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Robust Multi-Modal MR Image Synthesis

Thomas Joyce*, Agisilaos Chartsias*, and Sotirios A. Tsaftaris

The University of Edinburgh
t.joyce@ed.ac.uk

Abstract. We present a multi-input encoder-decoder neural network
model able to perform MR image synthesis from any subset of its in-
puts, outperforming prior methods in both single and multi-input set-
tings. This is achieved by encouraging the network to learn a modality
invariant latent embedding during training. We demonstrate that a spa-
tial transformer module [7] can be included in our model to automatically
correct misalignment in the input data. Thus, our model is robust both
to missing and misaligned data at test time. Finally, we show that the
model’s modular nature allows transfer learning to different datasets.
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1 Introduction

Automatic generation of synthetic images has a wide range of applications within
medical imaging research and technology. For example, synthetic images can
replace corrupt or missing images, extend a dataset to additional modalities
[16], be used for attenuation correction [2, 13], pathology detection [1, 18] and for
improving the performance of other imaging algorithms [6, 16]. However, in order
for a synthesis system to be widely applicable, in addition to producing high
quality synthetic images it should also be robust to the suboptimal conditions
that are often present in real use situations, such as missing and unaligned data.

Here we focus on Magnetic Resonance Imaging (MRI), a non-invasive imaging
technique that can obtain images of different contrasts, referred to here as modal-
ities, by applying different sets of pulse sequence parameters. In this context, we
demonstrate that a multi-input neural network can be trained end-to-end to
synthesise images in a target modality. Most previous synthesis work has fo-
cused on single input synthesis, and multi-input synthesis introduces additional
potential problems, such as missing inputs in some modalities, and misaligned
inputs. Here, due to the composition of the network and the costs imposed dur-
ing training, the resulting model is naturally robust to missing inputs, and so
any subset of the possible inputs can be used at test time to generate an out-
put. Additionally, through the inclusion of a spatial transformer module [7], the
network can overcome misalignment between inputs.

Another key problem in MRI synthesis is that many different MR scanners
are used, and the different images produced (of the non parametric type) have

* These authors contributed equally.



2 T. Joyce et al.

input individual latent aligned latent fused latent output
modalities representations representations representation modality

% {2 Zé‘>*|:|—>zu—>.—> '
Fig. 1. A high-level schematic of our model.

non-identical statistical properties, which typically require several pre-processing
steps to alleviate. Thus, an algorithm trained on images from a particular scan-
ner may degrade significantly in performance when applied to images from
other sources. To address this, we demonstrate transfer learning by fine-tuning
a trained decoder with a very small number of volumes from a different source.
This improves transfer performance on images from the second source by ~ 70%.

In summary, we propose a model that outperforms recent approaches in both
single and multi-input image synthesis by ~ 14 — 30%, is robust to missing and
misaligned inputs, and is able to achieve good transfer learning results with a
very small number of volumes.

2 Previous Work

Because of its broad applicability, there has been significant previous work on MR
image synthesis. The majority of this work has focused on synthesising an output
modality from a single input modality, and has been mainly concerned with
producing increasingly accurate synthesis results [18, 4, 12]. In addition, there
has been work on creating pseudo-healthy data [1], synthesising CT from MRI
[5], and estimating pulse sequence parameters to achieve accurate synthesis [8].

Improvements can be made by incorporating information into the input, in
addition to raw pixel intensities [17, 9]. In [17] the Location Sensitive Deep Net-
work (LSDN) is proposed, which improves results by conditioning the synthesis
on the position in the volume from which the patch comes. Another approach
[9], uses random forests to solve the patch based regression problem, and incor-
porates both multi-scale information and context description features in order
to improve the final synthesis. This approach has also been demonstrated in a
multi-input task, and multi-input synthesis has also been explored in an atlas
based setting [14]. However, although both approaches can fuse information from
multiple sources to produce accurate synthetic results, they are not designed to
robustly handle missing input modalities.

3 Proposed Approach

Our model, illustrated in Fig 1, is comprised of encoder modules, alignment and
fusion modules and a decoder module. The model takes as input full 2D image



Robust Multi-Modal MR Image Synthesis 3
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Fig. 2. Example channel from a latent embedding. The first 3 images are the T1, T2
and DWI embeddings respectively, the final image is the fused embedding. Informative
aspects from the individual embeddings are combined in the fused embedding.

slices of each input modality and synthesises an image of the same size in the
output modality. The network has one encoder for each input modality, which
maps the input images into a shared latent representation space. The latent rep-
resentations are then aligned by the spatial transformer module [7], and com-
bined to produce a single fused latent representation. Finally, this fused latent
representation is decoded to produce an output image in the target modality.

The encoded representation of a MR brain image from one modality should be
semantically equivalent to the encoded representation from any other modality.
For example, although the cerebrospinal fluid in the lateral ventricles produces
high intensity voxels in T2 modality images, and low intensity voxels in T1
modality images, in the shared latent representation, these voxels should have
the same representation (see Fig. 2).

3.1 Details

Encoders: Let X;,...,X,, be image slices in the n input modalities. Each of
the n inputs has its own encoder f, parametrised by 6;. The encoded latent
representations are defined as Z; = f(X;60;), ¢ € [0, n], where Z; is a tensor, and
there is one Z; for each input modality. The encoders are fully convolutional
networks, as shown in Fig. 3, with an architecture inspired by the U-Net [11],
due to its proven representational power. Each latent representation Z; is a 16
channel tensor with the same width and height as the input image.
Alignment: Next, the n latent representations are aligned using the spatial
transformer module, yielding aligned latent representations Z7, ..., Z* . The spa-
tial transformer is a neural network able to learn to apply affine transformations
to its inputs. Here we use it to align all latent representations to the first. To
achieve this, we input Z; and Z; into the spatial transformer for each i € [2, n],
and get Z! output, which is a geometrically transformed Z;. As all other repre-
sentations are transformed to match Z;, Z; is left unchanged, and so Z] = Z;.
The spatial transformer is parametrised by weights p, which are learnt implicitly
by the overall cost function, see Sec 4.

Fusion: The n aligned latent representations Z7j, ..., Z} are then combined via a
fusion operation « to produce a single fused latent representation Z,. Here we
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Fig. 3. Architectures of encoder (left), spatial transformer (center), and decoder (right)
modules. The encoders are inspired by U-Net [11] and each one, f, has its own set of
weights. In our experiments we use L=16.

use the voxel-wise max as the fusion operation, which allows features present in
only one input modality to be preserved in the fused representation.

Decoder: Finally, Z, is decoded by the decoder g, parametrised by v, giving
the final prediction g(Z.|v¢). The exact architecture of g is shown in Fig 3 and is
chosen to be shallow to encourage an informative latent representation. It also
contains skip connections as they help gradient flow [3].

4 Cost Function

One central goal for the model is to exploit all inputs in order to produce an
accurate final synthetic image. To encourage this directly, we train the model
to minimise the mean absolute error (MAE) between the synthesised image and
the target. This is the first term in our cost function (below). However, simply
training the network end-to-end to minimise final synthesis accuracy does not
produce a model that is robust to missing inputs. This is because the model
is not encouraged to learn a shared latent representation. In order to encour-
age robustness, two additional costs are used during training. Firstly, the latent
representations are encouraged to be similar, by minimising their pixel-wise vari-
ance, and secondly, the latent representations are individually decoded by ¢, and
these results are also encouraged to be accurate by minimising the MAE. Useful
unique information is therefore maintained by minimising the synthesis error of
both the fused and individual latent representations. The representations are
also implicitly made similar by sharing the same decoder g. Our final cost is a
sum of these three components, where Y is the target image, MAE is the mean
absolute error, and MVV is the mean voxel-wise variance:

(0,9, n) = MAE(g(Zo|),Y) + MVV(Z3, ... Z}) + Z MAE(g(Z; %), Y).

1=1
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Table 1. The test MSE (= s.d.) for unimodal models on ISLES and BRATS datasets.

T — T2 T1— FLAIR
ISLES BRATS ISLES BRATS

DEDIS [15] 2.265 +0.88 7.289 +7.80 1.956 +0.78 7.589 +8.08
LSDN [17] 1.282 £0.68 3.259 £0.85 0.961 +0.39 2.446 +1.21

RF [9] 1.153 £0.56 3.407 £1.15 0.986 +0.41 2.382 +1.32
Proposed 1.018 +£0.47 2.213 £0.70 0.822 +0.34 1.689 £1.02

5 Experiments

Here we detail experiments that examine the model’s accuracy, robustness to
missing and misaligned data, and propensity for transfer learning. We train all
models using Adam [10] with a batch-size of 32, and all results are from 5 fold
cross validation. Models were implemented in Python with Keras.

Datasets: We use the SISS dataset from the Ischemic Stroke Lesion Segmen-
tation (ISLES) 2015 challenge!. This contains 28 volumes in Tlw, T2w, Flair
and DWI contrast sequences that have been skull-stripped and resampled to an
isotropic spacing of 1mm? and co-registered to the FLAIR contrast sequence.
We also use the low grade glioma cases from the multimodal Brain Tumor Seg-
mentation (BRATS) 2015 challenge?. This data contains 54 volumes imaged in
Tlw, Tlc, T2w and Flair and are skull striped, co-aligned, and interpolated to
1mm? resolution. Our architecture uses 2D axial-plane slices of the volumes.
Preprocessing: We trim and downsample the data to create volumes of 112 x
80 pixel images for the ISLES dataset and 128 x 128 for the BRATS dataset.
We thus remove uninformative background areas of the image and reduce the
image size such that it is divisible by 4, so that the 2 x 2 max-pooling and
upsampling operations of the encoders do not change the final image size. Finally,
we normalise by dividing each volume by its mean in order to shift its mean to 1
and also maintain positive values for all pixel values. This also maintains small
variance differences between volumes and keeps background pixels at 0.

Error Metric: We use the mean squared error (MSE) calculated over all non-
background voxels in the volume.

5.1 Synthesis Accuracy

We compare the accuracy of our model to the accuracy of a number of state of
the art models. We compare against LSDN [17], Deep Encoder-Decoder Image
Synthesis [15] (DEDIS), and a recent random forest approach [9] (RF). The
results are shown in Table 1, and show that when used as a single input model
our approach achieves a ~ 14% increase in performance on average for ISLES
tasks and ~ 30% for BRATS tasks, compared to the second best method.

! http://www.isles-challenge.org/ISLES2015/
2 https:/ /sites.google.com /site/braintumorsegmentation /home/brats2015
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Table 2. Comparison of multi-input results in synthesising FLAIR.

T1,T2,DWI: [V x| % x| % [V o x| x|

A) RF [9] 0.986 1.295 0.901 0.917 0.712 0.789 0.670
Proposed (different models) 0.822 1.051 0.821 0.717 0.661 0.672 0.576

(B) Proposed (missing inputs) 0.799 1.048 0.842 0.699 0.641 0.686 0.576

Fig. 4. Example of our model’s multi-modal synthesis (test case). The first column
shows T1 alone synthesising FLAIR, similarly, the second and third columns show the
results of using just T2 and DWI respectively. The fourth column shows the synthesis
output of all inputs. The final column shows the ground truth FLAIR. Observe that,
despite the presence of a lesion, our model is still able to achieve accurate synthesis.

5.2 Multi-Input Synthesis, and Robustness to Missing Inputs

To test robustness to missing inputs, we first trained 7 separate models, one for
each combination of T'1, T2 and DWI inputs for both our model and the RF (see
Table 2 (A)). Next we took our model trained with all three inputs and tested
it with all 7 possible combinations of missing inputs (see Table 2 (B)). It can
be seen that our proposed method outperforms RF on all input combinations,
improving on average by ~ 16%. Further, our full model performs just as well
with missing inputs as a model trained specifically for the limited input case,
showing robustness to missing data. Example images are shown in Fig. 4.

5.3 Robustness to Data Misalignment

To examine the performance of our model on unaligned data we trained and
tested a model for synthesising FLAIR from T1 and DWI on data in which
each T1 volume was randomly rotated about all axes by a number of degrees
sampled uniformly at random from [-8,8] and was shifted randomly on each axis
by a (not necessarily integer) number of pixels from [-2,2]. This produced data
with misalignment between modalities of the sort that remains after a simple
alignment procedure had been performed. When trained on aligned data, our
model and RF achieve MSE of 0.661 and 0.712 respectively, which increases
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to 0.793 and 0.885 respectively on the unaligned task. However, compared to
the unimodal case where only DWI is given as input, which achieves MSEs
of 0.821 and 0.901, we observe an improvement of 6% and 2% for our model
and RF respectively. Although seemingly a small improvement, rotating and
shifting across the z-axis changes the anatomy present in the image, necessarily
resulting in performance degradation, and additionally information is lost by
blurring during rotation. However, our model is still able to capture the limited
information of the distorted T1 input to improve on the unimodal result.

5.4 Transfer Learning

Here we examine the model’s ability to generalise to MRI data with different
intensity characteristics, not seen during training. We use a model synthesising
T2 from T1 trained on BRATS, and test it on ISLES volumes. We first use the
model as-is without any fine tuning and get a MSE of 3.990 which we use as a
baseline. Then, based on the assumption that the deeper layers of the network are
task specific [19], we fine-tune just the decoder using 1, 2 and 3 volumes and get
a MSE of 1.439, 1.356 and 1.227 respectively. The MSE decreases significantly,
improving 70% compared to the baseline and approaches the MSE obtained from
the ISLES trained model of Table 2, which is 1.018. In addition, fine tuning the
decoder is extremely fast, taking ~ 4 minutes on one Titan X GPU.

6 Conclusion

We have demonstrated that a multi-input neural network model is able to out-
perform other recently proposed synthesis methods in both the single input and
multi-input settings. In the multi-input case the final model is robust to missing
inputs, as it is able to create accurate synthetic images from any subset of input
images. In fact, when given only a subset of inputs it performs as well as a model
trained specifically for that subset. In addition to being robust to missing data,
the model is also robust to misaligned inputs. In particular, it is able to benefit
from multiple inputs, even when they are not well aligned, such that it still out-
performs the single input case, even though misalignment means that the slice
may well contain different anatomy. Finally, we demonstrated that fine-tuning
only the network’s decoder on a very small number of volumes allowed the model
to synthesise volumes from an otherwise unseen source with high accuracy.

Acknowledgements This work was supported in part by the US National
Institutes of Health (2R01HL091989-05) and UK EPSRC (EP/P022928/1). We
thank NVIDIA for donating a Titan X GPU.
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