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Abstract 
 

The General Linear Model (GLM) is the statistical method of choice used in brain morphometric 

analyses because of its ability to incorporate a multitude of effects. This chapter starts by presenting 

the theory, focusing on modelling and then goes on discussing multiple comparisons issues specific to 

voxel based approaches. The end of the chapter discusses practicalities: variable selection and 

covariates of no interest. Researchers have often a multitude of demographic and behavioural 

measures they wish to use and methods to select such variables are presented. We end with a note 

of caution as the GLM can only reveal covariations between brain and behaviour, prediction and 

causation mandate specific designs and analyses. 
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Introduction 
 

At the core, the General Linear Model (GLM) comes from regression and correlational methods and it 
can be understood as a general multiple regression model. It derives from the theory of algebraic 
invariants developed in the 19th century along with the development of linear algebra. The theory 
searches for explicit description of polynomial functions1 that do not change under transformations 
from a given linear group. Linear correlations for example are invariant, i.e. the linear correlation 
coefficient does not change after linearly transforming the data. For a thorough explanation of the 
GLM, see Christensen (2002). The GLM has been successfully used in the analysis of brain structures 
because of its flexibility to handle both categorical (e.g. groups of subjects), and continuous variables 
(e.g. test scores). It can be used to examine regions of interest (ROI) from which various morphometric 
markers can be extracted, but it has been most successful in whole brain analysis using a voxel based 
approach for grey matter (Voxel Based Morphometry or VBM, (Ashburner & Friston, 2000) and white 
matter (Tract Based Spatial Statistics or TBSS, Smith et al., 2006).   

Theory 
The dependent variables (Y) can be described as a linear combination of independent variables (XB). 
Written as an equation, this gives 
𝑌 = 𝑋𝛽 +    (eq. 1). 
 
Each term is a matrix of data with Y of dimensions n*m, X of dimensions n*p, β of dimension p*m and 
ε of dimensions n*m represents the residuals, i.e. the part of the data not explained by Xβ. Typically 
m=1 when performing morphometric analyses (Figure 1), that is each region of interest (ROI) or each 
voxel of the brain is modelled separately (massive univariate approach). When using multiple ROI it 
can be useful to have a single model with m>1, taking advantage of correlational structure in the data 
to find a significant multivariate effect in the absence of significant univariate differences (e.g. patients 
can differ from controls by exhibiting lower volumes in regions A and B and higher volumes in regions 
C and D, but none of those regions show on their own a significant difference). 

                                                           
1 A polynomial function is a function such as a quadratic, a cubic, a quartic, and so on, involving only non-negative integer 

powers of x. 
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Figure 1: Illustration of the mass-univariate GLM approach. Data consist in n subjects and the brain of each subject is ‘cut’ 
into m measurements (voxels or ROI). Each measurement is then submitted to the same analysis, i.e. the same model X (here 
illustrated with a matrix of 4 columns, modelling membership of group 1 or 2, a covariate of interest and the Intra-cranial 
volume (ICV) as a controlling confounding variable). The parameters β, or linear combinations of them, are then tested for 
significance either for each of these measurements or for topological features associated to these measurements (i.e. 
clusters height or size). 

 

Linearity 
 

The first aspect to recognize in equation 1 is linearity. Linearity refers to a relationship between 
variables that can be geometrically represented as a straight line (2D), a plane (3D) or a hyperplane 
(4D and above).  A linear function satisfies the properties of additivity and scaling, which means that 
outputs (Y) are simply an addition of inputs (X: x1 x2, x3, etc.) each one of them multiplied by some 
constants (β: b1, b2, b3, etc.).  
 
Let us consider the application of such model to hippocampal volume measurements. I use here 
rounded data from Frisoni et al. (2008, figure 3) and look at the relation between healthy subject ages 

and normalized volumes of the right hippocampus2. The model is a simple linear regression such as y 
= x1b1 + b2. The equation is linear since it states that y, the hippocampal volume, is equal to age (x1) 
scaled by b1 plus an average volume value (b2). Geometrically, the relationship is defined as a straight 
line (Figure 2). 
 

                                                           
2 In morphometric analyses, the total intracranial volume (or related measurement) is typically accounted for, 
either in the model or in the data. Here the hippocampal volume is normalized to the total brain volume – this 
transformation is mandatory as bigger heads give bigger volume and vice-versa and bias in a sample can lead to 
spurious results. 



4 
 

 

Figure 2: Figure 3: Simple regression on a morphological feature: here hippocampal volume. After delineating the 
hippocampus of 19 subjects, (image courtesy from the Centre for Clinical Brain Science, Edinburgh Imaging Library brain-
DA0001), Frisoni et al. (2008) computed the normalized hippocampal volume and performed a regression analysis of the 
volume as a function of the subject’s age (plus a constant term), showing a significant reduction of hippocampus volume as 
one gets older.   

 

Modelling data 
 

The second aspect to recognize in equation 1 is the modelling. Consider again the regression model 
for the hippocampus volume, adding now the group of Alzheimer patients. We can either model the 
data with a single mean or having group specific means in addition of group specific age regressors. In 
the former case, we build a model in which controls and patients have overall the same volumes but 
we allow age related changes to differ between groups (i.e. the hypothesis is that aging does not affect 
the brain the same way between subjects who have or not the disease). In the latter case, we build a 
model in which controls and patients have different overall volume values (i.e. they come from 
different distributions, which is a reasonable assumption given what we know about Alzheimer and 
memory) while also exhibiting differential age related changes (Figure 3).  

 

 

Figure 4. Two different models comparing the hippocampal volumes of healthy controls and Alzheimer patients. Including 
the group variable changes the slope of the age regressors, giving different results/conclusion about how grey matter 
plasticity changes with age. 
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It is important to recognize that any data analysis using the GLM is driven by hypotheses. Whilst this 
might seem trivial, differences between models can lead to large differences in results and authors 
and readers of scientific articles should be aware of this. Here both models are statistically significant 
(the 1st model has a R2 of 0.56 and the 2nd model a R2 of 0.61). The simple inclusion or exclusion of the 
group variable leads however to opposite conclusions. If we consider that both controls and patients 
come from the same distributions, patients show a significant correlation with age. If we consider 
group specific volumes, the correlation with age is only significant in control subjects (implying the 
disease ‘destroyed’ or obscured age related changes). 
 

Model Estimation 
 

Once the model is set-up, a software solves the equation, i.e. it estimates the model parameters. If 
we consider a linear system, the solution is found simply by multiplying each side of eq. (1) by the 
inverse of X giving the solution in equation2. Most often X is not square and the system is not fully 
determined (i.e. we don’t have an exact set of equations that describes the data). The solution is 
therefore a set of estimates. Typically, the Moore-Penrose pseudoinverse (eq. 3) is used, but other 
solutions exist (e.g. QR decomposition, Bayesian estimation), which implies that slightly different 
results can sometimes be obtained because of the estimation method. 

 

𝛽̂ =  𝑋−1𝑌 (eq. 2) 

𝛽̂ =  𝑋~𝑌  (eq. 3) 

 

Hypothesis testing 
 

Once the model has been set up and the parameters have been estimated, it is time for statistical 
testing. Testing always follow the same rule: effect / error (equation 4). One way to think about 
hypothesis testing is to think about how to combine parts of the model (i.e. the columns of X) to 
explain the data (Y). One can test if only one regressor explains the data, or if a set of regressors 
explains the data, or even if one regressor or set of regressors explains more of the data than another 
regressor or set of regressors. Contrasts are simple linear functions that combine the columns of X to 
test such hypotheses. Taking the model with 5 columns in Figure 3, we can test using equation 4 if 
there is significant effect of age in controls (C=[0 0 1 0 0]) or in patients (C=[0 0 0 1 0]) or even across 
the whole sample (C=[0 0 1 1 0]). It is also possible to test if there is a difference in overall volumes 
between groups (C=[ 1 -1 0 0 0]) or a difference in the age effect (C=[0 0 1 -1 0]). 

 

𝑡 =
𝐶𝛽̂

√𝜎2𝐶𝑇(𝑋𝑇𝑋)−1𝐶
 eq (4) 

C defined the contrast of interest, 𝛽̂ are the parameter estimates, 𝜎2 is the variance obtained from the 
residuals, X is the design matrix. 
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Multiple comparisons correction 
 

The type I error rate corresponds to probability to observe false positives, i.e. the probability to declare 
a ROI or voxel significant whilst H0 (the absence of effect) is true. Because m statistical tests are usually 
performed, we have to consider the family-wise error rate (FWER), i.e. the probability to make one or 
more type I errors, in order to ensure an overall error at the pre-specified alpha level. Many methods 
have been devised to control the type I FWER at the voxel or cluster level: Bonferroni correction, 
Random Field Theory (Worsley et al., 1996) and randomization tests (permutation or bootstrap – 
Hayasaka et al., 2004). Note that false discovery rate (FDR) procedures do not control the type I error 
in the classical sense. FDR procedures control for the expected number of false positives.  
 
If testing multiple ROI, one of those techniques must be used: either FDR in the context of data 
exploration or FWER for hypothesis driven studies. While both Bonferroni and randomization tests 
will control the type 1 FWER to a similar level, Bonferroni correction is not optimal because it considers 
ROI as independent, whilst ROI data are often correlated. Randomization tests are likely to provide 
more power, accounting for correlations between ROI. With full brain analyses, i.e. testing many 
spatially contiguous voxels (i.e. VBM or TBSS), the choice of the multiple comparison technique has an 
even greater impact. It has been shown that statistical values are attracted toward regions of low 
residual variance – which should not happen if the data were stationary. Unfortunately full brain voxel 
based analyses suffers from non-stationarity and this means that in smooth regions, clusters tend to 
be large even in the absence of true signals,  resulting in increased false positives whilst in rough 
regions, clusters tend to be small, resulting in reduced power. Because of this sensitivity to 
smoothness, it is not recommended to threshold maps based on cluster size (Ashburner & Friston, 
2000) unless using specifically a non-stationary permutation cluster test (Hayasaka, Phan, Liberzon, 
Worsley, & Nichols, 2004). An interesting solution is to integrate size and height over all thresholds, a 
technique known as Threshold Free Cluster Enhancement (S. Smith & Nichols, 2009) which has been 
successfully applied to TBSS and is becoming more popular for VBM when, again, it is adjusted for 
non-stationarity (Salimi-Khorshidi et al., 2009, 2011).  Finally, it is also worth considering the number 
of contrasts performed – the more covariates are tested, the more likely one of them will be significant 
by chance, and alpha level adjustment could also be performed at that stage (Ridgway et al., 2008 - 
rule 8). 

Practicalities 
 

Assumptions 
 

The 1st job of the experimenter and data analyst is to define the independent variables. Sometimes 
people worry about the normality assumption. It is important to understand that this only applies to 
the data (and model residuals) and not to the regressors, which means that as long as subjects are 
independent and identically distributed (i.i.d), anything can be entered as regressors, for instance a 
quadratic effect of age. It is however worth also considering the relationships between variables as it 
is often not clear if brain structural changes are explained by the behaviour or if this is the behavioural 
data that are predicted by brain morphology (Huang et al., 2013). 

 
Normality. When performing the analysis on a few ROI, it is advisable to check the data distributions 
as long tails will give spurious results. With VBM, grey matter values are bounded and it is thus 
recommended to have sufficient spatial smoothing, from 4 to 8mm (Salmond et al., 2002), to render 
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the distributions normal and thus avoid high false positive rate. In this context, unbalance between 
groups is the most problematic with extreme cases such as comparing a single subject to a group 
leading to high number of false positives (Scarpazza et al., 2013). 

 
Independence. Lack of independence occurs when the error covariance is not diagonal. There is no 
good way to fix such problem because it does not relate to the data but to the sampling. The single 
best advice is thus to have a good sampling strategy for the population of interest. 
 

Choosing covariates 
 

To investigate structural brain changes in health and disease, many variables of interest are obtained 
for each participant. For instance, researchers working on language disabilities measure basic sensory 
performances along with IQ, auditory and visual cognitive abilities. Similarly, research in aging will try 
to characterize many cognitive dimensions using multiple tests along with a more general test such as 
the MoCA (Sink et al., 2015). Of particular interest for GLM analyses are (i) the accuracy of these 
measures and (ii) the relationship between these measures.  
 
All sensory and cognitive measures are affected by random measurement errors. This means that 
measurements fluctuate randomly around their true values because of inherent biological variability, 
of imprecise tool, or both. The total error in a variable with random measurement error averages out 
to zero, which implies that on average this is accurate. Many people assume that it implies that it does 
not affect regression analyses. Since GLM estimates minimize the square distance in X, errors in the 
regressors (i.e. the sensory or cognitive measurements) lead to poor data fit, biasing the regression 
coefficient towards the null, a phenomenon known as attenuation or regression dilution bias 
(Hutcheon et al., 2010). When we have multiple variables which measure the same sensory or 
cognitive dimension, best is to choose the one with the smallest error – i.e. the one with the smallest 
standardized standard deviation. 
 
Having multiple variables that measure the same or overlapping dimensions can also be a problem for 
morphometric analyses. If the goal were to explain the data with a model, collinearity between 
regressors would not be an issue. Since the goal is usually to investigate how each variable relates to 
structural changes, this becomes a problem. Multicollinearity leads to a decrease in the unique 
amount of variance explained by a single regressor thereby posing difficulty in interpreting their 
respective contribution. Kraha et al., (2012) propose a set of tools that can be useful in this context 
(e.g. commonality analysis, dominance analysis), examining relationships between the regressors and 
the variable of interest. These tools are easy to apply for ROI analyses but are intractable for VBM or 
TBSS analyses. One useful tool is the variance inflation factor, which examines the impact of each 
regressor on the others, therefore making sure no regressors in the model are too much correlated 
with others or a combination of them. In many cases, the experimenter or data analyst will still have 
to select some variables. Without a tractable solution over all voxels, one option is to rely on a 
decomposition of behavioural data to build a new (smaller) set of regressors that reflect specific 
dimensions with minimal (factor analysis) to no correlation (principal component analysis) between 
them. Using such approaches has also the advantage to have predictors with minimized variance, i.e. 
likely reduced measurement errors. 
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Common covariates of no interest 
 

Depending on the research question at hand, several confounding variables can be included in the 
design matrix. A few other covariates, related to brain size, should also be included: age, sex, total 
intra-cranial volume (TIV). The exact relationships between global and local morphology to age and 
sex are not known, but these factors are known to affect grey and white matter tissues and thus should 
be included. Because morphometric analyses are interested in local changes, it is also recommended 
to control for the TIV and/or related measurements (Malone et al., 2015).  For instance, we can include 
TIV to account for total head size or the total grey matter (TGM) or total white matter (TWM) to 
account for tissue-specific global effects. However, not all of these covariates are needed, and their 
inclusion/exclusion must be justified. As discussed in Henley et al. (2010), adjusting data using TIV 
eliminates differences due to sex, making that variable irrelevant. Similarly, adjusting for age and TGM, 
approximates TIV because age and TGM are correlated in normal subjects. Such choice is however 
invalid in neurodegenerative disease since TGM does not follow TIV. In all case, one global measure is 
likely to be included and there are different ways to perform this control (Peelle et al., 2012): 
 

1. Local Covariation: the model assumes that observed changes are explained by the sum of a 
global and a local effect. The global effect (TIV, TGM or TWM) is however scaled differently at 
each voxel/ROI, which implies that one accepts the hypothesis that the global effect affects 
different regions differently. For instance, one brain region can be smaller as head size 
increases while another region can be bigger. This approach is computed by simply adding the 
global measure as covariate in the GLM. The results are interpreted as significant changes, in 
addition of, or despite changes in the global. 

2. Global Scaling: the model assumes changes are explained by a local effect that scales beyond 
changes in the global measurement. Here, the global effect is accounted for identically for 
every voxel/ROI by simply dividing them by the global estimate. A significant effect of a 
regressor indicates changes that are stronger than changes in the global measurement. This 
approach is particularly useful when changes in TGM or TWM are known and/or compete with 
the local effect tested like in e.g. aging. 

3. Local Scaling: the model assumes changes are explained by a local effect that scales beyond 
changes in the global measurement as for global scaling. This effect however scales differently 
at each voxel/ROI as in the local covariation approach. This is computed by dividing the data 
by the local mean values. Compared to the local covariation approach, this allows looking for 
effects that scales beyond global changes, rather than in addition of the global effect. Since 
the adjustment is local, it seems that part of the effects observed (compared to the local 
covariation) can be attributed to partial volumes rather than uniquely attributed to a global 
confound.  
 

In general local covariation have shown to be more effective to control for the global effect of head 
size (see references in Malone et al., 2015) but scaling methods allow to answer slightly different 
questions and have therefore merits of their own. No matter what model is used, it is important to 
check effects with and without covariates of no interest (in particular TIV or related), to better 
understand observed changes (Tu et al., 2008). Good  reporting practices are then to (i) say if an effect 
is there with/without the covariates, (ii) report standardized regression coefficient (std(X)/std(y)*β) 
along with statistical values, allowing quantitative comparison across studies and, (iii) also report 
changes in terms of effect size (e.g. raw gray matter values) to provide a more direct biological 
interpretation.  
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Discussion 
 

As presented above, the GLM is a mathematical tool of great flexibility allowing one to combine 
categorical (e.g. patients vs. controls) and continuous variables (e.g. age, TIV), to test multiple 
hypotheses within the same model thus accounting for confounding effects. Results from such an 
approach must however be considered carefully because (i) of the assumptions of the normality, of 
independence, and of linearity (see e.g. Pernet, et al., 2009) for non-linear effects) (ii) multiple models 
are often possible and can give different results, i.e. the model reflects the experimenter’s hypotheses 
and assumptions about the population(s), (iii) significant effects of regressors are not always good 
biomarkers or predictors. This last point is of utmost clinical importance. The GLM is useful to 
understand how brain structures linearly covaries with behavioural measures but it does not provide 
information of causation or diagnosis. Causation can only be established by design, as for instance in 
a randomized controlled interventional study (pre- post- treatment with placebo), showing that 
changes in behaviour after treatment corresponds to changes in brain structure in treated patients 
but not placebo. Similarly, to establish that a behavioural variable or a brain region is a good 
biomarker, cross-validation techniques must be used and a new independent subject sample must be 
tested to validate the prediction because significant GLM regressors are not necessarily good 
predictors (Lo et al., 2015).  
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