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ABSTRACT

This paper presents a multi-pitch detection and voice as-
signment method applied to audio recordings containing a
cappella performances with multiple singers. A novel ap-
proach combining an acoustic model for multi-pitch detec-
tion and a music language model for voice separation and
assignment is proposed. The acoustic model is a spectro-
gram factorization process based on Probabilistic Latent
Component Analysis (PLCA), driven by a 6-dimensional
dictionary with pre-learned spectral templates. The voice
separation component is based on hidden Markov mod-
els that use musicological assumptions. By integrating the
models, the system can detect multiple concurrent pitches
in vocal music and assign each detected pitch to a specific
voice corresponding to a voice type such as soprano, alto,
tenor or bass (SATB). This work focuses on four-part com-
positions, and evaluations on recordings of Bach Chorales
and Barbershop quartets show that our integrated approach
achieves an F-measure of over 70% for frame-based multi-
pitch detection and over 45% for four-voice assignment.

1. INTRODUCTION

Automatic music transcription is defined as the process of
converting an acoustic music signal into some form of mu-
sic notation [3]. In the past years, several signal processing
and machine learning approaches have been proposed for
automatic music transcription, with applications in music
information retrieval, music education, computational mu-
sicology, and interactive music systems. A core problem
of automatic transcription is multi-pitch detection, i.e. the
detection of multiple concurrent pitches.

For multi-pitch detection, spectrogram factorization
methods have been used extensively in the last decade [3].

* Authors 1 and 2 contributed equally to this work.
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However, despite promising results of template-based
techniques [4, 11, 17], the considerable variation in the
spectral shape of pitches produced by different sources can
still affect generalization performance. Recent research on
multi-pitch detection has also focused on deep learning ap-
proaches: in [13, 22], feedforward, recurrent and convolu-
tional neural networks were evaluated towards the problem
of automatic piano transcription.

On approaches for automatic transcription of vocal mu-
sic, Bohak and Marolt [5] proposed a method for tran-
scribing folk music containing both instruments and vo-
cals, which explores the repetitions of melodic segments
using a musicological model for note-based transcription.
A less explored type of music is a cappella; in particular,
vocal quartets constitute a traditional form of Western mu-
sic, typically dividing a piece into multiple vocal parts such
as soprano, alto, tenor, and bass (SATB). In [21], an acous-
tic model based on spectrogram factorisation was proposed
for multi-pitch detection of such vocal quartets.

A small group of methods have attempted to go be-
yond multi-pitch detection, towards instrument assignment
(also called timbre tracking) [1, 8, 11], where a system de-
tects multiple pitches and assigns each pitch to a specific
source that produced it. Bay et al. [1] tracked individual in-
struments in polyphonic instrumental music using a spec-
trogram factorisation approach with continuity constraints
controlled by a hidden Markov model (HMM).

An emerging area of automatic music transcription at-
tempts to combine acoustic models (i.e. based on audio in-
formation only) with music language models, which model
sequences of notes and other music cues based on knowl-
edge from music theory or from constraints automatically
derived from symbolic music data. This is in direct anal-
ogy to automatic speech recognition systems, which typi-
cally combine an acoustic model with a spoken language
model. An example of such an integrated system is the
work by Sigtia et al. [22] which combined neural network-
based acoustic and music language models for multi-pitch
detection in piano music.

Combining instrument assignment with this idea of
using a music language model, it is natural to look at
the field of voice separation, which is the separation of
pitches into monophonic streams of notes, called voices,
mainly addressed in the context of symbolic music pro-



cessing [6, 14, 16]. Several voice separation approaches
are based on voice leading rules, which were investigated
in [12,23,24] from a cognitive perspective. Among the nu-
merous rules pointed out by these authors, common char-
acteristics are that large melodic intervals between consec-
utive notes within a single voice should be avoided and that
two voices should not cross in pitch. A third principle sug-
gested by [12] is the idea that the stream of notes should
be relatively continuous within a single voice, and not have
too many gaps of silence, ensuring temporal continuity.

The overarching aim of this work is to create a system
able to detect multiple pitches in polyphonic vocal music
and assign each detected pitch to a single voice of a spe-
cific voice type (e.g. soprano, alto, tenor, bass). Thus, the
proposed method is able to perform both multi-pitch detec-
tion and voice assignment. Our approach uses an acoustic
model for multi-pitch detection based on probabilistic la-
tent component analysis (PLCA), which is modified from
the model proposed in [21], and a music language model
for voice assignment based on the HMM proposed in [16].
Although previous work has integrated musicological in-
formation for note event modelling [5, 19, 22], to the au-
thors’ knowledge, this is the first attempt to incorporate an
acoustic model with a music language model for the task of
voice or instrument assignment from audio, as well as the
first attempt to propose a system for voice assignment in
polyphonic a cappella music. The approach described in
this paper focuses on recordings of singing performances
by vocal quartets without instrumental accompaniment; to
that end we use two datasets containing a capella record-
ings of Bach Chorales and Barbershop quartets. The pro-
posed system is evaluated both in terms of multi-pitch
detection and voice assignment, where it reaches an F-
measure of 70% and 45% for the two respective tasks.

2. PROPOSED METHOD

In this section, we present a system for multi-pitch detec-
tion and voice assignment from audio recordings of poly-
phonic vocal music where the number of voices is known
a priori, that integrates an acoustic model with a music
language model. First, we describe the acoustic model,
a spectrogram factorization process based on probabilistic
latent component analysis (PLCA). Then, we present the
music language model, an HMM-based voice assignment
model. Finally, a joint model is proposed for the integra-
tion of these two components. Figure 1 illustrates the pro-
posed system pipeline.

2.1 Acoustic Model

The acoustic model is a variant of the spectrogram
factorisation-based model proposed in [21]. The model
uses a fixed dictionary of log-spectral templates and aims
to decompose an input time-frequency representation into
several components denoting the activations of pitches,
voice types, tuning deviations, singer subjects, and vow-
els. As time-frequency representation we use a normalised
variable-Q transform (VQT) spectrogram [20] with a hop

AUDIO TIME/FREQUENCY
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Multi-Pitch Detection
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Voice Assignment

MUSIC LANGUAGE
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Figure 1: Proposed system diagram.

size of 20 msec and 20 cent resolution.
The input VQT spectrogram is denoted as Xω,t ∈

RΩ×T , where ω denotes log-frequency and t time. In the
model,Xω,t is approximated by a bivariate probability dis-
tribution P (ω, t), which is in turn decomposed as:

P (ω, t) = (1)

P (t)
∑

s,p,f,o,v

ΦPt(s|p)Pt(f |p)Pt(o|p)P (v)Pt(p|v)

where P (t) is the spectrogram energy (known quantity).
Φ = P (ω|s, p, f, o, v) is the fixed pre-extracted spectral
template dictionary (for details about the dictionary con-
struction, refer to [21]). Variable p ∈ {21, ..., 108} denotes
pitch in MIDI scale, s denotes the singer index (out of the
collection of singer subjects used to construct the input dic-
tionary), o denotes the vowel type, v denotes the voice type
(e.g. soprano, alto, tenor, bass), and f denotes tuning de-
viation from 12-tone equal temperament in 20 cent resolu-
tion (f ∈ {1, . . . , 5}, with f = 3 denoting ideal tuning).
Unlike in [21], this model decomposes the probabilities
of pitch and voice type as P (v)Pt(p|v). That is, Pt(p|v)
denotes the pitch activation for a specific voice type (eg.
SATB) over time and P (v) can be viewed as a mixture
weight that denotes the overall contribution of each voice
type to the whole input recording. The contribution of spe-
cific singer subjects from the training dictionary is mod-
elled by Pt(s|p), i.e. the singer contribution per pitch over
time. Pt(f |p) is the tuning deviation per pitch over time
and finally Pt(o|p) is the time-varying vowel contribution
per pitch 1 .

The factorization can be achieved by the expectation-
maximization (EM) algorithm [7], where the unknown
model parameters Pt(s|p), Pt(f |p), Pt(o|p), Pt(p|v), and
P (v) are iteratively estimated. In the Expectation step we
compute the posterior as:

Pt(s, p, f, o, v|ω) = (2)

ΦPt(s|p)Pt(f |p)Pt(o|p)P (v)Pt(p|v)∑
s,p,f,o,v ΦPt(s|p)Pt(f |p)Pt(o|p)P (v)Pt(p|v)

In the Maximization step, each unknown model param-
eter is then updated using the posterior from Eqn (2):

1 Although Pt(o|p) is not explicitly used in this proposed approach, it
is kept to ensure consistency with the RWC audio dataset structure.



Pt(s|p) ∝
∑

f,o,v,ω

Pt(s, p, f, o, v|ω)Xω,t (3)

Pt(f |p) ∝
∑

s,o,v,ω

Pt(s, p, f, o, v|ω)Xω,t (4)

Pt(o|p) ∝
∑

s,f,v,ω

Pt(s, p, f, o, v|ω)Xω,t (5)

Pt(p|v) ∝
∑

s,f,o,ω

Pt(s, p, f, o, v|ω)Xω,t (6)

P (v) ∝
∑

s,f,o,p,ω,t

Pt(s, p, f, o, p|ω)Xω,t (7)

The model parameters are randomly initialised, and the
EM algorithm iterates over Eqns (2)-(7). In our experi-
ments we use 30 iterations.

The output of the acoustic model is a semitone-scale
pitch activity tensor for each voice type and a pitch shift-
ing tensor, given by P (p, v, t) = P (t)P (v)Pt(p|v) and
P (f, p, v, t) = P (t)P (v)Pt(p|v)Pt(f |p) respectively. By
stacking together slices of P (f, p, v, t) for all values of p,
we can create a 20 cent-resolution time-pitch representa-
tion for each voice type v:

P (f ′, t, v) = [P (f, 21, v, t)...P (f, 108, v, t)] (8)

where f ′ = 1, ..., 880 denotes pitch in 20 cent resolu-
tion. The overall multi-pitch detection without voice as-
signment, is given by P (p, t) =

∑
v P (p, v, t). Finally,

the voice-specific pitch activation output P (p, v, t) is bi-
narized and post-processed through a refinement step de-
scribed in [21], where each pitch is aligned with the nearest
peak to it in the input log-frequency spectrum.

2.2 Music Language Model

The music language model attempts to assign each de-
tected pitch to a single voice based on musicological con-
straints. It is a variant of the HMM-based approach pro-
posed in [16], where the main change is to the emission
function (here it is probabilistic, while in the previous work
it was deterministic). The model separates sequential sets
of multi-pitch activations into monophonic voices (of type
SATB) based on three principles: (1) consecutive notes
within a voice tend to occur on similar pitches; (2) there
are minimal temporal gaps between them; and (3) voices
are unlikely to cross.

The observed data for the HMM are notes generated
from the acoustic model’s binarised multi-pitch activations
P (p, t), where each generates a note n with pitch ρ(n) =
p, onset time δ(n) = t, and an offset time τ(n) = t + 1.
Ot represents this observed data at frame t.

2.2.1 HMM: State Space

In the HMM, a state St at frame t contains a list of M
monophonic voices Vi, 1 ≤ i ≤ M . The initial state S0

contains M empty voices, and at each frame, each voice
is assigned either no note, or a note with pitch ρ(n) ∈
{21, ..., 108}. Each voice contains the entire history of the

notes which have been assigned to it from frame 1 to t. The
state space of our model blows up exponentially (though it
is reduced significantly when the model is run discrimi-
natively as we do),, so instead of precomputed transition
and emission probabilities, we use transition and emission
probability functions, presented in the following sections.

Conceptually, it is helpful to think of each state as sim-
ply a list of M voices, rather than to consider each voice
to also be a list of notes. Thus, each state transition is cal-
culated based on each voice in the previous state (though
some of the probability calculations require knowledge of
individual notes).

2.2.2 HMM: Transition Function

A state St−1 has a transition to state St if and only if each
voice Vi ∈ St−1 can be transformed into the corresponding
Vi ∈ St by assigning to it up to 1 note with onset time t.

This transition from St−1 to St can be represented by
the variable TSt−1,Nt,Wt

, where St−1 is the original state,
Nt is a list of those notes n contained by any voice in St

where δ(n) = t, andWt is a list of integers, each represent-
ing the voice assignment index for a single note n ∈ Nt.
For each index i, 1 ≤ i ≤ |Nt| = |Wt|, note ni is as-
signed to voice Vwi

∈ St. Here, Nt only contains those
observed notes which are assigned to a voice in St, not all
observed notes. Since all of our voices are monophonic,
no two elements in Wt may be equal.

We now define the HMM transition probability
P(St|St−1) as P(TSt−1,Nt,Wt

):

P (TSt−1,Nt,Wt
) = Ψ(Wt)

∏
1≤i≤|Nt|

Θ(St−1, ni, wi)Λ(Vwi
, ni).

(9)
The first term in this product is defined as

Ψ(W ) =
∏

1≤j≤M

{
Υ j ∈W
1−Υ j /∈W

(10)

where the parameter Υ represents the probability that a
given voice contains any note in a frame.

Θ(St−1, n, w) is a penalty function used to minimize
the voice crossings. It returns by default 1, but its output is
multiplied by a parameter θ—representing the probability
of a voice being out of pitch order with an adjacent voice—
for each of the following cases that applies:

1. w > 1 and χ(Vw−1) > ρ(n)

2. w < |M | and χ(Vw+1) < ρ(n)

χ(V ) represents the pitch of a voice, calculated as a
weighted sum of the pitches of its most recent notes. Cases
1 and 2 apply when a note is out of pitch order with the pre-
ceding or succeeding voice in the state respectively.

Λ(V, n) is used to calculate the probability of a note n
being assigned to a voice V , and is the product of a pitch
score ∆p and a gap score ∆g:

Λ(V, n) = ∆p(V, n)∆g(V, n) (11)

The pitch score, used to minimise melodic jumps within a
voice, is computed as shown in Eqn (12), where N (µ, σ)



represents a normal distribution with mean µ and standard
deviation σ, and σp is a parameter. The gap score is used to
prefer temporal continuity within a voice, and is computed
using Eqn (13), where τ(V ) is the offset time of the most
recent note in V and σg and gmin are parameters. Both ∆p

and ∆g return 1 if V is empty.

∆p(V, n) = N (ρ(n)− χ(V ), σp) (12)

∆g(V, n) = max
(

ln
(
−δ(n)− τ(V )

σg
+ 1
)
+1, gmin

)
(13)

2.2.3 HMM: Emission Function

A state St emits a set of notes containing only those which
have an onset at frame t, and a state containing a voice with
a note at frame t must emit that note. The probability of
a state St emitting the note set Ot is shown in Eqn (14),
using the voice posterior Pt(v|p) from the acoustic model.

P(Ot|St) =
∏
n∈Ot

{
Pt(v = i|p = ρ(n)) n ∈ Vi ∈ St

1 otherwise
(14)

A state is not penalised for emitting notes not assigned to
any of its voices. This allows the model to better handle
false positives from the multi-pitch detection. For exam-
ple, if the acoustic model detects more than M pitches,
we allow a state to emit the corresponding notes without
penalty. We do, however, penalise a state for not assign-
ing a voice any note during a frame, but this is handled by
Ψ(W ) from Eqn (10).

2.2.4 HMM: Inference

To find the most likely final state given our observed note
sets, we use the Viterbi algorithm [26] with beam search
with beam size b. That is, after each iteration, we save only
the b = 50 most likely states given the observed data to that
point, in order to handle the complexity of the HMM.

2.3 Model Integration

In this section, we describe the integration of the acous-
tic model and the music language model into a single sys-
tem which jointly performs multi-pitch detection and voice
assignment from audio. This integration is done in two
stages. First, using only the acoustic model from subsec-
tion 2.1, the EM algorithm is run for 15 iterations, when
the multi-pitch detections converge. Next, the system runs
for 15 more EM iterations, this time also using the music
language model from subsection 2.2. In each iteration, the
acoustic model is run first, and then the language model is
run on the resulting multi-pitch detections. To intergrate
the two models, we apply a fusion mechanism inspired by
the one used in [9] to improve the acoustic model’s pitch
activations based on the resulting voice assignments.

The output of the language model is introduced into the
acoustic model as a prior to Pt(p|v). During the acoustic
model’s EM updates, Eqn (6) is modified as:

Pnew
t (p|v) = αPt(p|v) + (1− α)φt(p|v), (15)

where α is a weight parameter controlling the effect of the
acoustic and language model and φ is a hyperparameter
defined as:

φt(p|v) ∝ P a
t (p|v)Pt(p|v). (16)

P a
t (p|v) is calculated from the most probable final

HMM state Stmax
using the pitch score ∆p(V, n) from the

HMM transition function of Eqn (12). For V , we use the
voice Vv ∈ Stmax

as it was at frame t − 1, and for n, we
use a note at pitch p. The probability values are then nor-
malised over all pitches per voice. The pitch score returns
a value of 1 when the V is an empty voice (thus becoming
a uniform distribution over all pitches). The hyperparam-
eter of Eqn (16) acts as a soft mask, reweighing the pitch
contribution of each voice regarding only the pitch neigh-
bourhood previously detected by the model.

The final output of the integrated system is a list of the
detected pitches at each time frame which are assigned to
a voice in the most probable final HMM state Stmax

, along
with the voice assignment for each. Figure 2 shows an
example output of the integrated system.

3. EVALUATION

3.1 Datasets

We evaluate the proposed model on two datasets of a
capella recordings 2 : one of 26 Bach Chorales and another
of 22 Barbershop quartets, in total 104 minutes. These
are the same datasets used in [21], allowing for a direct
comparison between it and the acoustic model proposed
in Section 2.1. Each file is in wave format with a sample
rate of 22.05 kHz and 16 bits per sample. Each record-
ing has four distinct vocal parts (SATB), with one part per
channel. The recordings from the Barbershop dataset each
contain four male voices, while the Bach Chorale record-
ings each contain a mixture of two male and two female
voices. A frame-based pitch ground truth for each vocal
part was extracted using a monophonic pitch tracking al-
gorithm [15] on each individual monophonic track. Exper-
iments are conducted using the mix down of each audio
file (i.e. polyphonic content), not the individual tracks.

3.2 Evaluation Metrics

We evaluate the proposed system on both multi-pitch de-
tection and voice assignment using the frame-based pre-
cision, recall and F-measure as defined in the MIREX
multiple-F0 estimation evaluations [2], with a frame hop
size of 20 ms. The F-measure obtained by the multi-pitch
detection is denoted as Fmp , and for this, we combine the
individual voice ground truths into a single ground truth for
each recording. For voice assignment, we simply use the
individual voice ground truths and define voice-specific F-
measures of Fs, Fa, Ft, and Fb for each respective SATB
vocal part. We also define an overall voice assignment F-
measure Fva for a given recording as the arithmetic mean
of its four voice-specific F-measures.

2 Original recordings available at http://www.pgmusic.com/
{bachchorales.htm|barbershopquartet.htm}.
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Figure 2: Multi-pitch detection and voice assignment for
a 10-sec excerpt of “O Sacred Head Sore Wounded” from
the Bach Chorales dataset. Each vocal part is shown in a
distinct shade of grey. (a) Ground truth. (b) Pitch activa-
tion P (p, t). (c) Output of the integrated system.

3.3 Training

To train the acoustic model, we use recordings from the
RWC dataset [10] to generate the 6-dimensional dictionary
of log-spectral templates specified in Section 2.1, follow-
ing the procedure described in [21]. The recordings used
to generate the dictionary contain sequences of notes fol-
lowing a chromatic scale, in five distinct English vowels
(/a/, /æ/, /i/, /6/, /u/). The dictionary contains templates
generated from 15 distinct singers (9 male and 6 female,
consisting of 3 human subjects for each voice type: bass,
baritone, tenor, alto, soprano).

For all parameters in the music language model, we use
the values reported in [16] that were used for voice sepa-
ration in fugues. We also introduce two new parameters
to the system: the voice order probability θ and the voice
probability Υ. We use MIDI files of 50 Bach Chorales 3

(none of which appear in the test set), splitting the notes
into 20 ms frames, and measure the proportion of frames
in which a voice was out of pitch order with another voice,
and the proportion of frames in which each voice contains
a note. This results in values of θ = 0.006 and Υ = 0.99,
which we use for testing.

To train the model integration weight α, we use a grid
search on the range [0.1, 0.9] with a step size of 0.1, max-
imising Fva for each dataset. This results in a value of
0.6 when trained on the Chorale recordings and 0.3 when
trained on the Barbershop recordings. To avoid overfitting,

3 MIDI files available at http://kern.ccarh.org/.

we employ cross-validation, using the α value that max-
imises the Chorales’ Fva when evaluating the Barbershop
quartets, and vice versa.

3.4 Results

We compare our model’s multi-pitch detection results with
those of three baseline methods: VINC+ [25], which uses
an adaptive spectral decomposition based on unsupervised
NMF; PERT+ [18], which selects candidates among spec-
tral peaks, validating candidates through additional au-
dio descriptors; and MSINGERS†+ [21], a PLCA model
for multi-pitch detection from multi-singers, similar to the
acoustic model of our proposed system, although it also
includes a binary classifier to estimate the final pitch de-
tections from the pitch activations. To the authors’ knowl-
edge, there is no existing system for multi-pitch detection
and voice assignment that can be used as a baseline for
our model’s voice assignment. However, for the sake of
comparison, we include results from voice assignments
derived from the model proposed in [21], which we call
MSINGERS-VA, despite the fact that the original model
was not designed for the task.

We evaluate the above systems against two versions of
our proposed model: VOCAL4-MP, using only the acous-
tic model described in Section 2.1; and VOCAL4-VA, us-
ing the fully integrated model. From the multi-pitch detec-
tion results in Table 1, it can be seen that MSINGERS†+
achieves the highest Fmp on the Bach chorales, narrowly
edging out VOCAL4-VA, but VOCAL4-VA achieves state-
of-the-art results on the Barbershop quartets. In both
datasets, VOCAL4-VA outperforms VOCAL4-MP sub-
stantially, indicating that the music language model is able
to drive the acoustic model to a more meaningful factori-
sation. The voice assignment results are shown in Table 2,
where it is clear that VOCAL4-VA outperforms the other
models, suggesting that perhaps a language model is al-
most necessary for the task. Also interesting to note is that
it performs significantly better on the bass voice than on
the other voices. Overtones are a major source of errors
in our model, and the bass voice avoids these since it is
almost always the lowest voice.

A further investigation into our model’s performance
can be found in Figure 3, which shows all of the VOCAL4-
VA model’s F-measures, averaged across all songs in the
corresponding dataset after each EM iteration. The first
thing to notice is the large jump in performance at itera-
tion 15, when the language model is first integrated into
the process. This jump is most significant for voice assign-
ment, but is also clear for multi-pitch detection. The main
source of the improvement in multi-pitch detection is that
the music language model helps to eliminate many false
positive pitch detections using the integrated pitch prior.
In fact, the multi-pitch detection performance continues to
improve until it finally converges after iteration 30.

The voice assignment results, however, are less straight-
forward. After the significant improvement on the 15th it-
eration, the results either remain relatively stable (in the
Barbershop quartets) or even drop slightly (in the Bach



Model Bach Chorales Barbershop Quartets
VINC+ 53.58 51.04
PERT+ 67.19 63.85
MSINGERS†+ 70.84 71.03
VOCAL4-MP 63.05 59.09
VOCAL4-VA 69.66 73.46

Table 1: Multi-pitch detection results.

Model Bach Chorales
Fva Fs Fa Ft Fb

MSINGERS-VA 18.02 15.37 17.59 26.32 12.81
VOCAL4-MP 21.84 12.99 10.27 22.72 41.37
VOCAL4-VA 45.31 26.07 37.63 49.61 67.94

Model Barbershop Quartets
Fva Fs Fa Ft Fb

MSINGERS-VA 12.29 9.70 14.03 27.93 9.48
VOCAL4-MP 18.35 2.40 10.56 16.61 43.85
VOCAL4-VA 46.92 40.01 35.57 29.76 82.34

Table 2: Voice assignment results.

chorales) before convergence. This slight drop is due to
the fact that the language model initially receives noisy
multi-pitch detections that include false positives (mainly
overtones). Incorporating these overtones into the voice as-
signment can cause the removal of correct pitch detections,
which in turn reduces the voice assignment F-measures.

As mentioned earlier, the bass voice assignment outper-
forms all other voice assignments in almost all cases, since
false positive pitch detections from the acoustic model of-
ten correspond with overtones from lower notes that occur
in the same pitch range as the correct notes from higher
voices. Another common source of errors (for both multi-
pitch detection and voice assignment) is vibrato. The
acoustic model can have trouble detecting vibrato, and the
music language model prefers voices with constant pitch
over voices alternating between two pitches, leading to
many off-by-one errors in pitch detection. An example of
both of these types of errors can be found in Figure 4.

4. CONCLUSION

In this paper, we have presented a system for multi-pitch
detection and voice assignment for a cappella recordings
of multiple singers. It consists of two integrated compo-
nents: a PLCA-based acoustic model and an HMM-based
music language model. To our knowledge, ours is the first
system to be designed for the task 4 .

We have evaluated our system on both multi-pitch de-
tection and voice assignment on two datasets: one of Bach
chorales, and another of Barbershop quartets. Our model
outperforms baseline multi-pitch detection systems on the
Barbershop quartets, and achieves near state-of-the-art per-
formance on the chorales. We have shown that integrating
the music language model improves multi-pitch detection
performance compared with a simpler version of our sys-
tem with only the acoustic model. This suggests, as has
been shown in previous work, that incorporating such mu-
sic language models into other acoustic MIR tasks might

4 Supporting material for this work is available at
http://inf.ufrgs.br/~rschramm/projects/msingers
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Figure 3: The VOCAL4-VA model’s F-measures after
each EM iteration, averaged across all songs in each
dataset: (a) Bach Chorales. (b) Barbershop Quartets.

Figure 4: Pitch detections (red) and ground truth (black)
for the soprano voice at the beginning of the excerpt from
Figure 2, showing errors from both overtones and vibrato.

also be of some benefit, since they can guide acoustic mod-
els using musicological principles.

We also presented results for voice assignment, and
show that while our model performs well given the diffi-
culty of the task, there is certainly room for improvement.
Avenues for future work include a better handling of over-
tones in the acoustic model, and better recognition of vi-
brato in both the acoustic and the music language model.
We will also investigate the use of timbral information for
further improving voice assignment performance. Addi-
tionally, our model could be applied to different styles of
music (e.g., instrumental, or those containing both instru-
ments and vocals) by learning a new dictionary for the
acoustic model and retraining the parameters of the music
language model, and we intend to investigate the generality
of our model in that context.
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