2 weeks alongside a prominent glial response that evolves with time. 

Others, including our group, have shown that BCAS using microcoils causes an anatomically 

widespread but diffuse damage to myelinated axons in white matter tracts detectable at one 

month (36, 45-47). These changes can be observed throughout the forebrain (such as 

corpus callosum, fimbria, internal capsule, optic tract) and can be visualised using 

immunohistochemical approaches in the form of degraded myelin basic protein and myelin 

debris with less pronounced axonal damage. Hypoperfusion also leads to selective 

disruption of key proteins within the paranodal axon-glial junctions, which are critical to the 

stability and functions of myelinated axons and white matter function (46). Paranodal 

septate-like junctions are damaged and axon-glial integrity is disrupted, as determined by 

spatial distribution of myelin-associated glycoprotein staining (46). Ultrastructural alterations 

comprise loss of septate junctions at paranodal regions (46) but that there is no overt 

demyelination in the model (37). Such subtle white matter pathology in the absence of 

severe focal disruption can be detected by diffusion tensor (DT) or magnetization transfer 

(MT) MRI first in the corpus callosum at one month (47), that then progresses over 6 months 

with more pronounced alterations in the corpus callosum, internal capsule, fimbria and 

subcortex (48). One of the prominent features of hypoperfusion models is a robust increase 

in microglial number. In response to increasing durations of hypoperfusion, microglia 

gradually augment in parallel with the evolving damage to myelinated axons, resulting in a 

marked and sustained increase in microglial number, particularly in the white matter (36, 37, 

45-47). Astrogliosis can also be observed but these changes appear to occur later than 

microglial alterations in BCAS models with diffuse white matter injury (48). However, in 

severely damaged white matter GFAP-positive clasmatodendrocytes (irreversibly damaged 

astrocytes) can be readily detected (40, 49).  
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Pathological changes in the gradual stenosis models are similar to the microcoil model but 

as expected these progress more slowly. In the rat gradual stenosis model, acute 

inflammatory responses subsequent to acute CBF reduction observed in the 2 vessel 

occlusion rats are eliminated (50). Myelin pathology (assessed by Klüver-Barrera, degraded 

MBP and GST-pi staining), is less severe in the gradual compared to the 2 vessel occlusion 

model, and disruption of axon-glial integrity is apparent at 28 days (50). Selective white 

matter changes are induced with relatively preserved neurovascular coupling and 

substantially less metabolic and histological derangements in the grey matter including the 

hippocampus in the gradual compared to 2 vessel occlusion model (50). Moreover, in the 

mouse gradual stenosis model, activation of astrocytes and microglia with loss of 

oligodendrocytes were found in the white matter at 32 days post-operation (39).  

 

Most of the mild hypoperfusion models do not exhibit overt white matter lesions or infarcts. 

However, using histological approaches and T2* MRI, after long-term BCAS subcortical 

microinfarcts and haemorrhages were evident (48). As yet the longer-term effects (>1 

month) have not been studied in the gradual stenosis models. 

 

Small vessel and BBB changes  

In the rat 2 vessel occlusion model, BBB disruption is observed as early as 3 hours post-

occlusion most likely as a result of the sharp and severe CBF reduction in this model (51). 

However as CBF restores from day 7, the BBB changes appear less prominent (51). In the 

BCAS model, it is not clear if the BBB is compromised but this could be explained by 

variations in CBF reductions across different models. In our BCAS model, overt BBB 

disruption was not observed until 6 months after hypoperfusion when fibrinogen was 

detected in the parenchyma and the levels of the tight junction protein claudin-5 were 

markedly reduced (48). Other studies, in which white matter damage appears more severe, 

showed earlier BBB disruption at 3 and 7 days after BCAS (52). An ultrastructural study 

suggested that subtle alterations in the BBB occur early whereby at two hours post BCAS, 

irregularities in the endothelium include opening of tight junctions (53). A systematic study of 

the BBB, including tight junction proteins, across a range of times post-hypoperfusion in the 

different models is required to assess the dynamics of the BBB and whether these changes 

may be transient or sustained.  

 

Sustained hypoperfusion can also induce morphological small vessel changes such as 

increased thickening and fibrosis of capillary walls, which are one of the characteristic 

features of human SVD (2). These features have been identified after 12 weeks 
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hypoperfusion in a rat 2 vessel occlusion model (28) and after 6 months hypoperfusion in a 

mouse BCAS model (48). Fibrin deposition or accumulation of hyaline-like substance, key 

neuropathological findings in human SVD, are also recognized after 6 months hypoperfusion 

in the BCAS mice (48). In the gradual stenosis models, small vessel and BBB changes are 

yet to be described.  

 

Brain atrophy  

Clinical imaging studies have demonstrated both whole brain and regional brain atrophy in 

VCID (54, 55). Brain atrophy, in particular medial temporal lobe atrophy and subcortical 

atrophy, is associated with cognitive decline and can potentiate the effect of white matter 

lesions on cognition (54, 56). Longitudinal progression of brain atrophy and white matter 

lesions are strongly correlated, with white matter lesions recently suggested to drive cortical 

grey matter atrophy (57). Despite the prevalence of brain atrophy in VCID and its relation 

with cognition, there is a relative paucity of evidence regarding brain atrophy in preclinical 

models of cerebral hypoperfusion. Nishio et al. (58) reported no apparent change in cortex or 

corpus callosum at 8 months following BCAS surgery, however the hippocampal volume was 

found to be significantly reduced in hypoperfused mice. In agreement with this finding, 

hippocampal glucose uptake was also reduced when assessed with 18F-FDG PET. Holland 

et al. (48) showed reductions in brain volume at 6 months following BCAS but not at 1 month 

using T2*MRI, atrophy was also correlated with burden of ischaemic and haemorrhagic 

lesions. Together, these findings suggest that brain atrophy occurs at later time points 

following hypoperfusion, and are secondary to neuronal loss and white matter damage. 

Future studies may utilise preclinical in vivo imaging where possible, in order to measure 

volumetric changes longitudinally over the entire volume of the brain, so as to definitively 

describe the pattern of atrophy following hypoperfusion. White matter alterations have been 

suggested to contribute to cortical atrophy (57) and thus the use of larger animal models with 

greater volume of white matter, for example non-human primates, may enable better 

understanding of this mechanism. Since brain atrophy is the major substrate of cognitive 

decline, atrophic change may be a useful endpoint when incorporated into preclinical 

intervention studies. 

 

Cognitive impairments 

It was proposed many years ago that chronic cerebral hypoperfusion leads to cognitive 

impairment (59) but human studies have shown at best a moderate association. Animal 

models have since provided compelling evidence that chronic cerebral hypoperfusion can 
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lead to cognitive impairments (see 28, 60, 61 for reviews). Most studies have utilised the 

Morris water maze to assess spatial reference learning or the radial arm maze tasks to 

assess spatial working memory. Impaired spatial learning has been widely reported in the 2 

vessel occlusion rat model (28, 60, 61) and in some studies deficits have been detected as 

early as 7 days post-occlusion (62). These behavioural changes reflect pathological changes 

in the hippocampus with proliferation of astrocytes and neuronal cell loss in the CA1 area 

(62, 63). At later time points impaired spatial working memory (28, 60) has been observed 

and correlates well with the development of white matter pathology. Interestingly, poor 

performance in the odour discrimination task suggests that cognitive functions related to 

olfaction are also impaired (64), which is also seen as an early sign of cognitive impairment 

in patients with various neurodegenerative diseases, indicating the relevance of this model 

to human VCID.  

The development of the BCAS mouse model demonstrated that chronic cerebral 

hypoperfusion causes deficits mainly in spatial working memory (45, 65-67) using a 

conventional 8-arm radial maze or Y-maze tests. We highlighted that 1 month after BCAS, 

spatial working memory is impaired while reference memory remains intact, probably due to 

the select disruption of frontal-subcortical circuits (45). Notably, disruption of axon-glial 

integrity and proliferation of microglia are indicated to be strongly associated with the 

impairment in working memory (68). Recent reports also confirm that BCAS causes impaired 

working memory assessed by an innovative three dimensional 9-arm radial maze as well as 

impaired nesting ability at four months after surgery (69). After long-term i.e. 6 months of 

hypoperfusion after BCAS, both spatial working memory and spatial reference memory were 

impaired (48). The emergence of deficits in both working and reference memory likely 

reflects the presence of white and grey matter pathology including whole brain and 

hippocampal atrophy (48, 70). Thus, long-term hypoperfusion induces a pronounced 

cognitive impairment coincident with pathological alterations and more accurately replicates 

features of human SVD. In the gradual stenosis mouse model, impaired spatial working 

memory is again reflective of white matter pathology whereas hippocampal-dependent 

reference learning and memory is preserved, probably due to a lack of hippocampal 

changes compared with other mouse models (42). Similarly, in the rat gradual occlusion 

model spatial working memory is impaired (41). In general, impaired spatial working memory 

is a consistent and robust finding in models of chronic cerebral hypoperfusion. This 

highlights the relevance of these models to human VCID in which the frontal-subcortical 

circuits are disrupted. 
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Mechanisms of the hypoperfusion models 

As indicated above, rodent models of hypoperfusion recapitulate some pathological features 

observed in VCID, such as disruption of white matter integrity, microvascular alterations and 

atrophy. These alterations are related to cognitive deficits. However, the precise molecular 

and cellular mechanisms that lead to such changes are currently being unravelled as 

outlined below: 

 

Hypoxia-induced white matter damage 

Following vessel occlusion or carotid stenosis, cerebral perfusion is demonstrably reduced 

(28, 37) but it is less clear whether these changes affect tissue oxygen tension and whether 

there are differences between white matter and grey matter to account for their differential 

vulnerability. Tissue levels of oxygen (pO2), can be measured using precalibrated sensors. 

We have used this approach to measure pO2 levels in the corpus callosum of anaesthetised 

mice in the BCAS model. Levels of pO2 are profoundly decreased in the corpus callosum at 

3 days, 1 week and 6 weeks following BCAS surgery (see Figure 3) to levels consistent with 

hypoxic conditions. The levels of pO2 in normal appearing white matter are less than those 

reported within grey matter (71) and may suggest that white matter is predisposed to 

additional reduction in oxygen caused by BCAS. Dong et al. (72) also reported an increase 

in hypoxia at 3 weeks following BCAS surgery, although regional differences were not 

assessed.  

At 3 days following hypoperfusion surgery in the BCAS model, we demonstrated expression 

of hypoxia-related genes in the white matter (46). Oligodendrocytes are sensitive to hypoxia 

(73, 74) and a rapid loss of oligodendrocytes occurs in the different models of hypoperfusion. 

At 3 days post-BCAS we demonstrated there is a loss of mature oligodendrocytes and 

oligodendrocyte precursors at a time when axon-glial integrity is compromised (37). Early 

hypoxic signalling could result in degeneration of oligodendrocytes and a loss of axonal 

trophic support, resulting in mis-localisation of key axonal proteins (46) that may impair 

signal conduction. In human post-mortem brain, disruption of nodal proteins has also been 

reported in white matter adjacent to lacunar infarcts (75) and white matter lesions express 

characteristic markers of a hypoxic environment, including hypoxia inducible factor 1 (HIF-1), 

HIF-2 and matrix metalloproteinase (MMP)-7 (19).  

Hypoxia, in addition to deleterious effects on oligodendrocytes, can also directly induce 

changes in BBB permeability (76). Intriguingly, oligodendrocytes and oligodendrocyte 

precursor cells have also been demonstrated to modulate BBB function by altering tight 
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junction protein expression (77). In the mouse BCAS model oligodendrocyte precursors 

were shown to be responsible for BBB opening, via increase MMP and contribute to white 

matter damage in hypoperfusion models (52). Blood-brain barrier dysfunction is also 

observed in white matter hyperintensities and normally appearing white matter in SVD that is 

predictive of cognitive decline (78). Disruption of oligodendrocyte-endothelial signalling may 

also allow entry of toxic blood products into brain contributing to the pathophysiology of 

VCID (79). 

 

The described molecular changes in hypoperfused animal models occur at a time when 

microglia number increase. Microglia, resident macrophage cells in the brain, are sensitive to 

changes in the local brain environment (80). Through the release of pro-inflammatory 

cytokines/chemokines microglia could also contribute to hypoperfusion-induced white matter 

damage. In support of this, as early as 3 days after hypoperfusion inflammatory-related 

genes, such as those associated with the Jak-STAT signalling pathway and cytokine-

cytokine receptor interaction, are significantly up-regulated in white matter (46). Similarly 

activated microglia have been identified in white matter lesions in aged post-mortem human 

brain (81) with transcriptome analysis indicating alterations in genes related to the immune 

pathway (82). In the aged primate brain, microglial reactions predominate in the white matter 

and correlate with cognitive impairment (83). Notably, we have now determined that the 

number of microglial cells is significantly associated with nodal gap length and axon-glial 

disruption after hypoperfusion (84). Higher numbers of microglial cells correlate with 

decreased nodal gap length and increased paranodal axon-glial disruption, supporting the 

idea that the structural alterations observed in response to hypoperfusion could be 

secondary to a pro-inflammatory environment. With progressive myelin breakdown at 

increasing durations of hypoperfusion, phagocytosis of myelin debris may also result in 

microglial dysfunction (85) and the activation of a neuroinflammatory phenotype that 

contributes to further degenerative changes.  

 

Microvascular inflammation 

Endothelial dysfunction is considered to be one of the pivotal mechanisms of the structural 

and functional cerebral vessel alterations in SVD (10, 11) leading to VCID. Early endothelial 

failure and subsequent BBB breakdown are hypothesised to be major precipitants of 

sporadic SVD (9-11). Cerebral hypoperfusion upregulates the expression of adhesion 

molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion 

molecule-1 (VCAM-1), markers of endothelial cell activation (68, 86). In the rat 2 vessel 
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occlusion model, markers of endothelial activation increase as early as one day post-

occlusion up to 28 days with a peak at 3 days (86). Our findings in the BCAS model, indicate 

mild hypoperfusion gradually induces upregulation of ICAM-1 and significantly at 3 months 

post operation (68). Increased expression of adhesion molecules on the endothelial surface 

functions to facilitate the attachment and extravasation of leukocytes across the BBB (87). In 

support of leukocyte activation post-hypoperfusion, an elegant in vivo 2-photon imaging 

study revealed leukocyte rolling and adhesion in the pial vessels occurs within 24 hours in 

the BCAS model (88). These changes take place in the absence of notable alterations in 

vessel structure, astrocytes or pericytes, suggesting this is an early mechanism. However 

there is no evidence that monocyte or T cells infiltrate the brain parenchyma post-

hypoperfusion (84, 89) but a detailed study of the myeloid cell population post-hypoperfusion 

is required. 

 

Opening of the blood-brain barrier and entry of blood products such as fibrinogen into the 

brain (as demonstrated in the BCAS model (48) is also likely to initiate an inflammatory 

response from resident microglia. An increase in microglial cell number following 

hypoperfusion is a consistent finding in preclinical studies (36, 37, 44-47, 49, 84) and 

activation of microglia in hypoperfused mice and rats is associated with release of matrix 

metalloproteinase, MMP2 (81), inflammatory cytokines, such as tumour necrosis factor 

(TNF)-α, interleukin (IL)-1β and IL-6, and the progression of white matter lesions (90-93). 

Increased MMPs have been consistently shown in hypoperfusion models (90-92) and 

increased expression has been shown in the white matter (91, 92) localised to microglia and 

the endothelium (91).  MMPs are proteases that degrade the extracellular matrix as well as 

tight junctions between endothelial cells and have been implicated in BBB  breakdown in 

neurodegenerative diseases (52). Furthermore increased MMPs can also degrade myelin 

(94). Increased production of reactive oxygen species by activated microglia may also drive 

endothelial dysfunction through disruption of nitric oxide signalling (95). 8-hydroxy-

deoxyganosine, a marker of oxidative stress, is increased by hypoperfusion in the 

endothelial cells in the BCAS model (64, 96). Thus a pro-inflammatory cascade is likely to 

further damage the BBB through degradation of the extracellular matrix by MMPs and 

promoting oxidative damage. 

Microvascular inflammation, as outlined previously, is a common feature of hypoperfusion 

models with markers of chronic inflammation and endothelial activation associated with 

progressive changes. It is not yet known whether inflammation is a primary driver of VCID 

and if this is triggered by intrinsic or systemic processes. Certainly from clinical observations 
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there appears to be an interplay between CNS and peripheral inflammation that contributes 

to VCID (97, 98). Additionally, age, a key risk factor for VCID, is also associated with 

alterations in microglial phenotype and function (99). There is an indication from recent 

paper (100) that white matter, glial and cognitive changes are more pronounced in older 

mice with BCAS as compared to younger mice. The mechanistic impact of advanced age 

remains to be fully explored in the different hypoperfusion models and this will be important 

to evaluate in future studies.  

 

Neuro-glio-vascular function  

As outlined above, no single cell type is likely to be solely responsible for the 

pathophysiology of VCID. Instead, disruption of the finely tuned interplay between cells of 

the neuro-glio-vascular unit (oligodendrocytes, endothelial cells, astrocytes and end-feet 

contacts, pericytes, microglia and neurons) (for review see 101) likely contributes to the 

pathophysiology. Breakdown of the neuro-glio-vascular unit disrupts the BBB, impairs the 

exchange of substances between blood and brain and alters the immune system. Critically, 

the efficient communication between the cells within the neuro-glio-vascular unit ensures 

that cerebral vessel diameter is finely tuned to neuronal activity to maintain cerebral 

perfusion and meet metabolic demands, a process known as neurovascular coupling. 

Nishino et al. (102) report that 7 days following unilateral common carotid artery stenosis, 

vascular responses to neural activity evoked by whisker stimulation are impaired. We have 

also observed impaired neurovascular coupling at 1 month following BCAS in mice (see 

Figure 4). Other studies have shown impaired vascular responses to hypercapnia (103) and 

pharmacological vasodilators (104) following hypoperfusion. In a clinical study, Sam et al. 

(105) also observed poor cerebrovascular reactivity in normally-appearing white matter that 

preceded the appearance of white matter lesions.  

 

Astrocytes contact synapses and the vasculature via end-feet processes. They are ideally 

located to mediate neurovascular coupling, facilitated by astrocytic calcium signalling and 

release of vasoactive substances from the endfoot terminus (106). Astrocytic activation has  

been detected in white matter at 7 days following BCAS surgery in mice (107) and has the 

potential to disrupt the contact between astrocytes and blood vessels. Indeed, chronic 

cerebral hypoperfusion has been shown to induce AQP4 displacement and redistribution 

after 3months BCAS (48, 68). This widespread gliovascular disruption may impair the 

regulation of blood flow, reducing the ability of the cerebral vessels to respond to dynamic 

demands in perfusion and exacerbating hypoxia. In humans, this may be further 

compounded by age-related increases in vessel stiffness and microvascular rarefaction 
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(108). However, a direct causal link between impaired neurovascular coupling and white 

matter lesion development has yet to be proven, as disrupted neurovascular coupling may 

reflect reduced tissue metabolic demand as a result of other ongoing pathological 

processes. The displacement of astrocytic endfeet or mislocalisation of AQP4 from vascular 

endfeet contacts could further impact on glymphatic clearance pathways, as has been 

elegantly demonstrated by Iliff et al. (109). As yet, the impact of hypoperfusion on glymphatic 

or perivascular drainage pathways has not been explored. Astrocytes have also been shown 

to support oligodendrogenesis through secretion of brain derived nerve growth factor 

(BDNF) in order to promote repair of white matter damage following BCAS in mice (110). 

This protective coupling between astrocytes and oligodendrocytes may also fail with age 

(111) or in neuroinflammatory conditions, and exacerbate white matter injury. Thus, the 

cellular interactions within the neuro-glio-vascular unit may be critically important for 

maintaining tissue health. 

 

Pericytes are contractile cells that ensheathe capillary endothelial cells. They have also been 

suggested to regulate blood flow in capillaries and may irreversibly constrict vessels 

following ischaemic injury (112). Although pericytes may be important regulators of BBB 

function remarkably their function in hypoperfusion models remains largely unknown. 

Perivascular macrophages have also not been studied in hypoperfusion models, but have 

been shown to mediate vascular dysfunction in hypertensive mice through production of 

reactive oxygen species (113), and may therefore be an important cell type for future study. 

Central to maintaining neuro-glio-vascular integrity is the basement membrane (BM)/ 

extracellular matrix (ECM) complex, a key interface between endothelial cells, mural cells 

and astrocytic end-feet that provides essential structural and functional stability to the neuro-

glio-vascular unit through a complex meshwork of ECM proteins (114). As has been 

indicated previously, hypoxic and inflammatory changes including the release of MMPs (90, 

91) may damage the ECM and compromise its functional integrity. Mutations in ECM-related 

proteins result in familial forms of SVD (114). It is plausible therefore that the ECM may also 

be an important target in sporadic SVD. 

 

Taken together, hypoperfusion is likely to drive key pathways related to hypoxia, 

inflammation and BBB disruption, resulting in progressive deterioration of the neuro-glio-

vascular unit (see Figure 5). The loss of integrity is likely to affect diverse functions including 

brain clearance pathways and regulation of CBF, potentially resulting in the accumulation of 

toxic waste products and ischaemic damage. Additionally, coexisting vascular risk factors 
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such as age, CAA and hypertension may exacerbate neuro-glio-vascular dysfunction and 

their impact is only starting to be explored. 

 

 

Interplay between cerebral hypoperfusion and co-morbidities 

Post-mortem studies in brains from the elderly indicate the presence of a variety of 

pathological lesions or mixed pathologies (such as white matter changes, infarcts, 

microbleeds and amyloid pathology) (115). The accumulation of these changes is likely to be 

influenced by a number of factors such as age, lifestyle and genes in addition to vascular 

risk factors. Thus in selecting appropriate animal models the study of co-morbidities should 

be considered. Surprisingly few studies have attempted to look at interactions between 

different factors. This would be important in identifying drug targets and as a basis for testing 

treatments. 

 

Of the few studies conducted, these have shown that the presence of more than one risk 

factor can exacerbate structural and functional changes in the hypoperfusion models. The 

induction of hypoperfusion in genetic or dietary models of VCI can exacerbate reductions in 

blood flow or tissue oxygen deficit, potentially through impairment of cerebrovascular 

autoregulation or modulation of tissue oxygen extraction fraction (116). Weaver et al. (116) 

demonstrated the utility of electron paramagnetic resonance oximetry to study white matter 

pO2 reductions longitudinally in a mixed SHRSP/Japanese Permissive Diet model with 

unilateral common carotid artery occlusion. In this SHRSP model, white matter lesions were 

also exacerbated in the presence of occlusion and dietary factors (116).  

 

It has been estimated that approximately 50% of AD risk is explained by traditional vascular 

risk factors (117) and most of AD cases at post-mortem have some form of vascular 

pathology (1, 118). Amyloid  protein deposition is a key hallmark of AD and believed to be 

a key driver of the pathophysiology of AD. Since rodents do not naturally accumulate A 

most studies use transgenic models that harbour mutations in the amyloid precursor protein 

associated with rare familial forms of AD (TgAPP). Critically these TgAPP mice deposit 

amyloid in the brain parenchyma and the vasculature and have provided a powerful basis 

for the study of amyloid dynamics (see summary of models on Alzforum 

(http://www.alzforum.org/research-models)). The TgAPP mouse models in combination with 

BCAS have demonstrated profound effects caused by cerebral hypoperfusion on amyloid 

dynamics and neurodegenerative changes. In the absence of other factors, blood flow 

reductions in TgAPP mice may be explained by the potent effects of soluble amyloid (Aβ) 

http://www.alzforum.org/research-models
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on vascular function by acting as a potent vasoconstrictor (119). In another TgAPP model of 

CAA, Okamoto et al. (120) showed that blood flow reductions at 12 weeks following BCAS 

were greater in TgAPP than in wild type mice. Hypoperfusion also promoted CAA and the 

development of microinfarcts. We have similarly shown that BCAS alters the pools of 

amyloid precursor protein and amyloid peptides to promote CAA and degenerative changes 

(121). Others have similarly shown BCAS promotes amyloid deposition and exacerbates 

cognitive changes in TgAPP mice (122). CAA can also impede vascular reactivity and 

drainage pathways (123, 124) that may further increase the accumulation of amyloid β. 

Oxidative stress and in particular the superoxide-producing enzyme NADPH oxidase (NOX) 

2 plays a key role in mediating amyloid induced vascular dysfunction (125, 126). Thus, 

conceivably there may be an interplay between increased NOX and amyloid following 

hypoperfusion that exacerbates neurovascular dysfunction. Interestingly a study using the 

GCAS model has demonstrated that cerebral hypoperfusion in TgAPP mice leads to 

prominent neurovascular unit damage that appears to be cholinergically mediated, since 

galantamine treatment reduces the degenerative changes (127). 

 

A pronounced pro-inflammatory environment including activated microglia and increased 

release of inflammatory cytokines are features of hypoperfusion models. In TgAPP models 

and human AD brain a pro-inflammatory environment is closely related to the increasing 

accumulation of Aβ protein (128, 129). Studies also support an interaction between 

hypoperfusion and amyloid whereby pro-inflammatory protein levels are markedly elevated 

and cognitive impairment is greatly exaggerated (130). The interpretation of these studies 

however is somewhat limited as most TgAPP models are confounded by the overexpression 

of APP and presence of APP fragments that may themselves impact on neuroinflammation. 

Recently single App knock-in mouse (TgAPP-KI) models of AD have been developed that 

produce physiological levels of APP (131). One of these, AppNL-F/NL-F harbours the Swedish 

and Beyreuther/Iberian mutations in the APP gene to overproduce Aβ42 without 

overexpressing APP. These mice display typical Aβ pathology, neuroinflammation and 

memory impairment in an age-dependent manner (131). Collectively, these observations 

suggest a vicious cycle whereby vascular factors (of which hypoperfusion is a common 

mechanism) promote the accumulation and/or impedes clearance of amyloid leading to 

impaired vascular reactivity, promotion of hypoperfusion, oxidative stress, microvascular 

inflammation and further production of amyloid (Figure 5). 
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Pre-clinical investigation of drug targets  

Assessment of pipeline drugs can be evaluated in preclinical models before clinical trials are 

initiated providing a translational opportunity. However, in reality there has been a major 

translational block with few agents showing promise in human VCID (see suggestions below 

for ways to overcome this). We provide examples that currently appear to be of potential 

value. One compound that has shown promise is cilostazol, a potent phosphodiesterase III 

inhibitor, which has been widely used as an antiplatelet agent for the prevention and 

treatment of peripheral arterial disease. Cilostazol normally does not cross the BBB but 

increases cyclic AMP in vascular cells and can exert multiple beneficial effects on the 

vasculature such as endothelial protection (132, 133), maintenance of microvascular 

integrity (134), vasodilatory, anti-oxidant, anti-inflammatory effects and regulation of smooth 

muscle cells (135). Moreover, in vitro experiments showed that cilostazol promoted 

differentiation of oligodendrocyte precursor cells (OPCs) (110). In the BCAS model, pre-

treatment and post-treatment of cilostazol reduced endothelial activation, suppressed 

microglial proliferation and improved cognitive function without affecting resting CBF and 

white matter integrity (68). After three months of hypoperfusion, BBB structure is preserved, 

suggesting cilostazol restored gliovascular disruption via endothelial protection without 

affecting white matter directly (68). These reports suggest that cilostazol has beneficial 

effects on the gradual progression of VCID, particularly in the early stages. In the rat 2 

vessel occlusion model, administration of cilostazol showed a remarkable protection against 

hypoperfusion-induced white matter damage including demyelination leading to 

improvement of cognitive impairment. In the 2 vessel occlusion model, cilostazol appears to 

afford greater effects potentially by crossing the disrupted BBB and directly affecting the 

white matter (64, 136). In experimental studies relevant to AD, cilostazol may protect against 

amyloid induced cognitive deficits and oxidative damage (137). Cilostazol has also been 

shown to reduce vascular amyloid by drainage mechanisms that promote clearance (138).    

In a pilot study of patients with moderate AD (139) and in a larger retrospective study of 

patients with mild dementia (140), receiving donepezil, cilostazol add-on treatment 

demonstrated significantly increased cognitive scores in comparison to baseline.  

 

Minocycline is another compound that has shown preclinical utility in several models relevant 

to VCID. Minocycline is a semi-synthetic tetracycline with FDA-approval for the treatment of 

acne vulgaris. It is highly lipophilic and readily able to cross the BBB. The drug is shown to 

be a potent inhibitor of inflammatory responses in a number of vascular conditions where 

microglia are activated, including hypertension (141), stroke (141, 142) and cerebral 

hypoperfusion (84, 143, 144). In particular, administration of minocycline for 3 months in the 



20 

 

BCAS model restored the hypoperfusion-induced impairment in white matter function related 

to a reduction in the number of microglia (84). Other studies, in which white matter is 

damaged by cerebral hypoperfusion via unilateral occlusion (143), two vessel occlusion 

(144) and in hypertensive stroke prone rats with two vessel occlusion (141) have also 

convincingly shown protective effects of minocycline. Minocycline has also been shown in 

animal models of cerebral amyloidosis to improve cognition (145) via inflammatory/oxidative 

stress mechanisms (145, 146) independently of amyloid levels. Interestingly, additional 

beneficial effects of minocycline include reduction in gelatinase activity and in spontaneous 

haemorrhage (146, 147). These observations suggest minocycline may be a promising 

candidate for use in VCID, whilst it is currently already being trialled for mild AD (see 

http://www.kcl.ac.uk/ioppn/depts/oldage/research/Medication-studies/Clinical-

Trials/minocycline-in-alzheimers-disease-(MADE).aspx). 

 

As indicated above increased MMPs are closely related to the pathophysiology of white 

matter damage and have also been shown to be increased in human VCID (148).  Genetic 

deletion of MMP2 is protective against the effects of BCAS in the mouse model (90). In a rat 

model, of two vessel occlusion, inhibition of MMP2 protects against hypoperfusion white 

matter damage and reduces the extent of glial activation (90). A broad spectrum MMP 

inhibitor was also shown to protect against BBB opening in the mouse BCAS model and 

against the ensuing white matter pathology and cognitive deficits (52). MMP inhibitors, whilst 

potentially protective in pre-clinical models of hypoperfusion, their use needs to be carefully 

considered in human VCID where MMP effects are likely to be complex and involved in both 

the contribution to the damage but also in the repair processes (see 149 for review). 

 

Life-style factors, including environmental enrichment and physical activity have been 

proposed as strategies to alleviate cognitive impairment in VCID. A recent report by our 

groups showed beneficial effects of environmental enrichment in a mouse model of chronic 

cerebral hypoperfusion by BCAS particularly in the white matter (49) that attenuated working 

memory deficits (150). These effects included a dramatic reduction in astrocyte damage and 

activation and microgliosis (49). It was found that limited rather than full-time exposure to 

environmental enrichment was more beneficial. Therefore, the implementation of even 

limited environmental enrichment may be beneficial for patients diagnosed with VCID.  

 

Collectively the experimental studies provide pre-clinical support for drug and lifestyle 

modification which may hold potential clinical value in SVD and VCID. Although further 

experimental studies are needed, moderate environmental enrichment appears a safe and 

http://www.kcl.ac.uk/ioppn/depts/oldage/research/Medication-studies/Clinical-Trials/minocycline-in-alzheimers-disease-(MADE).aspx)
http://www.kcl.ac.uk/ioppn/depts/oldage/research/Medication-studies/Clinical-Trials/minocycline-in-alzheimers-disease-(MADE).aspx)
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effective future interventional strategy for cerebrovascular diseases, especially for patients 

with VCID. 

 

Important considerations of the models; How can we close the gap between rodent 

models of chronic cerebral hypoperfusion  and human VCID? 

In order to effectively translate information generated from animal models such as cerebral 

hypoperfusion, we need to consider the general design, methodology and reporting of 

preclinical animal studies. Since the basis of the models are dependent on the extent of 

reduction of cerebral perfusion, it would be critical to monitor blood flow in each study. MRI 

with arterial spin labelling or similarly sensitive methods would be ideal to assess regional 

alterations in blood flow, particularly in subcortical areas. It is also important to recognise 

that blood flow is mostly measured in anaesthetised animals and may differ from that 

obtained in awake animals, particularly when vasodilatory anaesthetics such as isofluorane 

are used. Additionally, monitoring blood flow alterations in the white matter would be 

important. This measure is seldom reported in rodent models or in VCID, presumably 

relating to technical challenges regarding access and the inherently low blood flow in white 

matter, where small changes in flow may be difficult to detect reliably.  

 

The outcome measures in preclinical models, including those relating to extent of white 

matter damage, may be influenced by operator differences, background strain of the mice 

(cerebrovascular differences), size of constrictor devices, anaesthesia, time of application of 

coils and environment (pathogen status, temperature). In some studies animals are allowed 

to recover between the placement of the first and second coils to allow restoration of 

cerebral haemodynamics (40, 44, 46-48). Furthermore, the use of markers to assess white 

matter pathology can also vary. For example histological approaches such as Luxol fast blue 

and histology, whilst useful for detection of overt white matter lesions are not sufficiently 

sensitive to detect diffuse white matter changes. Instead, immunohistochemical approaches 

are required and one of the most sensitive markers of damage is myelin associated 

glycoprotein which is now used for detection of hypoxia-induced white matter pathology in 

human brain (18). Arguably, a further refinement would be to conduct ultrastructural analysis 

of white matter to assess myelin and axonal alterations, albeit these approaches are 

challenging within the corpus callosum. In addition to pathological changes induced by 

reduced blood flow itself, it is important to recognise that induction of hypoperfusion in 

animal models may result in alterations to the vasculature, independent of perfusion deficits 

that could also be detrimental. For example, application of microcoils or ligation of vessels 

may alter autoregulation, vascular stiffness or pulsatility and impact on the dynamics of 
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cerebrospinal fluid circulation.  Each of these mechanisms are proposed to contribute to  

VCID (9) and thus it would also be of interest to determine whether they are altered in the 

hypoperfusion models. It also needs to be considered that localised cellular inflammation 

may also be increased in the tissue surrounding the microcoils or constrictor devices and 

contribute to the pathological and behavioural outcomes (48). Critically age is a major risk 

factor for development of VCID and yet most studies continue to use relatively young 

rodents in which endogenous repair mechanisms will be more efficient. In older animals, 

white matter lesions are indicated to be more pronounced (100) and it may be predicted that 

these would be less amenable to intervention. Age and additional co-morbidities (such as 

systemic inflammation) need to be carefully factored in to preclinical testing of future drug 

targets if we are to enable meaningful translation from models to the clinic. 

 

 

In summary, it must be recognised that there are no animal models which perfectly 

recapitulate all of the features of VCID. However, several rodent models reflect aspects of 

human VCID and are pertinent to tease out specific questions that are impossible to readily 

address in human studies. To close the gap between rodent models and human VCID, it is 

therefore important to understand the pathological and cognitive features of preclinical 

models in order to select the appropriate model for the purpose.  
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Figure legends: 

Figure 1 

Multiple experimental models have been developed in order to study disruption of cerebral 
blood flow. Focal ischaemia models, largely developed to study stroke pathophysiology, can 
be achieved through targeted occlusion of a specific vessel, leading to reductions in flow 
(>70%) that are spatially restricted to the vessel’s territory. Alternatively, intra-arterial 
injection of emboli leads to multiple infarcts. In one model, SHRSP, strokes develop 
spontaneously. Global ischaemia models recapitulate severe (>90%) blood flow reductions 
to the forebrain. Due to the severe reductions in flow typically observed in models of 
ischaemia and resultant ischaemic neuronal damage, new models have since been 
developed and refined in order to mimic the subtle yet chronic reductions in blood flow 
relevant to vascular cognitive impairment. Stenosis or occlusion (rats only) of the common 
carotid arteries induces moderate blood flow reductions (~30-50%) without acute ischaemic 
damage. Abbreviations: BCAS, bilateral common carotid artery stenosis; SHRSP, 
spontaneously hypertensive stroke prone rat 

 

Figure 2 

Adapted from Hattori et al. J Am Heart Assoc. 2016:5(2). A. Temporal profile of cortical 
surface CBF  in mice subjected to gradual occlusion of both common carotid arteries 
(GCAS) (n=12) and bilateral common carotid  stenosis with microcoils (bilateral common 
carotid  stenosis (BCAS); n=7). The levels of cortical surface cerebral blood flow  (CBF) 
estimates at indicated time points (before, and 1, 3, 7, 14, and 28 days after each surgery) 
are shown as percentage of the baseline CBF. Two groups were not significantly different in 

2‐way repeated‐measures ANOVA. *P<0.01, GCAS vs BCAS at indicated each time point. 
B. Regions of interest (ROIs) used for measurement of CBF images obtained from arterial 
spin labelling magnetic resonance perfusion imaging. The CBF values in cerebral cortical 
area were calculated from the 6 circular ROIs in blue and those in the subcortical area from 
the 2 circular ROIs in red.  C. Representative multislice coronal CBF images obtained from 

arterial spin labelling at the Bregma and hippocampal levels pre‐GCAS surgery and at 14 
and 28 days after GCAS surgery.  

 

Figure 3 

A. Fibre-optic oxygen sensors  were implanted stereotactically into the corpus callosum of 
anaesthetised sham and hypoperfused mice (n=6/gp) at different times post-surgery. The 
measurement of tissue oxygen tension (pO2) provides a measure of oxygen availability at 
the cellular level. B.  At all times post-hypoperfusion, pO2 levels were significantly reduced 
to hypoxic levels (<10mmHg) ****p<0.0001 
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Figure 4 

Laser speckle imaging was used to assess vascular responses to whisker stimulation in 
anaesthetised sham (n=7) and hypoperfused mice (n=5). (A) Neurovascular coupling was 
significantly impaired in hypoperfused mice compared to sham, *p<0.05. (B) Representative 
responses to whisker stimulation from sham and hypoperfused mice. The onset and end of 
whisker stimulation are highlighted by arrows. 

 

Figure 5 

Summary of proposed pathways by which chronic cerebral hypoperfusion may lead to 
cognitive impairment.  Cerebral hypoperfusion reduces tissue oxygen levels (pO2) leading to 
oxidative stress and endothelial injury. The ensuing microvascular inflammation (ECM 
disruption, increased MMPs and ROS; inflammatory cytokines) is associated with activated 
microglia and astrocytes resulting in disruption of axon-glial integrity and neurovascular 
coupling.  These inter-related pathways may lead to cognitive impairment. Cerebral 
hypoperfusion can also increase amyloid which may potentiate these mechanisms and  
promote further degenerative changes and cognitive impairment. Abbreviations: ECM, 
extracellular matrix; MMP, matrix metalloproteinase; ROS, reactive oxygen species; BBB, 
blood brain barrier 

 

 

 

 

 

 

 

. 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/26058695

