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Abstract

We give polynomial time algorithms for quantitative (and qualitative) reachability analysis
for Branching Markov Decision Processes (BMDPs). Speci�cally, given a BMDP, and given
an initial population, where the objective of the controller is to maximize (or minimize) the
probability of eventually reaching a population that contains an object of a desired (or undesired)
type, we give algorithms for approximating the supremum (in�mum) reachability probability,
within desired precision ε > 0, in time polynomial in the encoding size of the BMDP and in
log(1/ε). We furthermore give P-time algorithms for computing ε-optimal strategies for both
maximization and minimization of reachability probabilities. We also give P-time algorithms for
all associated qualitative analysis problems, namely: deciding whether the optimal (supremum
or in�mum) reachability probabilities are 0 or 1. Prior to this paper, approximation of optimal
reachability probabilities for BMDPs was not even known to be decidable.

Our algorithms exploit the following basic fact: we show that for any BMDP, its maximum
(minimum) non-reachability probabilities are given by the greatest �xed point (GFP) solution
g∗ ∈ [0, 1]n of a corresponding monotone max (min) Probabilistic Polynomial System of equa-
tions (max/minPPS), x = P (x), which are the Bellman optimality equations for a BMDP with
non-reachability objectives. We show how to compute the GFP of max/minPPSs to desired
precision in P-time.

We also study more general branching simple stochastic games (BSSGs) with (non-)reachability
objectives. We show that: (1) the value of these games is captured by the GFP, g∗, of a cor-
responding max-minPPS, x = P (x); (2) the quantitative problem of approximating the value is
in TFNP; and (3) the qualitative problems associated with the value are all solvable in P-time.

1 Introduction

Multi-type branching processes (BPs) are in�nite-state purely stochastic processes that model the
stochastic evolution of a population of entities of distinct types. The BP speci�es for every type a
probability distribution for the o�spring of entities of this type. Starting from an initial population,
the process evolves from each generation to the next according to the probabilistic o�spring rules.1

Branching processes are a fundamental stochastic model with applications in many areas: physics,

1Branching processes are used both with discrete and with continuous time (where reproduction rules for each
type have associated rates instead of probabilities). However, the probabilities of extinction and reachability are
not time-dependent, and thus continuous-time processes can be studied via their corresponding discrete-time BPs,
obtained by simply normalizing the rates on rules for each type.
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biology, population genetics, medicine etc. Branching Markov Decision Processes (BMDPs) provide
a natural extension of BPs where the evolution is not purely stochastic but can be potentially
in�uenced or controlled to some extent: a controller can take actions which a�ect the probability
distribution for the set of o�spring of the entities of each type. The goal is to design a policy for
choosing the actions in order to optimize a desired objective.

In recent years there has been great progress in resolving algorithmic problems for BMDPs
with the objective of maximizing or minimizing the extinction probability, i.e., the probability that
the population eventually becomes extinct. Polynomial time algorithms were developed for both
maximizing and minimizing BMDPs for qualitative analysis, i.e. to determine whether the optimal
extinction probability is 0, 1 or in-between [14], and for quantitative analysis, to compute the optimal
extinction probabilities to any desired precision [12]. However, key problems related to optimizing
BMDP reachability probabilities (the probability that the population eventually includes an entity
having a target type) have remained open.

Reachability objectives are very natural. Some types may be undesirable, in which case we want
to avoid them to the extent possible. Or conversely, we may want to guide the process to reach
certain desirable types. For example, branching processes have been used recently to model cancer
tumor progression and multiple drug resistance of tumors due to multiple mutations ([1, 20, 18]).
It could be fruitful to model the introduction of multiple drugs (each of which controls/in�uences
cells with a di�erent type of mutation) via a �controller� that controls the o�spring of di�erent
types, thus extending the current models (and associated software tools) which are based on BPs
only, to controlled models based on BMDPs. A natural question one could ask then is to compute
the minimum probability of reaching a bad (malignant) cell type, and compute a drug introduction
strategy that achieves (approximately) minimum probability. Doing this e�ciently (in P-time)
would avoid the combinatorial explosion of trying all possible combinations of drug therapies.

In this paper we provide the �rst polynomial time algorithms for quantitative (and also qualita-
tive) reachability analysis for BMDPs. Speci�cally, we provide algorithms for ε-approximating the
supremum probability, as well as the in�mum probability, of reaching a given type (or a set of types)
starting from an initial type (or an initial population of types), up to any desired additive error
ε > 0. We also give algorithms for computing ε-optimal strategies which achieve such ε-optimal
values. The running time of these algorithms (in the standard Turing model of computation) is
polynomial in both the encoding size of the BMDP and in log(1

ε ). We also give P-time algorithms
for the qualitative problems: we determine whether the supremum or in�mum probability is 1 (or
0), and if so we actually compute an optimal strategy that achieves 1 (0, respectively).

In prior work [14], we studied the problem of optimizing extinction (a.k.a. termination) probabil-
ities for BMDPs, and showed that the optimal extinction probabilities are captured by the least �xed
point (LFP) solution q∗ ∈ [0, 1]n of a corresponding system of multivariate monotone probabilistic
max (min) polynomial equations called maxPPSs (respectively minPPSs), which form the Bellman
optimality equations for termination of a BMDP. A maxPPS is a system of equations x = P (x)
over a vector x of variables, where the right-hand-side of each equation is of the form maxj{pj(x)},
where each pj(x) is a polynomial with non-negative coe�cients (including the constant term) that
sum to at most 1 (such a polynomial is called probabilistic). A minPPS is de�ned similarly. In
[12], we introduced an algorithm, called Generalized Newton's Method (GNM), for the solution of
maxPPSs and minPPSs, and showed that it computes the LFP of maxPPS and minPPS (and hence
also the optimal termination probabilities for BMDPs) to desired precision in P-time. GNM is an
iterative algorithm (like Newton's) which in each iteration solves a suitable linear program (di�erent
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ones for the max case and the min case). In [12] we also showed that for more general two player
zero-sum branching simple stochastic games (BSSGs), with the player objectives of maximizing and
minimizing the extinction probability, we can approximate the value of the BSSG extinction game
in TFNP.

In this paper we �rst model the reachability problem for a BMDP by an appropriate system of
equations: We show that the optimal non-reachability probabilities for a given BMDP are captured
by the greatest �xed point (GFP), g∗ ∈ [0, 1]n of a corresponding maxPPS (or minPPS) system of
Bellman equations. We then show that one can approximate the GFP solution g∗ ∈ [0, 1]n of a
maxPPS (or minPPS), x = P (x), in time polynomial in both the encoding size |P | of the system
of equations and in log(1/ε), where ε > 0 is the desired additive error bound of the solution.2 (The
model of computation is the standard Turing machine model.) We also show that the qualitative
analysis of determining the coordinates of the GFP that are 0 and 1, can be done in P-time (and
hence the same holds for the optimal reachability probabilities of BMDPs).

More generally, we study branching simple stochastic games (BSSGs) with (non-)reachability
objectives. These are two player zero-sum turn based stochastic games, where one player wishes to
reach a target type while the other player wants to avoid that. These games generalize BPs and
BMDPs. Such games can potentially be used to model adversarially some unknown parts of the
controlled stochastic model. For example, in the setting suggested above for modeling injection of
di�erent drugs in cancer tumors, there could be some cell types whose o�spring generation behavior
in the presence of the drugs is unknown, and these cell types could be modeled in a worst-case
fashion as types in the BSSG that are controlled by the adversary, where the adversary aims to
maximize the probability of reaching the bad (malignant) cell types, whereas the controller wants a
drug injection strategy for the controllable cell types in order to minimize this probability.

We show that, �rstly, the value of BSSG (non-)reachability games (the value exists, i.e., these
games are determined) is captured by the GFP, g∗, of a corresponding max-minPPS, x = P (x). A
max-minPPS is a system of equations xi = Pi(x), where Pi(x) has either the form maxj{pj(x)} or
the form minj{pj(x)}, where pj(x) are probabilistic polynomials. We show that the quantitative
problem of approximating the value of a BSSG, or equivalently the GFP of a max-minPPS, is in
TFNP. We also show that the qualitative problems associated with deciding whether the value of
a BSSG is 0 or 1 (as well as computing optimal strategies that �achieve� these values if one or the
other is the case) are all solvable in polynomial time. This should be contrasted with a result in [14]
which shows that, for a given BSSG extinction game, the qualitative problem of deciding whether
the value is equal to 1 3 is at least as hard as Condon's long standing open problem of computing
the value of �nite state simple stochastic games (or deciding whether this value is, say, ≥ 1/2).

Our P-time algorithms for computing the GFP of minPPSs and maxPPSs to desired precision
make use of a variant of Generalized Newton Method (GNM), adapted for the computation of the
GFP instead of the LFP, with a key important di�erence in the preprocessing step before applying

2It is worth mentioning that it follows already from results in [15] that the quantitative decision problem for the
GFP of a PPS (or max/minPPS) is PosSLP-hard. In other words, the problem of deciding whether g∗i ≥ p, for a
given probability p ∈ [0, 1], where g∗ is the GFP of a given PPS, is PosSLP-hard. This follows immediately from the
proof in [15] (Theorem 5.3) of the PosSLP-hardness of deciding whether q∗i ≥ p, where q∗ is the LFP of a given PPS
(equivalently, the termination probabilities of a given 1-exit RMC). The PPS constructed in that proof is �acyclic�
and has a unique �xed point, and thus its LFP is equal to its GFP, i.e., q∗ = g∗. Thus, we can not hope to obtain
a P-time algorithm in the Turing model for deciding g∗i ≥ p, for a given PPS (or max/minPPS), without a major
breakthrough in the complexity of numerical computation.

3Equivalently, the problem of deciding whether the value is 1 for the termination game on a 1-exit Recursive
simple stochastic game (1-RSSG).
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GNM. We �rst identify and remove only the variables that have value 1 in the GFP g∗ (we do not
remove the variables with value 0, unlike the LFP case). We show that for maxPPSs, once these
variables are removed, the remaining system with GFP g∗ < 1 has a unique �xed point in [0, 1]n,
hence the GFP is equal to the LFP; applying GNM starting from the all-0 initial vector converges
quickly (in P-time, with suitable rounding) to the GFP (by [12]). For minPPSs, even after the
removal of the variables xi with g

∗
i = 1, the remaining system may have multiple �xed points, and

we can have LFP < GFP. Nevertheless, we show that with the subtle change in the preprocessing
step, GNM, starting at the all-0 vector, remarkably �skips over� the LFP and converges to the GFP
solution g∗, in P-time.

We note incidentally that for any monotone operator P from [0, 1]n to itself, one can de�ne
another monotone operator R : [0, 1]n → [0, 1]n, where R(y) = 1− P (1− y), such that the GFP g∗

of x = P (x) and the LFP r∗ of y = R(y) satisfy g∗ = 1− r∗. (The second system is obtained from
the �rst by the change of variables y = 1 − x.) Simple value iteration starting at 0 (1) on P (x)
corresponds 1-to-1 to value iteration starting at 1 (0, respectively) on R(y). However, this does
not imply that computing the GFP of a max/minPPS is P-time reducible to computing the LFP
of a max/minPPS: even if x = P (x) is a PPS, the polynomials of R(y) in general have negative
coe�cients. Value iteration on R provably can converge exponentially slowly (starting at 0 or 1).
Moreover, naively applying Newton starting at 0 to y = R(y) can fail because the Jacobians are no
longer non-negative, and the iterates need not even be de�ned (even after qualitative preprocessing).

Comparing the properties of the LFP and GFP of max/minPPSs, we note that a di�erence for
the qualitative problems is that for the GFP, both the value=0 and the value=1 question depend
only on the structure of the model and not on its probabilities (the values of the coe�cients),
whereas in the LFP case the value=1 question depends on the probabilities while value=0 does not
(see [15, 14]).

It is also worth noting that for BMDPs and BSSGs there is a natural �duality� between the ob-
jectives of optimizing reachability probability and that of optimizing extinction probability. Namely,
we can view a BMDP or BSSG as a random/controlled process that generates a node-labeled (not
necessarily �nite) tree. The objective of optimizing the extinction probability (i.e., the probability
of generating a �nite tree), starting from a given type, can equivalently be rephrased as a �universal
reachability� objective on a slightly modi�ed BMDP, where the goal is to optimize the probability
of eventually reaching the target type (namely �death�) on all paths starting at the root of the tree.
Likewise, the �universal reachability� objective for any BMDP can equivalently be rephrases as the
objective of optimizing extinction probability on a slightly modi�ed BMDP. (We will explain these
in more detail in Section 2.) By contrast, the reachability objective that we study in this paper
is precisely the �existential reachability� objective for BMDPs and BSSGs, namely optimizing the
probability of reaching the target type on some path in the generated tree.

We shall see that, despite this duality, there are some important di�erences between these two
objectives, in particular when it comes to the existence of optimal strategies. Namely, we show that,
unlike optimization of extinction (termination) probabilities for BMDPs, for which there always
exists a static deterministic optimal strategy ([14]), there need not exist any optimal strategy at
all for maximizing reachability probability in a BMDP, i.e., the supremum probability may not be
attainable. If the supremum probability is 1 however (and likewise if the value of the BSSG game
is 1), we show that there does exist a strategy (for the player maximizing reachability probability)
that achieves it, although not necessarily any static strategy. For the objective of minimizing
reachability probability, we show there always exists an optimal deterministic and static strategy,
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both in BMDPs and BSSGs. Regardless of what the optimal value is, we show that we can compute
in P-time an ε-optimal static (possibly randomized) policy, for both maximizing and minimizing
reachability probability in a BMDP.

Related work: BMDPs have been previously studied in both operations research (e.g., [19,
21, 8]) and computer science (e.g., [14, 9, 13]). We have already mentioned the results in [14, 12]
concerning the computation of the extinction probabilities of BMDPs and the computation of the
LFP of max/minPPS. Branching processes are closely connected to stochastic context-free gram-
mars, 1-exit Recursive Markov chains (1-RMC) [15], and the corresponding stateless probabilistic
pushdown processes, pBPA [10]; their extinction or termination probabilities are interreducible, and
they are all captured by the LFP of PPSs. The same is true for their controlled extensions, for
example the extinction probability of BMDPs and the termination probabilities of 1-exit Recursive
Markov Decision processes (1-RMDP) [14], are both captured by the LFP of maxPPS or minPPS.
A di�erent type of objective of optimizing the total expected reward for 1-RMDPs (and equivalently
BMDPs) in a setting with positive rewards was studied in [13]; in this case the optimal values are
rational and can be computed exactly in P-time.

The equivalence between BMDPs and 1-RMDPs however does not carry over to the reachability
objective. The qualitative reachability problem for 1-RMDPs (equivalently BPA MDPs) and the
extension to simple 2-person games 1-RSSGs (BPA games) were studied in [4] and [3] by Brazdil
et al. It is shown in [4] that qualitative almost-sure reachability for 1-RMDPs can be decided in
P-time (both for maximizing and minimizing 1-RMDPs). However, for maximizing reachability
probability, almost-sure and limit-sure reachability are not the same: in other words, the supremum
reachability probability can be 1, but it may not be achieved by any strategy for the 1-RMDP. By
contrast, for BMDPs we show that if the supremum reachability probability is 1, then there is a
strategy that achieves it. This is one illustration of the fact that the equivalence between 1-RMDP
and BMDP does not hold for the reachability objective. The papers [4, 3] do not address the limit-
sure reachability problem, and in fact even the decidability of limit-sure reachability for 1-RMDPs
remains open.

Chen et. al. [6] studied model checking of branching processes with respect to properties ex-
pressed by deterministic parity tree automata and showed that the qualitative problem is in P (hence
this holds in particular for reachability probability in BPs), and that the quantitative problem of
comparing the probability with a rational is in PSPACE. Although not explicitly stated there, one
can use Lemma 20 of [6] and our algorithm from [11] to show that the reachability probabilities
of BPs can be approximated in P-time. Bonnet et. al. [2] studied a model of �probabilistic Ba-
sic Parallel Processes�, which are syntactically close to Branching processes, except reproduction
is asynchronous and the entity that reproduces in each step is chosen randomly (or by a sched-
uler/controller). None of the previous results have a bearing on the reachability problems for
BMDPs.

Organization of the paper: Section 2 gives basic de�nitions and background. Section 3
characterizes the (non-)reachability problem for BMDPs, and more general BSSGs, in terms of
the GFP computation problem for max-minPPS equations, and discusses the existence of optimal
strategies for BMDPs. Section 4 gives a P-time algorithm for determining those variables with
value = 1 in the GFP of a max-minPPS. Section 5 analyses the GFP of PPSs, and shows we can
approximate it in P-time. Section 6 solves the GFP value approximation problem for maxPPSs in
P-time, and also shows how to compute an ε-optimal deterministic static strategy for maxPPS in
P-time. Section 7 solves the GFP value approximation problem for minPPSs in P-time. Section
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8 concerns the construction, in P-time, of ε-optimal strategies for the GFP of a minPPS (this is
substantially harder than the maxPPS case). Section 9 gives a P-time algorithm for determining
those variables with value = 0 in the GFP of a max-minPPS (this is substantially harder than
the = 1 case done in Section 4). Section 10 shows that we can approximate the value of a BSSG
(non-)reachability game, and the GFP of a max-minPPS, in TFNP.

2 De�nitions and Background

We start by providing uni�ed de�nitions of multi-type Branching processes (BPs), Branching MDPs
(BMDPs), and Branching Simple Stochastic Games (BSSGs). Although most of our results are
focused on BMDPs, since BSSGs provide the most general of these models we start by de�ning
BSSGs, and then specializing them to obtain BMDPs and BPs. Throughout we use 0 and 1 to
denote all-0 and all-1 vectors, respectively, of the appropriate dimensions.

A Branching Simple Stochastic Game (BSSG), consists of a �nite set V = {T1, . . . , Tn} of
types, a �nite non-empty set Ai ⊆ Σ of actions for each type Ti (Σ is some �nite action alphabet),
and a �nite set R(Ti, a) of probabilistic rules associated with each pair (Ti, a), i ∈ [n], where a ∈ Ai.
Each rule r ∈ R(Ti, a) is a triple (Ti, pr, αr), which we denote by Ti

pr→ αr, where αr ⊆ Nn is a
n-vector of natural numbers that denotes a �nite multi-set over the set V , and where pr ∈ (0, 1]∩Q
is the probability of the rule r (which we assume is given by a rational number, for computational
purposes), where we assume that for all i ∈ V and a ∈ Ai, the rule probabilities in R(Ti, a) sum
to 1, i.e.,

∑
r∈R(Ti,a) pr = 1. For BSSGs, the types are partitioned into two sets: V = Vmax ∪ Vmin,

Vmax ∩ Vmin = ∅, where Vmax contains those types �belonging� to player max, and Vmin containing
those belonging to player min.

A Branching Markov Decision Process (BMDP) is a BSSG where one of the two sets Vmax

or Vmin is empty. Intuitively, a BMDP (BSSG) describes the stochastic evolution of a population
of entities of di�erent types in the presence of a controller (or two players) that can in�uence
the evolution. We can de�ne a multi-type Branching Process (BP), by imposing a further
restriction, namely that all action sets Ai must be singleton sets. Hence in a BP, players have no
choice of actions, and we can simply assume players don't exist: a BP de�nes a purely stochastic
process.

A play (or trajectory) of a BSSG operates as follows: starting from an initial population (i.e.,
set of entities of given types) X0 at time (generation) 0, a sequence of populations X1, X2, . . . is
generated, where Xk+1 is obtained from Xk as follows. Player max (min) selects for each entity e
in set Xk that belongs to max (to min, respectively) an available action a ∈ Ai for the type Ti of
entity e; then for each such entity e in Xk a rule r ∈ R(Ti, a) is chosen randomly and independently
according to the rule probabilities pr, where a ∈ Ai is the action selected for that particular entity
e. Every entity is then replaced by a set of entities with the types speci�ed by the right-hand side
multiset αr of that chosen rule r. The process is repeated as long as the current population Xk is
nonempty, and it is said to terminate (or become extinct) if there is some k ≥ 0 such that Xk = ∅.
When there are n types, we can view a population Xi as a vector Xi ∈ Nn, specifying the number
of objects of each type. We say that the process reaches a type Tj , if there is some k ≥ 0 such that
(Xk)j > 0.

We can consider di�erent objectives by the players. For example, in [14, 12] the objective
considered was that the two players wish to maximize and minimize, respectively, the probability of
termination (i.e., extinction of the population). It was shown in [14] that such BSSG games indeed
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have a value, and in [12] a P-time algorithm was developed for approximating this value in the case
of max-BMDPs and min-BMDPs with the termination objective.

In this paper we consider the reachability objective: namely where the goal of the two players,
starting from a given population, is to maximize/minimize the probability of reaching a population
which contains at least one entity of a given special type, Tf∗ . It is perhaps not immediately clear
that a BSSG with such a reachability objective has a value, but we shall show that this is indeed
the case.

Regarding strategies, at each stage, k, each player is allowed, in principle, to select the actions
for the entities in Xk that belong to it based on the whole past history, may use randomization
(a mixed strategy), and may make di�erent choices for entities of the same type. The �history�
of the process up to time k − 1 includes not only the populations X0, X1, . . . , Xk−1, but also the
information on all the past actions and rules applied and the parent-child relationships between all
the entities up to the generation Xk−1. The history can be represented by a forest of depth k − 1,
with internal nodes labelled by rules and actions, and whose leaves at level k−1 form the population
Xk−1. Thus, a strategy of a player is a function that maps every �nite history (i.e., labelled forest
of some �nite depth as above) to a probability distribution on the set of tuples of actions for the
entities in the current population (i.e. at the bottom level of the forest) that are controlled by that
player. Let Ψ1,Ψ2 be the set of all strategies of players 1, 2. We say that a strategy is deterministic
if for every history it chooses one tuple of actions with probability 1. We say that a strategy is
static if for each type Ti controlled by that player the strategy always chooses the same action ai, or
the same probability distribution on actions, for all entities of type Ti in all histories.4 Our notion
of an arbitrary strategy is quite general (it can depend on all the details of the entire history, and
be randomized, etc.). However, it was shown in [14] that for the objective of optimizing extinction
probability, both players have optimal static strategies in BSSGs. We shall see that this is not the
case for BMDPs or BSSGs with the reachability objective.

Let us now observe, as mentioned in the Introduction, a natural �duality� between the objective of
optimizing extinction probability and that of optimizing reachability probability. A BMDP or BSSG
can also be viewed as a random/controlled process for generating a node-labeled, not necessarily
�nite, tree (or a forest, in case the process is started with a population larger than 1). The nodes
of the tree denote objects, nodes are labeled by their type, and the edges in the tree denote the
parent-child relationships: when a rule Ti → αr is applied to some node v of type Ti in the tree,
the children of node v will be in 1-1 correspondence with the multi-set of types given by αr. For a
given BSSG, optimizing the extinction probability (i.e., the probability of generating a �nite tree),
starting from an object of a given type, can be rephrased as a �universal reachability� objective on
a slightly modi�ed BSSG, where the objective is to optimize the probability of eventually reaching
a target type on all paths starting at the root of the generated tree. Speci�cally, the target type is
a newly introduced type, called death, and for all types Ti, every rule Ti → ∅ in the original BSSG
is replaced by the rule Ti → death in the modi�ed BSSG (with the same probability). Likewise,
the �universal reachability� objective for any BSSG can be rephrased as the objective of optimizing
extinction probability in a slightly modi�ed BSSG. Namely, for all types Ti, every rule Ti → αr
in the original BSSG, where the multiset αr is nonempty, is replaced by the rule Ti → α′r (with
the same probability) in the revised BSSG, where the multiset α′r is the same as αr except that all

4In [12] we called a strategy �static� if it was both deterministic and static. In this paper we will refer to these as
�deterministic static� strategies, because we will also need �randomized static� strategies, and want to di�erentiate
between them.
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copies of the target type have been removed from α′r; moreover for any non-target type Ti, a rule in
the original BSSG of the form Ti → ∅ is replaced by the rule Ti → dead (with the same probability)
in the revised BSSG, where dead is a new type having only one associated rule: dead→ dead, with
probability 1.

By contrast, the reachability problem that we study in this paper is precisely the �existential
reachability� objective for BMDPs, namely optimizing the probability of reaching the target type
on some path in the generated tree.

Let us now consider in more detail the (non-)reachability objective. For a given initial population
µ ∈ Nn, with (µ)f∗ = 0, and given integer k ≥ 0, and strategies σ ∈ Ψ1, τ ∈ Ψ2, we denote by
gkσ,τ (µ) the probability that the process with initial population µ, and strategies σ, τ does not reach
a population with an object of type Tf∗ in at most k steps. In other words, this is the probability
that for all 0 ≤ d ≤ k, we have (Xd)f∗ = 0. Let us denote by g∗σ,τ (µ) the probability that (Xd)f∗ = 0
for all d ≥ 0.

We let gk(µ) = supσ∈Ψ1
infτ∈Ψ2 g

k
σ,τ (µ), and g∗(µ) = supσ∈Ψ1

infτ∈Ψ2 g
∗
σ,τ (µ); the last quantity

is the value of the non-reachability game for the initial population µ. Likewise gk(µ) is the value
of the k-step non-reachability game. We will show that determinacy holds for these games, i.e.
g∗(µ) = supσ∈Ψ1

infτ∈Ψ2 g
∗
σ,τ (µ) = infτ∈Ψ2 supσ∈Ψ1

g∗σ,τ (µ), and similarly for gk(µ). However, unlike
the case for extinction probabilities ([14]), it does not hold that both players have optimal static
strategies.

If µ has a single entity of type Ti, we will write g
∗
i and g

k
i instead of g∗(µ) and gk(µ).

Given a BMDP (or BSSG), the goal is to compute the vector g∗ of the g∗i 's, i.e. the vector
of non-reachability values of the di�erent types. As we will see, from the g∗i 's, we can compute
the value g∗(µ) for any initial population µ, namely g∗(µ) = f(g∗, µ) := Πi(g∗i )

µi . The vector of
reachability values r∗ is of course r∗ = 1− g∗, where 1 is the all-1 vector; the reachability value for
initial population µ is r∗(µ) = 1− g∗(µ).

We shall associate a system of min/max probabilistic polynomial Bellman equations, x = P (x),
to each given BMDP or BSSG, that contains one variable xi and one equation xi = Pi(x) for
each type Ti, such that the vector g∗ of values of the BSSG non-reachability game for the di�erent
starting types is given by the greatest �xed point (GFP) solution of x = P (x) in [0, 1]n. We need
some notation �rst in order to introduce these Bellman equations.

For an n-vector of variables x = (x1, . . . , xn), and a vector v ∈ Nn, we use the shorthand notation
xv to denote the monomial xv11 . . . xvnn . Let 〈αr ∈ Nn | r ∈ R〉 be a �nite set of n-vectors of natural
numbers, indexed by the set R. Consider a multi-variate polynomial Pi(x) =

∑
r∈R prx

αr , for some
rational-valued coe�cients pr, r ∈ R. We shall call Pi(x) a probabilistic polynomial if pr ≥ 0 for
all r ∈ R, and

∑
r∈R pr ≤ 1.

De�nition 2.1. A probabilistic polynomial system of equations, x = P (x), which we shall
call a PPS, is a system of n equations, xi = Pi(x), in n variables x = (x1, x2, . . . , xn), where for
all i ∈ {1, 2, . . . , n}, Pi(x) is a probabilistic polynomial.

A maximum-minimum probabilistic polynomial system of equations, x = P (x), called
a max-minPPS is a system of n equations in n variables x = (x1, x2, . . . , xn), where for all
i ∈ {1, 2, . . . , n}, either:

• Max-polynomial: Pi(x) = max{qi,j(x) : j ∈ {1, . . . ,mi}}, Or:

• Min-polynomial: Pi(x) = min{qi,j(x) : j ∈ {1, . . . ,mi}}
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where each qi,j(x) is a probabilistic polynomial, for every j ∈ {1, . . . ,mi}.
We shall call such a system a maxPPS (respectively, a minPPS) if for every i ∈ {1, . . . , n},

Pi(x) is a Max-polynomial (respectively, a Min-polynomial).
Note that we can view a PPS in n variables as a maxPPS, or as a minPPS, where mi = 1 for

every i ∈ {1, . . . , n}.

For computational purposes we assume that all the coe�cients are rational. We assume that
the polynomials in a system are given in sparse form, i.e., by listing only the nonzero terms, with
the coe�cient and the nonzero exponents of each term given in binary. We let |P | denote the total
bit encoding length of a system x = P (x) under this representation.

We use max/minPPS to refer to a system of equations, x = P (x), that is either a maxPPS
or a minPPS. We refer to systems of equations containing both max and min equations as max-
minPPSs.

It was shown in [14] that any max-minPPS, x = P (x), has a least �xed point (LFP) solution,
q∗ ∈ [0, 1]n, i.e., q∗ = P (q∗) and if q = P (q) for some q ∈ [0, 1]n then q∗ ≤ q (coordinate-wise
inequality). In fact, q∗ corresponds to the vector of values of a corresponding Branching Simple
Stochastic Game with the objective of extinction, starting at each type. As observed in [15, 14],
q∗ may in general contain irrational values, even in the case of pure PPSs (and the corresponding
multi-type Branching process).

In this paper we shall observe that any max-minPPS, x = P (x), also has a greatest �xed
point (GFP) solution, g∗ ∈ [0, 1]n, i.e., such that g∗ = P (g∗) and if q = P (q) for some q ∈ [0, 1]n

then q ≤ g∗ (coordinate-wise inequality). In fact, in this case g∗ corresponds to the vector of values
of a corresponding branching simple stochastic game where the objective of the two players is to
maximize/minimize the probability of not reaching an undesired type (or set of types) starting at
each type. Again, g∗ may contain irrational coordinates, so we in general want to approximate
its coordinates (and the coordinates of (1 − g∗) which constitute reachability values) to desired
precision. For a countable set S, let ∆(S) denote the set of probability distributions on S, i.e., the
set of functions f : S → [0, 1] such that

∑
s∈S f(s) = 1.

De�nition 2.2. We de�ne a (possibly randomized) policy for max (min) in a max-minPPS, x =
P (x), to be a function σ : {1, . . . , n} → ∆(N) that assigns a probability distribution to each variable
xi for which Pi(x) is a max- (respectively, min-) polynomial, such that the support of σ(i) is a
subset of {1, . . . ,mi}, the possible mi = |Ai| di�erent actions (i.e., choices of polynomials) available
in Pi(x).

Intuitively, policies are akin to static strategies for BMDPs and BSSGs. For each variable, xi,
a policy selects a probability distribution over the probabilistic polynomials, qi,σ(i)(x), that appear
on the RHS of the equation xi = Pi(x), and which Pi(x) is the maximum/minimum over.

De�nition 2.3. For a max-minPPS, x = P (x), and policies σ and τ for the max and min players,
respectively, we write x = Pσ,τ (x) for the PPS obtained by �xing both these policies. We write
x = Pσ,∗(x) for the minPPS obtained by �xing σ for the max player, and x = P∗,τ (x) for the
maxPPS obtained by �xing τ for the min player. More speci�cally, note that for policy σ for player
max, we de�ne the minPPS x = Pσ,∗(x) by (Pσ,∗)i(x) :=

∑
a∈Ai σ(i)(a) · qi,a, for all i that belong to

player max, and otherwise (Pσ,∗)i(x) := Pi(x). We similarly de�ne x = P∗,τ (x) and x = Pσ,τ (x).
For a maxPPS (or minPPS), x = P (x), and policy σ for max (for min), we shall use the

abbreviated notation x = Pσ(x) instead of x = Pσ,∗(x) (instead of x = P∗,σ(x), respectively).
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For a max-minPPS, x = P (x), and a (possibly randomized) policy, σ for max, we use q∗σ,∗
and g∗σ,∗ to denote the LFP and GFP solution vectors for the corresponding minPPS x = Pσ,∗(x),
respectively. Likewise we use q∗∗,τ and g∗∗,τ to de�ne the LFP and GFP solutions of the maxPPS
x = P∗,τ (x). Similarly, for a maxPPS (or minPPS), x = P (x), and a policy, σ, we use q∗σ and g∗σ
to denote the LFP and GFP of x = Pσ(x).

De�nition 2.4. For a max-minPPS, x = P (x), a policy σ∗ is called optimal for max for the LFP
(respectively, the GFP) if q∗σ∗,∗ = q∗ (respectively g∗σ∗,∗ = g∗).

An optimal policy τ∗ for min for the LFP and GFP, respectively, is de�ned similarly.
For ε > 0, a policy σ′ for max is called ε-optimal for the LFP (respectively GFP) , if ||q∗σ′,∗ −

q∗||∞ ≤ ε (respectively, ||g∗σ′,∗ − g∗||∞ ≤ ε). An ε-optimal policy τ ′ for min is de�ned similarly.

It is convenient to put max-minPPSs in the following simple form.

De�nition 2.5. A max-minPPS in simple normal form (SNF), x = P (x), is a system of n
equations in n variables x1, x2, . . . , xn where each Pi(x) for i = 1, 2, . . . , n is in one of three forms:

• Form L: Pi(x) = ai,0 +
∑n

j=1 ai,jxj, where ai,j ≥ 0 for all j, and such that
∑n

j=0 ai,j ≤ 1

• Form Q: Pi(x) = xjxk for some j, k

• Form M: Pi(x) = max{xj , xk} or Pi(x) = min{xj , xk}, for some j, k;
we sometimes di�erentiate these two cases as Form Mmax and Mmin, respectively.

We de�ne SNF form for max/minPPSs analogously: only the de�nition of �Form M� changes
(restricting to max or min, respectively).

In the setting of a max-minPPSs in SNF form, we will often say that a variable has form or type
L, Q, or M, to mean that Pi(x) has the corresponding form. Also, for simplicity in notation, when
we talk about a deterministic policy, if Pi(x) has form M , say Pi(x) ≡ max{xj , xk}, then when it
is clear from the context we will use σ(i) = k to mean that the policy σ chooses xk among the two
choices xj and xk available in Pi(x) ≡ max{xj , xk}.

Proposition 2.6 (cf. Proposition 7.3 [15]). Every max-minPPS, x = P (x), can be transformed
in P-time to an �equivalent� max-minPPS, y = Q(y) in SNF form, such that |Q| ∈ O(|P |). More
precisely, the variables x are a subset of the variables y, and both the LFP and GFP of x = P (x) are,
respectively, the projection of the LFP and GFP of y = Q(y), onto the variables x, and furthermore
an optimal policy (respectively, ε-optimal policy) for the LFP (respectively, GFP) of x = P (x) can
be obtained in P-time from an optimal (resp., ε-optimal) policy for the LFP (respectively, GFP) of
y = Q(y).

Proof. We can easily convert, in P-time, any max-minPPS into SNF form, using the following
procedure.

• For each equation xi = Pi(x) = max {p1(x), . . . , pm(x)}, for each pj(x) on the right-hand-side
that is not a variable, add a new variable xk, replace pj(x) with xk in Pi(x), and add the new
equation xk = pj(x). Do similarly if Pi(x) = min{p1(x), . . . , pm(x)}.

• If Pi(x) = max {xj1 , . . . , xjm} with m > 2, then add m − 2 new variables xi1 , . . . , xim−2 , set
Pi(x) = max {xj1 , xi1}, and add the equations xi1 = max {xj2 , xi2}, xi2 = max {xj3 , xi3}, . . .,
xim−2 = max {xjm−1 , xjm}. Do similarly if Pi(x) = min{xj1 , ldots, xjm} with m > 2.
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• For each equation xi = Pi(x) =
∑m

j=1 pjx
αj , where Pi(x) is a probabilistic polynomial that

is not just a constant or a single monomial, replace every (non-constant) monomial xαj on
the right-hand-side that is not a single variable by a new variable xij and add the equation
xij = xαj .

• For each variable xi that occurs in some polynomial with exponent higher than 1, introduce
new variables xi1 , . . . , xik where k is the logarithm of the highest exponent of xi that occurs in
P (x), and add equations xi1 = x2

i , xi2 = x2
i1
, . . ., xik = x2

ik−1
. For every occurrence of a higher

power xli, l > 1, of xi in P (x), if the binary representation of the exponent l is ak . . . a2a1a0,
then we replace xli by the product of the variables xij such that the corresponding bit aj is
1, and xi if a0 = 1. After we perform this replacement for all the higher powers of all the
variables, every polynomial of total degree >2 is just a product of variables.

• If a polynomial Pi(x) = xj1 · · ·xjm in the current system is the product of m > 2 variables,
then add m − 2 new variables xi1 , . . . , xim−2 , set Pi(x) = xj1xi1 , and add the equations
xi1 = xj2xi2 , xi2 = xj3xi3 , . . ., xim−2 = xjm−1xjm .

Now all equations are of the form L, Q, or M.
The above procedure allows us to convert any max-minPPS into one in SNF form by introducing

O(|P |) new variables and blowing up the size of P by a constant factor O(1). It is clear that both
the LFP and the GFP of x = P (x) arise as the projections of the LFP and GFP of y = Q(y) onto
the x variables. Furthermore, there is an obvious (and easy to compute) bijection between policies
for the resulting SNF form max-minPPS and the original max-minPPS.

Thus from now on, and for the rest of this paper we may assume, without loss of generality, that
all max-minPPSs are in SNF normal form.

A non-trivial fact established in [14] is that for the LFP of a max-minPPS, both players always
have an optimal deterministic policy:

Theorem 2.7 ([14], Theorem 2). For any max-minPPS, x = P (x), for both the maximizing and
minimizing player there always exists an optimal deterministic policy, for the LFP.

As we shall show, while in general for a max-minPPS x = P (x) there does exist an optimal
deterministic policy σ∗ for the maximizing player, for the GFP, in general there does not exist any
optimal policy at all for the minimizing player for the GFP of a minPPS x = P (x).

Nevertheless, we shall show that for any ε > 0, there always exists an ε-optimal randomized
policy for the GFP for the minimizing player in any max-minPPS. Furthermore, we shall show how
to compute such a policy in P-time for minPPS.

De�nition 2.8. The dependency graph of a max-min PPS x = P (x), is a directed graph that has
one node for each variable xi, and contains an edge (xi, xj) if xj appears in Pi(x). The dependency
graph of a BSSG has one node for each type, and contains an edge (Ti, Tj) if there is an action

a ∈ Ai and a rule Ti
pr→ αr in R(Ti, a) such that Tj appears in αr.

2.1 Generalized Newton's Method

The problem of approximating e�ciently the LFP of a PPS was solved in [11], by using Newton's
method (combined with suitable rounding), applied after elimination of the variables with LFP
value 0 and 1. We �rst recall the de�nition of Newton iteration for PPSs.
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De�nition 2.9. For a PPS x = P (x) we use B(x) to denote the Jacobian matrix of partial deriva-

tives of P (x), i.e., B(x)i,j := ∂Pi(x)
∂xj

. For a point x ∈ Rn, if (I − B(x)) is non-singular, then we

de�ne one Newton iteration at x via the operator:

N (x) = x+ (I −B(x))−1(P (x)− x)

Given a max/minPPS, x = P (x), and a policy σ, we use Nσ(x) to denote the Newton operator of
the PPS x = Pσ(x); i.e., letting Bσ(x) denote the Jacobian of Pσ(x), if (I −Bσ(x)) is non-singular
at a point x ∈ Rn, then Nσ(x) = x+ (I −Bσ(x))−1(Pσ(x)− x).

De�nition 2.10. For a max/minPPS, x = P (x), with n variables (in SNF form), the linearization
of P (x) at a point y ∈ Rn, is a system of max/min linear functions denoted by P y(x), which has
the following form:

if Pi(x) has form L or M, then P yi (x) = Pi(x), and
if Pi(x) has form Q, i.e., Pi(x) = xjxk for some j,k, then

P yi (x) = yjxk + xjyk − yjyk

We can consider the linearization of a PPS, x = Pσ(x), obtained as the result of �xing a policy,
σ, for a max/minPPS, x = P (x).

De�nition 2.11. P yσ (x) := (Pσ)y(x).

Note than the linearization P y(x) only changes equations of form Q, and using a policy σ only
changes equations of form M, so these operations are independent in terms of the e�ects they have
on the underlying equations, and thus P yσ (x) ≡ (Pσ)y(x) = (P y)σ(x).

We now recall and adapt from [12] the de�nition of distinct iteration operators for a maxPPS
and a minPPS, both of which we shall refer to with the overloaded notation I(x). These operators
serve as the basis for Generalized Newton's Method (GNM) to be applied to maxPPSs and minPPSs,
respectively. We need to slightly adapt the de�nition of operator I(x), specifying the conditions on
the GFP g∗ under which the operator is well-de�ned:

De�nition 2.12. For a maxPPS, x = P (x), with GFP g∗, such that 0 ≤ g∗ < 1, and for a real
vector y such that 0 ≤ y ≤ g∗, we de�ne the operator I(y) to be the unique optimal solution, a ∈ Rn,
to the following mathematical program: Minimize:

∑
i ai ; Subject to: P y(a) ≤ a.

For a minPPS, x = P (x), with GFP g∗, such that 0 ≤ g∗ < 1, and for a real vector y such that
0 ≤ y ≤ g∗, we de�ne the operator I(y) to be the unique optimal solution a ∈ Rn to the following
mathematical program: Maximize:

∑
i ai ; Subject to: P y(a) ≥ a.

In both cases, the mathematical programs can be solved using Linear Programming. In the case of a
maxPPS, the constraint P yi (a) ≤ ai for each variable xi of form L or Q is linear, and the constraint
for a variable xi of form M with Pi(x) = max(xj , xk) can be replaced by the two inequalities aj ≤ ai
and ak ≤ ai. Similarly, in the case of a minPPS, the constraints for variables of form L and Q
are linear, and the constraint P yi (a) ≥ ai for a variable xi of form M with Pi(x) = min(xj , xk)
can be replaced by the two inequalities aj ≥ ai and ak ≥ ai. A priori, it is not clear whether the
mathematical programs have a unique solution, and hence whether the above �de�nitions� of I(x)
for maxPPSs and minPPSs are well-de�ned. We will see that they are (again, adapting facts for
GNM applied to LFP computation from [12]).
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We require a rounded version of GNM, de�ned in [12] as follows.
GNM, with rounding parameter h: Starting at x(0) := 0, For k ≥ 0, compute x(k+1) from

x(k) as follows: �rst calculate I(x(k)), then for each coordinate i = 1, 2, . . . , n, set x(k+1)
i to be

the maximum (non-negative) multiple of 2−h which is ≤ max{0, I(x(k))i}. (In other words, round
I(x(k)) down to the nearest 2−h and ensure it is non-negative.)

3 Greatest Fixed Points capture non-reachability values

For any given BSSG, G, with a speci�ed special target type Tf∗ , we will construct a max-minPPS,
x = P (x), and show that the vector g∗ of non-reachability values for (G, Tf∗) is precisely the greatest
�xed point g∗ ∈ [0, 1]n of x = P (x).

The system x = P (x) will have one variable xi and one equation xi = Pi(x), for each type
Ti 6= Tf∗ . For each i 6= f∗, the min/max probabilistic polynomial Pi(x) is constructed as follows.
For all j ∈ Ai, let R

′(Ti, j) := {r ∈ R(Ti, j) : (αr)f∗ = 0} denote the set of rules for type Ti
and action j that generate a multiset αr not containing any element of type Tf∗ . Pi(x) contains
one probabilistic polynomial qi,j(x) for each action j ∈ Ai, with qi,j(x) =

∑
r∈R′(Ti,j) prx

αr . In
particular, note that we do not include, in the sum that de�nes qi,j(x), any monomial pr′x

αr′

associated with a rule r′ which generates at least one object of the special type Tf∗ . Then, if
type Ti belongs to the max player, who aims to minimize the probability of not reaching an object
of type Tf∗ , we de�ne Pi(x) ≡ minj∈Ai qi,j(x). Likewise, if type Ti belongs to the min player,
whose aim is to maximize the probability of not reaching an object of type Tf∗ , then we de�ne
Pi(x) ≡ maxj∈Ai qi,j(x).

Note the swapped roles that max and min play in the equations, versus the goal of the cor-
responding player in terms of the reachability objective. This swap is necessary because, whereas
the objectives of the players are to maximize or minimize reachability probabilities, the equations
we have constructed will capture, in their greatest �xed point (GFP) solution, the optimal non-
reachability values g∗.

The following theorem, which is key, is analogous to a theorem proved in [14] which proves a
similar relationship between the LFP of a max-minPPS and the extinction values of a BSSG:

Theorem 3.1. The non-reachability value vector g∗ ∈ [0, 1]n of the BSSG is equal to the Greatest
Fixed Point (GFP) of the operator P (·) in [0, 1]n. Thus, g∗ = P (g∗), and for all �xed points g′ =
P (g′), g′ ∈ [0, 1]n, g′ ≤ g∗. Furthermore, for any initial population µ, the optimal non-reachability
values satisfy g∗(µ) = Πi(g∗i )

µi and g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g

∗,σ,τ (µ) = infτ∈Ψ2 supσ∈Ψ1
g∗,σ,τ (µ).

In particular, such games are determined.

Proof. Let xk denote the k-fold application of P on the all-1 vector, i.e. x0 = 1, and xk = P (xk−1)
for k > 0. P (·) de�nes a monotone operator, P : [0, 1]n → [0, 1]n, that maps [0, 1]n to itself. Thus,
the sequence xk is (component-wise) monotonically non-increasing as a function of k, bounded from
below by the all-0 vector, and thus by Tarski's theorem it converges to the GFP, x∗ ∈ [0, 1]n, of the
monotone operator P (·), as k →∞. We will �rst show the following lemma.

Lemma 3.2. For any integer k ≥ 0 and any �nite non-empty initial population µ (expressed as an n-
vector) which does not contain any element of type of Tf∗, the value g

k(µ) := supσ∈Ψ1
infτ∈Ψ2 g

k
σ,τ (µ)

of not reaching an element of type Tf∗ in k steps is gk(µ) = f(xk, µ) := Πn
i=1(xki )

(µ)i . Furthermore,
there are strategies of the two players (in fact deterministic strategies), σk ∈ Ψ1 and τk ∈ Ψ2, that
achieve this value, i.e, gk(µ) = infτ∈Ψ2 g

k
σk,τ

(µ) = supσ∈Ψ1
gkσ,τk(µ).
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Proof. We show the claim by induction on k. The basis, k = 0, is trivial: namely we only have
variables xi for each type Ti 6= Tf∗ . Thus, clearly starting with any �nite non-empty population
of objects of types Ti 6= Tf∗ the (optimal) probability of not reaching an object of type Tf∗ within
0 steps is 1. For the induction part, consider the generation of population X1 from X0 in step
1. We show �rst that gk(µ) ≥ f(xk, µ) := Πn

i=1(xki )
(µ)i . Consider the following strategy σk for

the max player (the player trying to maximize the probability of not reaching the type Tf∗). For
each entity in the initial population X0 = µ of a max type Ti, the max player selects in step 1
(deterministically) an action a ∈ Ai that maximizes the expression

∑
r∈R′(Ti,a) prf(xk−1, αr) on the

right side of the equation xki = Pi(xk−1). Once the min player also selects actions for the entities of
min type in X0, and rules for all the entities are chosen probabilistically to generate the population
X1 for time 1, the max player thereafter follows an optimal (k−1)-step strategy σk−1 starting from
X1. If we assume inductively that σk−1 is deterministic, then σk is also deterministic. (It is not
static however; the action chosen for an entity of a given type in a population Xi in the process
may depend on the time i.)

Let τ be any strategy of the min player. Consider a combination of actions chosen with nonzero
probability by the min player in step 1 for the entities of min type in X0 = µ. After this, a
combination of rules is chosen randomly and independently for all the entities of µ and the population
X1 is generated accordingly with probability that is the product of the rule probabilities that were
applied (because the rules are chosen independently). By the induction hypothesis, the value with
which the population X1 does not reach a type Tf∗ in the next k − 1 steps (i.e. by time k) is
gk−1(X1) = f(xk−1, X1). If, for each possible set X1 (there are �nitely many possibilities), we
multiply f(xk−1, X1) with the probability of the combination of rules that can be used in step
1 to generate X1 from X0, and we sum this over all possible X1, we can write the result as a
product of |µ| terms, one for each entity in µ. The term for an entity of max or min type Ti is∑

r∈R′(Ti,a) prf(xk−1, αr), where a is the action selected for this entity by the min or max player in
step 1. For the max player, we selected an action a ∈ Ai that maximizes this expression, therefore
the term for a max entity is equal to Pi(xk−1) = xki .

For an entity that belongs to the min player, no matter which action the player chose, the term
is greater than or equal to the minimum value over all available actions, which is Pi(xk−1) = xki .
Hence, for any combination of actions chosen by the min player in step 1, the probability that the
process does not reach an object of type Tf∗ by step k under the strategies σk, τ is at least f(xk, µ).
Therefore, this holds also if τ makes a randomized selection in step 1, i.e., assigns nonzero probability
to more than one combinations of actions for the min entities in µ. Thus, infτ∈Ψ2 g

k
σk,τ

(µ) ≥ f(xk, µ)
and hence gk(µ) ≥ f(xk, µ).

We can give a symmetric argument for the min player to prove the reverse inequality. De-
�ne strategy τk for the min player as follows. In step 1, the min player chooses for each en-
tity of min type Ti in the initial population µ, an action a ∈ Ai that minimizes the expression∑

r∈R′(Ti,a) prf(xk−1, αr) on the right side of the equation xki = Pi(xk−1), and then, once the max
player has chosen actions for the max entities of µ, and rules are selected and applied to gen-
erate the population X1, the min player follows the optimal deterministic strategy τk−1 starting
from X1 (assumed to exist by induction). By a symmetric argument to the max player case,
it is easy to see that supσ∈Ψ1

gk,σ,τk(µ) ≤ f(xk, µ) and hence gk(µ) ≤ f(xk, µ). It follows that
gk(µ) = infτ∈Ψ2 g

k
σk,τ

(µ) = supσ∈Ψ1
gkσ,τk(µ) = f(xk, µ).
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In particular, for singleton initial populations, the Lemma implies that gki = xki for all types
Ti 6= Tf∗ , and for all k ≥ 0.

Let x∗ = limk→∞ x
k denote the Greatest Fixed Point (GFP) of the equation x = P (x). We

will show that for any initial population µ, the �value� g∗(µ) := supσ∈Ψ1
infτ∈Ψ2 g

∗
σ,τ (µ) of not ever

reaching a population containing an object of type Tf∗ satis�es g
∗(µ) = infτ∈Ψ2 supσ∈Ψ1

g∗σ,τ (µ) =
f(x∗, µ). In particular, these games are indeed determined. For singleton populations, this implies
that g∗i = x∗i for all types Ti 6= Tf∗ .

Since xk converges to x∗ from above as k →∞, the sequence f(xk, µ) converges to f(x∗, µ) from
above. Thus, for every ε > 0 there is a k(ε) such that f(x∗, µ) ≤ f(xk(ε), µ) < f(x∗, µ) + ε.

From the proof of Lemma 3.2, the strategy τk(ε) of the min player (who is minimizing the
probability of not reaching Tf∗ in k(ε) rounds), satis�es, for all strategies σ ∈ Ψ1, g

∗
σ,τk(ε)

(µ) ≤

g
k(ε)
σ,τk(ε)(µ) ≤ supσ∈Ψ1

g
k(ε)
σ,τk(ε)(µ) = f(xk(ε), µ) < f(x∗, µ) + ε. Since this holds for every ε > 0, it

follows that g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g

∗
σ,τ (µ) ≤ infτ∈Ψ2 supσ∈Ψ1

g∗σ,τ (µ) ≤ f(x∗, µ).
For the converse inequality, let σ∗ be the static deterministic strategy for the max player (who

is trying to maximize the probability of not reaching Tf∗), which always chooses for each entity
of max type Ti an action a ∈ Ai that maximizes the expression

∑
r∈R(Ti,a) prf(x∗, αr). If we �x

the actions for all the max types according to σ∗, the BSSG G becomes a minimizing BMDP G′

where all the max types of G become now choice-less or �random� types (meaning that no choice
is available to the max player: it has only one action it can take at every type that belongs to
it). Let x = P ′(x) be the set of equations for G′; for the min types Ti of G

′, the equation is the
same, i.e., P ′i = Pi; whereas for max types Ti the function on the right-hand side changes from
Pi(x) = maxa∈Ai

∑
r∈R(Ti,a) prf(x, αr) to P ′i (x) =

∑
r∈R(Ti,ai)

prf(x, αr), for some speci�c action

ai ∈ Ai. Thus, P ′(x) ≤ P (x) for all x ∈ [0, 1]n. Let yk, k = 0, 1, . . . be the vector resulting from the
k-fold application of the operator P ′ on the all-1 vector. Then yk ≤ xk for all k, and therefore the
GFP y∗ of P ′ satis�es y∗ ≤ x∗, where x∗ is the GFP of P . However, x∗ is a �xed point of P ′, since
we have chosen actions for all the max types Ti that achieve the maximum in Pi(x∗). Therefore,
x∗ = y∗, and both x∗ and y∗ are the GFP of both P ′ and P .

Consider any �xed strategy τ of the min player starting from initial population µ. Applying
Lemma 3.2 to the BMDP G′, we know that for every k, the probability, using strategy τ in G′, of not
reaching the type Tf∗ in k steps, starting in population µ is at least f(yk, µ). Therefore, the optimal
(in�mum) probability of not reaching a type Tf∗ in any number of steps is at least limk→∞ f(yk, µ) =
f(y∗, µ) = f(x∗, µ). That is, infτ∈Ψ2 g

∗
σ∗,τ (µ) ≥ f(x∗, µ). Combining with the previously established

inequality, g∗(µ) ≤ f(x∗, µ), and since clearly g∗(µ) = supσ∈Ψ1
infτ∈Ψ2 g

∗
σ,τ (µ) ≥ infτ∈Ψ2 g

∗
σ∗,τ (µ),

we conclude that σ∗ is actually an optimal (static) strategy for the player maximizing the non-
reachability probability of Tf∗ , and that f(x∗, µ) = infτ∈Ψ2 g

∗
σ∗,τ (µ) = supσ∈Ψ1

infτ∈Ψ2 g
∗
σ,τ (µ) =

g∗(µ) = infτ∈Ψ2 supσ∈Ψ1
g∗σ,τ (µ).

A direct corollary of the proof of Theorem 3.1 is that the player maximizing non-reachability prob-
ability always has an optimal static strategy:

Corollary 3.3. In any Branching Simple Stochastic Game, G, where the objective of the players is
to maximize and minimize, respectively, the probability of not reaching a type Tf∗, the player trying
to maximize this probability always has a deterministic static optimal strategy σ∗.

In particular, for any max-minPPS, x = P (x), with GFP g∗, the max player has an optimal
deterministic policy, σ∗, for the GFP, such that g∗ = g∗σ∗,∗ (where, recall, g∗σ∗,∗ is the GFP of
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x = Pσ∗,∗(x)).

Proof. Just use the deterministic static optimal strategy σ∗ for the maximizing player de�ned in
the proof of Theorem 3.1, which for each type Ti controlled by the max player chooses an action
a ∈ Ai which maximizes the expression

∑
r∈R′(Ti,a) prf(x∗, αr).

Clearly, this also implies the existence of a deterministic optimal policy, σ∗, for the max player,
for the GFP g∗ = g∗σ∗,∗ in any max-minPPS x = P (x).

The same is not true for the player trying to minimize this non-reachability probability. In other
words, the same is not true for the player trying to maximize the probability of reaching a type Tf∗ .
This is illustrated by the following two examples:

Example 3.1 (In general, there is no randomized static optimal strategy for maximizing the reach-
ability probability in BMDPs, even when the supremum probability is 1.). Consider a BMDP with
three types: {A,B,C}. Type C is the goal type (i.e., C = Tf∗). The BMDP is described by the
following rules for types A and B. The only controlled type is A. The type B is purely �random�.
The symbol �∅� denotes that one of the rules for type B generates, with probability 1/2, the empty
set, containing no objects, from an object of type B.

A → AA

A → B

B
1/2→ C

B
1/2→ ∅

It is easy to see that for this BMDP, the controller who wishes to maximize the probability
of reaching type C, starting with one object of type A, can do so with probability 1 − ε, for any
ε > 0. The strategy for doing so is the following: �rst create su�ciently many copies of A, namely
k = dlog(1/ε)e copies, by using the rule A→ AA. Then, for each of the created copies, choose the
�lottery� B. Each �lottery� B will, independently, with 1/2 probability, reach C. This assures that
the total probability of not reaching a C is 1

2k
≤ ε.

Thus, the supremum value of reaching C in this BMDP is clearly 1. However, it is also easy
to see that there is no randomized static optimal strategy that achieves this supremum value of
1. This is because any randomized static strategy which places positive probability on the rule
A→ B would with positive probability p∗ bounded away from 0 go extinct starting from a bounded
population of A's (without hitting C).

The minPPS for this BMDP has two variables a, b and two equations a = min(a2, b) and b = 1/2.
This system has clearly only one �xed point: a∗ = 0, b∗ = 1/2. However, there is no policy (whether
deterministic or randomized) that gives (0, 1/2) as the GFP of the resulting PPS, for the same
reason given above that the BMDP does not have any optimal static strategy. Note in particular,
that if a policy selects for a the �rst choice, a2, then the resulting PPS is a = a2, b = 1/2, and a
has value 1 in its GFP, not 0.

On the other hand, for this BMDP there is a non-static optimal strategy that achieves the
reachability value 1, namely, do as follows: starting from one A, �rst use A → AA to create two
A's. Then apply A → B to the �left� A and apply A → AA to the �right� A. Now we have two
A's and a B. The B gives us a chance to reach C. On the two A's, we again take the left A to B
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and the right A to AA. Repeat. This way, the population will repeatedly contain two A's and one
B forever, and each time B is created it gives us a positive chance to reach C, so we reach C with
probability 1.

It turns out, as we will show later, that for any BSSG, if the reachability value is 1, then
the player maximizing the probability of reachability always has a not necessarily static, optimal
strategy that achieves this value 1.

This is not the case if the reachability value is strictly less than 1, as we shall show in the next
example, Example 3.2.

On the other hand, if the goal was tominimize the probability of reaching C, then starting from A
there is a simple strategy in this BMDP that achieves this: deterministically choose the rule A→ AA
from all copies of A. This ensures that the process never reaches C, i.e., reaches C with probability
0. This is clearly an optimal strategy. Indeed, this holds in general: as shown in Corollary 3.3, there
always exists a deterministic static optimal strategy for minimizing the probability of reaching a
given type (i.e., maximizing the probability of not reaching it), in a BMDP or BSSG.

Example 3.2 (No optimal strategy at all for maximizing reachability probability in a BMDP). We
now give an example of a BMDP where the supremum reachability probability of the designated
type Tf∗ is < 1, and such that there does not exist any optimal strategy (regardless of the memory
or randomness used) that achieves the value.

Consider the following BMDP, where the goal is to maximize the probability of reaching type
D:

A
2/3→ BB

A
1/3→ ∅

B → A

B → C

C
1/3→ D

C
2/3→ ∅

We claim that:

1. The supremum probability, starting with one A, of eventually reaching an object of type D is
1/2.

2. There is no strategy of any kind that achieves probability 1/2.

Proof. 1. First, to see that the supremum probability starting at A is 1/2, consider the following
sequence of strategies: strategy τk, for k ≥ 1, chooses B → A for all objects in every multiset
Xi until a multiset is reached in which there are at least k B's. Then, in the next step, τk

chooses B → C for all copies of B. In other words, the strategy waits until there are �enough�
B's, and then switches to B → C for all B's. Note �rstly that, with probability at least 1/2
we will eventually have a population of B's exceeding k, for any k. Thereafter the probability
of not hitting D will be at most (2/3)k. We can make k as large as we like, and thus we
can make the probability of not hitting D, conditioned on reaching population k, as small as
possible. So we can make the probability of hitting D as close as we like to 1/2.
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This can be seen also from the corresponding minPPS using Theorem 3.1. The minPPS has
three variables a, b, c and equations a = 2

3b
2 + 1

3 , b = min(a, c), c = 2
3 . It is easy to see that

the system has only one �xed point, a∗ = b∗ = 1
2 , c
∗ = 2

3 , which is thus the GFP. Hence,
by Theorem 3.1, the reachability value of the BMDP is 1 − a∗ = 1/2. However, there is no
policy of the minPPS (and correspondingly, no static strategy of the BMDP) that achieves
this value. In particular, note that the policy that selects for b the �rst choice a, yields a PPS
{a = 2

3b
2 + 1

3 , b = a, c = 2
3} with a GFP in which a has value 1, instead of 1/2.

2. To see that in fact there is no strategy (whether static or not) of the BMDP that achieves
probability 1/2 , assume, for contradiction, that there does exist a strategy σ that achieves
probability 1/2.

Consider any occurrence of B in the history X0, X1, . . . of con�gurations, such that the rule
B → C is applied with positive probability to that occurrence of B by the strategy σ. It is
without loss of generality to assume that such a B exists, because otherwise the probability
of reaching D would be 0.

We claim that the total probability of reaching type D would strictly increase if, instead of
applying action B → C with positive probability p′ on that copy of B, the strategy σ instead is
changed to a strategy σ′ where that positive probability p′ on action B → C is shifted entirely
to the pure action B → A, and thereafter, in the next step, if on that resulting A the random

rule A
2/3→ BB happens to get chosen, the strategy σ′ then (with the shifted probability p′)

immediately applies the rule B → C to both resulting copies of B.

To see why this switch to strategy σ′ would strictly increase the probability of reaching D,
note that for any given B by choosing B → C deterministically the probability of reaching D
from that copy of B becomes exactly 1/3. On the other hand, by choosing B → A from that
copy of B and thereafter (with 2/3 probability) choosing B → C on the resulting two copies
of B, the new probability of hitting D is 2/3 · (1− (2/3)2) = 10/27 > 1/3. The same analysis
shows that even if the original strategy σ only chose B → C with positive probability p > 0
then shifting that probability over to the two-step strategy, �rst choosing B → A, achieves
strictly greater probability of reaching D. Since this analysis holds for any copy of B that
occurs in the trajectory X0, X1, . . . of the process, we see that we can always strictly increase
the probability of reaching D by inde�nitely delaying the application of the rule B → C.
However, note that we can not delay application of the rule B → C forever: if we do so then
the probability of reaching D is actually 0.

Thus, the supremum probability of reaching D is only achieved in the limit by a sequence
of strategies, which delay the use of B → C longer and longer, but is never attained by any
single strategy.

We have already seen that the supremum probability of reaching D is at least 1/2, using the
sequence of strategies described in part (1.) above. Now, to see why the supremum value is
indeed 1/2, note that if we do indeed delay forever using B → C, then starting with one B or
one A the process becomes extinct with probability 1/2 (without ever seeing a D). Thus, if
we delay using B → C for �long enough�, then the process becomes extinct with probability
1/2 − ε without seeing D, for an arbitrarily small positive ε > 0. So, the supremum value
of the reachability probability can be at most 1/2, and thus is equal to 1/2. Moreover, we
have already argued that this supremum value is not achieved by any strategy, because we
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can always achieve strictly higher probability of reaching D by delaying the use of B → C
one step further. Thus, 1/2 is the supremum value, but is not achieved by any strategy.

4 P-time detection of GFP g∗i = 1 for max-minPPSs and BSSGs

In this section we will show that there are (easy) P-time algorithms to compute for a given max-
minPPS the variables that have value 1 in the GFP, and thus also for deciding, for a given BSSG (or
BMDP), whether g∗i = 1 (i.e., whether the non-reachability value, starting from a given type Ti is
1). The algorithm does not require looking at the precise values of the coe�cients of the polynomials
in the max-minPPS (respectively, it does not depend on probabilities labelling the transitions of
the BSSG): it only depends on the qualitative �structure� of the max-minPPS (the BSSG). As we
show, it reduces to an AND-OR graph reachability problem.

Recall that in the AND-OR graph reachability problem, we are given a directed graph G, whose
nodes are partitioned into a set T of target nodes, a set V1 of OR nodes and a set V2 of AND nodes.
The set of nodes that can AND-OR reach T is de�ned to be the (unique) smallest set S of nodes that
includes T and which has the property that (i) an OR-node v is in S i� at least one of its immediate
successors is in S, and (ii) an AND-node v is in S i� all its immediate successors are in S. This set
can be computed easily by an iterative algorithm that initializes S to T , and then repeatedly adds
to S any OR-node v that has an immediate successor already in S, and any AND-node all of whose
immediate successors are already in S, until there are no more changes to S. As is well-known, the
algorithm can be implemented in linear time. Equivalently, the AND-OR reachability problem can
be viewed as a two-person zero-sum reachability game, where the OR-nodes belong to player 1 who
wants to reach some node in the target set T , and the AND-nodes belong to player 2 who wants to
avoid this. The set of winning nodes for player 1 is precisely the set S of nodes that can AND-OR
reach T ; a winning strategy τ for player 1 from each OR-node in S is to pick an immediate successor
that was added earlier to S. The complementary set of nodes is winning for player 2; a winning
strategy σ for player 2 from each AND-node that is not in S is to pick an immediate successor that
is not in S (there must be one, otherwise the AND-node would have been added to S).

Proposition 4.1. There is a P-time algorithm that given a max-minPPS (and thus also a maxPPS
or minPPS), x = P (x), with n variables, and with GFP g∗ ∈ [0, 1]n, and given i ∈ [n], decides
whether g∗i = 1, or g∗i < 1. The same result holds for determining for a given BSSG with non-
reachability objective, whether the value of the game is 1. Moreover, in the case where g∗i = 1 the
algorithm computes a deterministic policy (i.e., deterministic static strategy in the BSSG case) σ,
for the max player which forces g∗i = 1, Likewise, if g∗i < 1, the algorithm computes a deterministic
static policy τ for the min player which forces g∗i < 1.

Proof. For simplicity, we assume w.l.o.g., that the max-min PPS, x = P (x) is in SNF form. Consider
the dependency graph G = (V,E) on the variables V = {x1, . . . , xn} of x = P (x). The edges E
are de�ned as follows: (xi, xj) ∈ E if and only if xj appears in one of the monomials with positive
coe�cient that appear on the right hand side of Pi(x).

Let us call a variable xi de�cient if Pi(x) has form L and the coe�cients and constant term in
Pi(x) sum to strictly less than 1; equivalently, xi is de�cient i� Pi(1) < 1. Let Z ⊆ {x1, . . . , xn}
denote the set of de�cient variables.
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Let X = V \Z, denote the remaining set of non-de�cient variables. We partition the remaining
variables X = L∪Q∪M according to the form of the corresponding SNF-form equation xi = Pi(x). In
fact, we further partition the variables M as M = Mmax∪Mmin, according to whether the corresponding
RHS for that variable has the form max{xj , xk} or min{xj , xk}.

We can now view the dependency graph G as a (non-probabilistic) AND-OR game graph, namely
a 2-player reachability game graph, in which the goal of player 1 is to reach a node in Z, whereas the
goal of player 2 is to avoid this. The nodes of the game graph belonging to player 1 are L∪ Q∪ Mmin

(these are the OR nodes), the nodes of the game graph belonging to player 2 are Mmax (these
are the AND nodes), and �nally the nodes in Z are the target nodes (from which player 1 wins
automatically).

Let S be the set of nodes that can AND-OR reach Z, i.e. the set of nodes from which player 1
can win, let S̄ be the complementary set of nodes from which player 2 wins, and let τ, σ be winning
(deterministic, static) strategies for the two players from their respective winning sets, as described
before the proposition (the de�nition of the strategies on their sets of losing nodes is irrelevant). As
we mentioned earlier, the sets S, S̄ and the strategies τ, σ can be computed in P-time (in fact, in
linear time).

We claim that for every variable xi, we have g
∗
i < 1 if and only if xi ∈ S.

For the one direction, we can show that g∗i < 1, and in fact (g∗∗,τ )i < 1, for all xi ∈ S, by
induction on the time that xi was added to S in the iterative algorithm. For the basis case, xi ∈ Z
is a de�cient node, i.e. Pi(1) < 1, and hence clearly g∗i ≤ (g∗∗,τ )i = Pi(g∗∗,τ ) ≤ Pi(1) < 1. For the
induction step, if xi is of type Mmin and τ chooses xj ∈ Pi(x) for xi, then xj was added earlier to S,
thus g∗i ≤ (g∗∗,τ )i = (g∗∗,τ )j < 1. The other cases when xi is of type L, Q, Mmax are similar.

To see the other direction, g∗i = 1, and in fact (g∗σ,∗)i = 1, for all xi ∈ S̄, note that the dependency
graph of the minPPS x = Pσ,∗(x) has no edges from S̄ to S: all variables of type L ∪ Q ∪ Mmin of S̄
depend only on variables in S̄ (otherwise, they would have been added to S), and for variables of
type Mmax, policy σ selected a successor in S̄. Furthermore, S̄ does not contain any de�cient node,
thus Pi(1) = 1 for all xi ∈ S̄. Therefore, the subsystem of x = Pσ,∗(x) induced by S̄ has the all-1
vector as a �xed point, hence (g∗σ,∗)i = 1 (and thus g∗i = 1), for all xi ∈ S̄.

We will consider detection of g∗i = 0 for max-minPPSs with GFP g∗ later in the paper. We
shall see that for maxPPSs, after detection and removal of variables xi such that g∗i = 1, so that
g∗ < 1, the GFP g∗ of the residual maxPPS is equal to the LFP q∗ of the residual maxPPS, and
thus detecting whether g∗i = q∗i = 0 can be done in P-time via simple AND-OR graph analysis using
the algorithm given in [14].

For minPPSs, however, the above reduction does not hold, and in fact the P-time algorithm
for detecting whether g∗i = 0 is substantially more complicated (but still does not involve knowing
the actual coe�cients of the polynomials in the minPPS, or the probabilities labeling rules of the
BMDP, only its structure). We provide such a P-time algorithm for deciding whether g∗i = 0, not
only for minPPSs, but also for the more general max-minPPSs, in Section 9.

5 Reachability for BPs, and linear degeneracy

In this section we study the reachability problem for purely stochastic BPs. Along the way, we
establish several Lemmas which will be crucial for our analysis of BMDPs. We start by de�ning the
notion of linear degeneracy.
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A PPS x = P (x) is called linear degenerate if every polynomial P (x) is linear, with no constant
term, and all coe�cients sum to 1. Thus x = P (x) is linear degenerate if Pi(x) ≡

∑n
j=1 pijxj , where

pij ∈ [0, 1] for all i ∈ [n], and
∑

j pij = 1. We refer to a linear degenerate PPS as an LD-PPS.
Note that for any LD-PPS, x = P (x), we have P (0) = 0 and P (1) = 1, so the LFP is q∗ = 0 and

the GFP is g∗ = 1. The Jacobian B(x) of an LD-PPS is a constant stochastic matrix B (independent
of x), where every row of B is non-negative and sums to 1. During the evolution of the associated
BP, the size of the population remains constant. Thus, if we start with a single object, the MT-BP
trajectory X0, X1, . . . is simply the trajectory of a �nite-state Markov chain whose states correspond
to types, and where the singleton set Xi corresponds to the one object in the population at time i.
Note that the Jacobian B(x) = B is the transition matrix of the corresponding �nite-state Markov
chain. Furthermore, observe that for any LD-PPS we have P (x) = Bx.

Given a PPS, we can construct its dependency graph and decompose it into strongly connected
components (SCCs). A bottom SCC is an SCC that has no outgoing edges. The following Lemma
is immediate:

Lemma 5.1. For any PPS, x = P (x), exactly one of the following two cases holds:

(i) x = P (x) contains a linear degenerate bottom strongly-connected component (BSCC), S, i.e.,
xS = PS(xS) is a LD-PPS, and PS(xS) ≡ BSxS, for a stochastic matrix BS.

(ii) every variable xi either is, or depends (directly or indirectly) on, a variable xj where Pj(x)
has one of the following properties:

1. Pj(x) has a term of degree 2 or more,

2. Pj(x) has a non-zero constant term i.e. Pj(0) > 0 or

3. Pj(1) < 1.

A PPS x = P (x) is called a linear-degenerate-free PPS (LDF-PPS) if it satis�es condition (ii)
of Lemma 5.1.

Lemma 5.2. If a PPS, x = P (x), has either GFP g∗ < 1, or LFP q∗ > 0, then x = P (x) is a
LDF-PPS.

Proof. Suppose that for a PPS, x = P (x) condition (i) of Lemma 5.1 holds, i.e., there is a bottom
SCC S with PS(xS) = BSxS for a stochastic matrix BS . Then PS(0) = 0 and PS(1) = 1. So
g∗S = 1 and q∗S = 0, which contradicts the assumptions. So, condition (ii) must hold, i.e. x = P (x)
is a LDF-PPS.

We use ρ(A) to denote the spectral radius of a matrix A. A basic property that we use is that,
if A is a non-negative matrix and ρ(A) < 1, then the matrix I − A is nonsingular, and its inverse
(I −A)−1 =

∑∞
k=0A

k is non-negative (see e.g. [17]).
We will often use also the following lemma from [11] (stated there more generally for monotone

polynomial systems).

Lemma 5.3. ([11], Lemma 3.3.) Let x = P (x) be a PPS, with n variables, in SNF form, and let
a, b ∈ Rn. Then: P (a)− P (b) = B(a+b

2 )(a− b).

The following is a strengthened variant of Lemma 2.12 from [12].
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Lemma 5.4 (cf. Lemma 2.12 of [12]). For any (w.l.o.g., quadratic) LDF-PPS, x = P (x) with LFP
q∗, and for 0 ≤ y < 1

2(1+ q∗), we have ρ(B(y)) < 1 and so (I−B(y))−1 exists and is non-negative,
and thus N (y) is well-de�ned.

Proof. The spectral radius ρ(A) of a square non-negative matrix, A, is equal to the maximum of
the spectral radii of its principal irreducible submatrices (see, e.g., [17], Chapter 8). Any principal
irreducible submatrix of B(y) is a principal irreducible submatrix of BS(y) for some SCC S of the
dependency graph of x = P (x) (BS(y) itself might not be irreducible, since we do not assume
y > 0). So to show that ρ(B(y)) < 1, it su�ces to show that for any SCC S, ρ(BS(y)) < 1.

For a trivial SCC, one where S = {xi} for a single variable xi which does not appear in Pi(x),
BS(y) is the zero matrix so ρ(BS(y)) = 0 < 1.

Now we consider SCCs which are non-trivial and contain an equation of form Q, xi = Pi(x).
Here Pi(x) ≡ xjxk for some j,k must contain at least one term, say w.l.o.g., xj which is also in S
or we would have the above trivial case. We have BS(y) ≤ BS(1

2(1 + q∗)) by monotonicity of B(x).
But (BS(y))i,j = yk <

1
2(1 + q∗k) = (BS(1

2(1 + q∗)))i,j . So the inequality BS(y) ≤ BS(1
2(1 + q∗)) is

strict in the i, j entry. Since the matrix BS(1
2(1 + q∗)) is irreducible, ρ(BS(y)) < ρ(BS(1

2(1 + q∗)))
(again, see e.g., [17]). So it su�ces to show that ρ(BS(1

2(1 + q∗))) ≤ 1.
There are two cases. Firstly suppose q∗S = 1. Then any SCC D that S depends on also has

q∗D = 1. So BS(1
2(1 + q∗)) = BS(1) = BS(q∗). But we know ([15], [11]) that ρ(B(q∗)) ≤ 1 so we

have that ρ(BS(1
2(1 + q∗))) = ρ(BS(q∗)) ≤ ρ(B(q∗)) ≤ 1.

Secondly suppose that q∗S 6= 1. Then q∗S < 1. Applying Lemma 5.3 with a = 1 and b = q∗, we
have that B(1

2(1 + q∗))(1− q∗) = P (1)−P (q∗) ≤ (1− q∗). Since B(1
2(1 + q∗)) is non-negative and

1− q∗ ≥ 0, we have that BS(1
2(1 + q∗))(1− q∗S) ≤ (1− q∗S). By standard facts of Perron-Frobenius

theory, since 1− q∗S > 0 and BS(1
2(1 + q∗))(1− q∗S) ≤ (1− q∗S), it follows that ρ(BS(1

2(1 + q∗)) ≤ 1.
So in either case we have ρ(BS(y)) < ρ(BS(1

2(1 + q∗)) ≤ 1.
Finally we consider SCCs which contain only equations of form L. Here BS(y) is irreducible

since BS(x) is a constant matrix and so if i depends on j, Bi,j(y) 6= 0. BS(y) is also substochastic
since all the entries in the i'th row are coe�cients in Pi(x) and x = P (x) is a PPS. Since x = P (x),
is a LDF-PPS, BS(y) is not stochastic since otherwise S would be a bottom linear degenerate SCC.
So there is an irreducible stochastic matrix A with BS(y) ≤ A with strict inequality in some entry.
This implies ρ(BS(y)) < ρ(A) = 1.

Lemma 5.5. For any LDF-PPS, x = P (x), and y < 1, if P (y) ≤ y then y ≥ q∗ and if P (y) ≥ y,
then y ≤ q∗. In particular, if q∗ < 1, then q∗ is the only �xed-point q of x = P (x) with q < 1.

Proof. Since y < 1, 1
2(y + q∗) < 1

2(1 + q∗). By Lemma 5.4, (I − B(1
2(y + q∗)))−1 exists and is

non-negative. Lemma 5.3 yields that P (y) − q∗ = B(1
2(y + q∗))(y − q∗). Re-arranging this gives

q∗− y = (I −B(1
2(y+ q∗)))−1(P (y)− y). So when P (y)− y ≥ 0 we also have q∗− y ≥ 0, and when

P (y)−y ≤ 0 we also have q∗−y ≤ 0. That is if P (y) ≤ y then y ≥ q∗ and if P (y) ≥ y, then y ≤ q∗.
Suppose q < 1 is a �xed point, i.e. P (q) = q. Then both P (q) ≥ q and P (q) ≤ q, so both q ≤ q∗

and q ≥ q∗. Thus q = q∗.

We shall need the following fact about BPs later.

Lemma 5.6. For a BP, if the PPS associated with its extinction probabilities (see [11]) is an LDF-
PPS, x = P (x), and if all types have extinction probability q∗i < 1, then for any population z and
any initial population, the probability that z occurs in�nitely often is 0. Consequently, starting with
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any initial population, with probability 1 either the process becomes extinct or the population goes to
in�nity.

Proof. Let G be the dependency graph of the branching process. Suppose �rst that G is strongly
connected. We claim then that almost surely (with probability 1) the process either becomes extinct
or grows without bound (for any initial population). This can be shown easily using the results in
[16] in the so called positive regular (primitive) moment matrix case. We give a direct proof. Suppose
�rst that all types have positive extinction probability, q∗i > 0. Let Xk denote the population at
time k, for k ≥ 0. Then for every population z 6= 0, the probability P (Xk = 0|X0 = z) > 0 for some
large enough k, and for all k′ ≥ k. Hence the population z is a transient state of the underlying
countable-state Markov chain of the BP, that is, the probability that z occurs in�nitely often is 0.
Since this holds for every z 6= 0, the process almost surely either becomes extinct or grows without
bound.

Suppose now that there are some types i with extinction probability q∗i = 0, and let Z be the set
of all such types. Then every rule of every type in Z includes in the o�spring at least one element
of Z. So the population of objects with type in Z can never go down. Since the process is not linear
degenerate, at least one type i∗ of Z has a rule r∗ with two or more o�spring. Since G is strongly
connected, if we start with an object of any type, with positive probability, the process will generate
within n steps an object of type i∗, apply rule r∗, and within another n steps, the (at least) two
o�spring can generate two objects with type in Z. If the process does not go extinct, this happens
in�nitely often almost surely, and since the number of objects with type Z never goes down, this
implies that the size goes to in�nity. Hence, with probability 1, the process either goes extinct or
grows without bound. Thus, the lemma holds if G is strongly connected.

Consider now a branching process with a dependency graph G that is not strongly connected.
Suppose that there is positive probability that a population z occurs in�nitely often. Let i be the
type of an object in z and let j be a type reachable from i that is in a bottom strongly connected
component S. Every time there is an object of type i in the population, there is positive probability
that it will generate later on an object of type j. Since z occurs in�nitely often, almost surely the
process will contain also in�nitely often objects of type j. Since q∗j < 1, the process starting with
a single object of type j, grows without bound with positive probability. Since objects of type j
occur in�nitely often, the probability that the process stays bounded is 0.

Lemma 5.7. If x = P (x) is a PPS with GFP g∗ such that 0 ≤ g∗ < 1, then g∗ is the unique �xed
point solution of x = P (x) in [0, 1]n. In other words, g∗ = q∗, where q∗ is the LFP of x = P (x).

Proof. Since g∗ < 1, by Lemma 5.2, x = P (x) is a LDF-PPS. Thus, since P (g∗) ≥ g∗, it follows by
Lemma 5.5 that q∗ = g∗.

Proposition 5.8. (cf. also [6], Proposition 5&6, and Lemma 20; and [11]) Given a PPS, x = P (x),
with GFP g∗, and given any integer j > 0, there is an algorithm that computes a rational vector
v ≤ g∗ with ‖g∗ − v‖∞ ≤ 2−j, in time polynomial in |P | and j.

Proof. By Proposition 4.1, it is without loss of generality to assume that g∗ < 1, because we �rst
preprocess x = P (x), and remove the variables xj such that g∗j = 1, plugging in 1 in their place
on RHSs of other equations. So, we assume wlog that PPS x = P (x) satis�es g∗ < 1. By Lemma
5.7, x = P (x) has a unique �xed point in [0, 1]n, and g∗ = q∗, where q∗ is the LFP. We can then
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simply apply the algorithm from [11], to approximate the LFP q∗ = g∗ of x = P (x) within j bits of
precision in time polynomial in |P | and j.

6 Approximating the GFP of a maxPPS in P-time

In this section, we will show that we can approximate the GFP of a maxPPS and compute an
ε-optimal deterministic policy in polynomial time. We show also that we can determine easily if the
value is 0.

We call a policy σ for a max/minPPS, x = P (x), linear degenerate free (LDF) if its associated
PPS x = Pσ(x) is an LDF-PPS.

Lemma 6.1. For any maxPPS, x = P (x), if GFP g∗ < 1 then g∗ is the unique �xed point of
x = P (x) in [0, 1]n. In other words, g∗ = q∗, where q∗ is the LFP of x = P (x).

Proof. Suppose x = P (x) is a maxPPS with GFP g∗ < 1.
We know, by Corollary 3.3, that there is a deterministic optimal policy for achieving the GFP

for x = P (x), i.e., there is a deterministic policy σ such that g∗ = g∗σ, where g
∗
σ is the GFP of the

PPS x = Pσ(x). (Namely, σ just picks, from each type, an action that maximizes the RHS of the
corresponding equation evaluated at g∗.)

Let σ be such an optimal policy. Then 0 ≤ g∗σ = g∗ < 1. By Lemma 5.7 this implies 0 ≤ q∗σ =
g∗σ < 1. Next, we observe the following easy fact:

Lemma 6.2. For all z, z′ ∈ [0, 1]n, if z ≤ z′ then Pσ(z) ≤ P (z′).

Proof. This holds because P (z) ≤ P (z′) by monotonicity of P (x), and because each expression
(P (z))i in P (z) consists of the max operator applied to a set of monotone polynomial terms, which
include among them the monotone polynomial (Pσ(z))i, and thus Pσ(z) ≤ P (z).

Now we consider �value iteration� starting from the all-0 vector, on both the PPS Pσ(x) and
the maxPPS P (x). Let x0 := y0 := 0. For i ≥ 1, let xi := P iσ(0) and let yi := P i(0). Note that
xi ≤ xi+1 and yi ≤ yi+1, for all i ≥ 0.

We claim that xi ≤ yi for all i ≥ 0. This holds by induction on i: base case i = 0 is by de�nition.
For i ≥ 0, assuming xi ≤ yi, we have xi+1 = Pσ(xi) ≤ P (yi) = yi+1, where the middle inequality
follows by Lemma 6.2.

By Lemma 5.7, and since σ is optimal, we know that (limi→∞ x
i) = q∗σ = g∗σ = g∗. We also have

that (limi→∞ y
i) = q∗, where q∗ is the LFP of the maxPPS x = P (x). But then since xi ≤ yi for

all i, it follows that g∗ ≤ q∗. But since we always have q∗ ≤ g∗, this implies g∗ = q∗.

Theorem 6.3. Given a maxPPS, x = P (x), with GFP g∗,

1. Given i ∈ [n], there is an algorithm that determines in P-time whether g∗i = 0, and if g∗i > 0
computes a deterministic policy for the max player that achieves this.

2. Given any integer j > 0, there is an algorithm that computes a rational vector v ≤ g∗ with
‖g∗− v‖∞ ≤ 2−j, and also computes a deterministic policy σ, such that ‖g∗− g∗σ‖ ≤ 2−j, both
in time polynomial in |P | and j.
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Proof. 1. First apply Proposition 4.1, to remove variables xk with g
∗
k = 1, and record the partial

strategy for max on those types Tk that achieves g
∗
k = 1. The residual maxPPS has q∗ = g∗ by

Lemma 6.1. Thus, in order to decide whether g∗i = q∗i = 0, we only need to apply the P-time
algorithm from [14] to decide whether the extinction probability q∗i > 0. And the AND-OR
graph algorithm for this from [14] also supplies a deterministic policy to achieve q∗i > 0, if this
is the case.

2. Again, we �rst apply Proposition 4.1, so that, wlog, we can assume g∗ < 1. Then by Lemma
6.1, g∗ = q∗, so that we only need to approximate the LFP q∗ of a maxPPS, x = P (x), to within
j bits of precision, and compute a (2−j)-optimal deterministic policy, in time polynomial in
|P | and j. Algorithms that achieve precisely these two things were given in [12].

7 Approximating the GFP of a minPPS in P-time

In this section we will show the following.

Theorem 7.1. Given a minPPS, x = P (x) with g∗ < 1. If we use Generalized Newton's method,
starting at x(0) := 0, with rounding parameter h = j + 2 + 4|P |, then after h iterations, we have
‖g∗ − x(h)‖∞ ≤ 2−j.

In order to prove this theorem, we need some structural lemmas about the GFPs of minPPSs,
and their relationship to policies. There need not exist any policies σ with g∗σ = g∗, so we need
policies that can, in some sense, act as �surrogates� for it.

Recall that a policy σ for a max/minPPS, x = P (x), is called linear degenerate free (LDF) if
its associated PPS x = Pσ(x) is an LDF-PPS. When we consider the minPPS, x = P (x), obtained
from a BMDP for (non)reachability, after eliminating types which cannot reach the target, the LFP
q∗σ of x = Pσ(x) for an LDF policy, σ, has (q∗σ)i equal to 1 minus the probability that, starting
with one object of type i, we reach the target or else generate an in�nite number of objects that
can reach the target under policy σ. It turns out that there is an LDF policy σ∗ whose associated
LFP is the GFP of the minPPS. Furthermore, it turns out that we can get an ε-optimal policy by
following this LDF policy σ∗ with high probability and with low probability following some policy
that can reach the target from anywhere.

Lemma 7.2. If a minPPS x = P (x) has g∗ < 1 then:

1. There is a deterministic LDF policy σ with g∗σ < 1,

2. g∗ ≤ q∗τ , for any LDF policy τ , and

3. There is a deterministic LDF policy σ∗ whose associated LFP, q∗σ∗, has g
∗ = q∗σ∗.

5

5We remark for the reader's intuition (although we shall not prove it) that it can be shown that any LDF policy
σ∗ for a minPPS that satis�es q∗σ∗ = g∗ < 1 has the property that in the underlying BMDP σ∗ maximizes the
probability of the event of either reaching the target type or else growing the population of types that can reach the
target to in�nity.
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Rather than proving Lemma 7.2 here, we will instead prove later on a result for max-minPPSs
(Lemma 9.1 of Section 9), which directly generalizes Lemma 7.2.

Note that the policy σ∗ described in part (3.) of Lemma 7.2 is not necessarily optimal because
even though g∗ = q∗σ∗ , there may be an i with g∗i = (q∗σ∗)i < (g∗σ∗)i = 1.

We will need also the following lemma from [12] on linearizations of max/minPPS.

Lemma 7.3. ([12], Lemma 3.5.) Let x = P (x) be any max/minPPS. Suppose that the matrix
inverse (I −Bσ(y))−1 exists and is non-negative, for some policy σ, and some y ∈ Rn, where Bσ is
the Jacobian of Pσ. Then

(i) Nσ(y) is de�ned, and is equal to the unique point a ∈ Rn such that P yσ (a) = a.

(ii) For any vector x ∈ Rn:
If P yσ (x) ≥ x, then x ≤ Nσ(y).
If P yσ (x) ≤ x, then x ≥ Nσ(y).

We will show now that Generalised Newton's Method (GNM) is well-de�ned.

Lemma 7.4. Given a minPPS, x = P (x), with GFP g∗ < 1, and given y with 0 ≤ y ≤ g∗, there
exists a deterministic LDF policy σ with P y(Nσ(y)) = Nσ(y), the GNM operator I(x) is de�ned at
y, and for this policy σ, I(y) = Nσ(y).

Proof. We �rst show that there is an LDF policy σ with P y(Nσ(y)) = Nσ(y). We will follow a
proof structure similar to Lemma 3.14 from [12].

As there, we will be using policy improvement to show existence of a policy with desired prop-
erties (but not as an algorithm to compute such a policy). Lemma 7.2 (1.) gives the existence of a
deterministic LDF policy given our assumption that g∗ < 1. So we start with such an LDF policy
σ1. Initially i = 1, and we increment i after each policy improvement step.

In the general step i we have a deterministic LDF policy σi. By Lemma 7.2 (2.), g∗ ≤ q∗σi .
Since y ≤ g∗ < 1, we have y < 1

2(1 + g∗) ≤ 1
2(1 + q∗σi). Thus, we can apply Lemma 5.4 to the

LDF PPS x = Pσi(x) to conclude that (I − Bσi(y))−1 exists and thus Nσi(y) is well-de�ned. Let
z = Nσi(y). By Lemma 7.3, P yσi(z) = z. So P y(z) ≤ z. If P y(z) = z, then stop as we have a policy
σ with P y(Nσ(y)) = Nσ(y). Otherwise, there is a j with (P y(z))j < zj . Pj(x) has form M since
(P y(z))j < (P yσi(z))j . Thus Pj(x) = min{xk, xσi(j)} for some variable xk, and zk < zσi(j). De�ne
σi+1 to be

σi+1(l) =

{
σi(l) if l 6= j

k if l = j.

We will �rst show that σi+1 is LDF, which implies (as we argued for σi) that Nσi+1(y) is well-de�ned,
and then we will show that Nσi+1(y) ≤ z and Nσi+1(y) 6= z.

Claim 7.5. σi+1 is LDF.

Proof. Suppose for a contradiction that σi+1 is not LDF. Then there is a bottom SCC S of x =
Pσi+1(x), with (Pσi+1)S(xS) ≡ BSxS where BS is a stochastic irreducible matrix. S must include j
and k since otherwise σi would not be LDF. Note that since S is a linear degenerate bottom SCC,
for coordinates j ∈ S we have P yσi+1(x) = Pσi+1(x). Now we have (Pσi+1(z))j = (P yσi+1(z))j < zj ,
but for every other coordinate l ∈ S such that l 6= j, (Pσi+1(z))l = (P yσi+1(z))l = (P yσi(z))l = zl.
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Thus (Pσi+1(z))S = (BSzS) ≤ zS , but with (Pσi+1(z))j = (BSzS)j < zj . However, if we
let j′′ ∈ S be a coordinate of zS with minimum value, we see that (Pσi+1(z))j′′ is just a convex
combination of the other coordinates of zS . Thus the coordinates of zS that appear in (Pσi+1(z))j′′
must all also have the minimum value, and thus they are equal to zj′′ . Repeating this argument,
since S is strongly connected, this implies that all coordinates of zS are equal to zj′′ . But this
contradicts the strict inequality (Pσi+1(z))j < zj in the j coordinate. Thus, σi+1 must be LDF.

Therefore, Nσi+1(y) is well-de�ned.
We know (P yσi+1(z))j < zj , but for every coordinate l 6= j, (P yσi+1(z))l = zl. So we have

P yσi+1(z) ≤ z. Lemma 7.3 (ii) yields that Nσi+1(y) ≤ z. But Nσi+1(y) 6= z because P yσi+1(z) 6= z
whereas by Lemma 7.3 (i) from [12], we have P yσi+1(Nσi+1(y)) = Nσi+1(y).

Thus the algorithm gives us a sequence of deterministic LDF policies σ1, σ2, . . ., with Nσ1(y) ≥
Nσ2(y) ≥ Nσ3(y) ≥ . . ., where each step must decrease at least one coordinate of Nσi(y). It follows
that σi 6= σj unless i = j. There are only �nitely many deterministic policies. So the sequence must
be �nite and the algorithm terminates. But it only terminates when we reach a (deterministic) LDF
policy σi with P

y(Nσi(y)) = Nσi(y).
Recall that I(x) is de�ned to be the unique optimal solution to the following LP:6

Maximize:
∑
i

ai ; Subject to: P y(a) ≥ a

We want to establish that I(y) is well de�ned, i.e. that the LP has a unique optimal solution, and
that solution is Nσi(y). First, Nσi(y) is a feasible solution to the LP since P y(Nσi(y)) = Nσi(y).
Furthermore, if a is any feasible solution, i.e., if P y(a) ≥ a, then P yσi(a) ≥ P y(a) ≥ a, so by Lemma
7.3 (ii), a ≤ Nσi(y). So Nσi(y) has the maximum value in every coordinate among all feasible
solutions. Thus, it is the unique optimal solution to the LP, and I(y) = Nσi(y).

Now we can show a halving result for GFPs of minPPS, similar to the following lemma that was
shown in [12] for LFPs of PPS:

Lemma 7.6. ([12], Lemma 3.17) If x = P (x) is a PPS and we are given a, b ∈ Rn with 0 ≤ a ≤
b ≤ P (b) ≤ 1, and if the following conditions hold:

λ > 0 and b− a ≤ λ(1− b) and (I −B(a))−1 exists and is non-negative,

then b−N (a) ≤ λ
2 (1− b).

We show an analogous lemma for GFP of minPPS.

Lemma 7.7. Let x = P (x) be a minPPS with GFP g∗ < 1. For any 0 ≤ y ≤ g∗ and λ > 0, we
have I(y) ≤ g∗, and if:

g∗ − y ≤ λ(1− g∗)

then

g∗ − I(y) ≤ λ

2
(1− g∗)

6As we explained in Section 2, the constraints P y(a) ≥ a can be written as linear inequalities.
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Proof. By Lemma 7.4, there is a deterministic LDF policy σ with I(y) = Nσ(y). We apply Lemma
7.6 to the PPS x = Pσ(x), with its variable a replaced by our y, and with its variable b replaced
by g∗. Observe that Pσ(g∗) ≥ P (g∗) = g∗ and that (I −Bσ(y))−1 exists and is non-negative. Thus
the conditions of Lemma 7.6 hold and we can conclude that g∗ −Nσ(y) ≤ λ

2 (1− g∗).
All that remains is to show that I(y) = Nσ(y) ≤ g∗. By Lemma 7.2(3.), there is an LDF

policy τ with g∗ = q∗τ . By Lemma 5.4 applied to the PPS x = Pτ (x), the matrix (I − Bτ (y))−1

exists and is non-negative, and Nτ (y) is well-de�ned. Any solution a to the LP de�ning I(y) has
P xτ (a) ≥ P y(a) ≥ a, so a ≤ Nτ (y) by Lemma 7.3. So I(y) ≤ Nτ (y). But we know from Lemma
3.4 of [11], that for any PPS with LFP q∗ < 1, if y ≤ q∗, and N (y) is de�ned, then N (y) ≤ q∗.
Applying this lemma to the PPS x = Pτ (x), and since q∗τ = g∗ < 1 and y ≤ g∗, we conclude that
Nτ (y) ≤ q∗τ . Therefore, I(y) ≤ Nτ (y) ≤ q∗τ = g∗.

Proof of Theorem 7.1. The theorem now follows by directly applying exactly the same inductive
argument as given in [12] for the proof of Theorem 3.21 there for the LFP. Speci�cally, we start
GNM at x(0) := 0, and we let x(k) denote the k'th iterate of GNM (applied on the minPPS,
x = P (x), which has g∗ < 1), with rounding parameter h := j + 2 + 4|P |. In all iterations we have
0 ≤ x(k) ≤ g∗. Let (1 − g∗)min = minj(1 − g∗)j . As in [12], we claim, by induction on k, that for
all k ≥ 0:

g∗ − x(k) ≤ (2−k +
k−1∑
i=0

2−(h+i))
1

(1− g∗)min
(1− g∗)

For the base case, k = 0, we have

g∗ − x(0) = g∗ ≤ 1 ≤ 1
(1− g∗)min

(1− g∗).

For the induction step, let us write for simplicity the claimed inequality as g∗−x(k) ≤ λk(1−g∗).
The induction hypothesis g∗ − x(k−1) ≤ λk−1(1− g∗) implies by Lemma 7.7 that g∗ − I(x(k−1)) ≤
λk−1

2 (1− g∗). The kth iterate x(k) satis�es x
(k)
i ≥ I(x(k−1))i− 2−h in every coordinate i. Therefore,

g∗ − x(k) ≤ λk−1

2 (1− g∗) + 2−h1 ≤ (λk−1

2 + 2−h

(1−g∗)min
)(1− g∗) = λk(1− g∗).

This shows the claimed inequality. Since
∑k−1

i=0 2−(h+i) ≤ 2−h+1, the inequality implies that

g∗ − x(k) ≤ (2−k + 2−h+1) 1−q∗
(1−q∗)min

for all k.

Let σ∗ be the (deterministic) LDF policy of Lemma 7.2 (3.) with q∗σ = g∗. It was shown in [11]
(Lemma 3.12), that if the LFP of a PPS x = P (x) is < 1 then the di�erence from 1 is at least 2−4|P |

in every coordinate. Applying this lemma to the PPS x = Pσ∗(x) and noting that |Pσ∗ | ≤ |P |, we
have that ‖(1−g

∗)‖∞
(1−g∗)min

≤ 1
2−4|P | = 24|P |. Therefore, ‖g∗ − x(k)‖∞ ≤ (2−k + 2−h+1)24|P |. If we then let

k = h = j + 4|P |+ 2, we get that ‖g∗ − x(h)‖∞ ≤ 2−j .

8 Computing ε-optimal policies for the GFP of minPPSs in P-time.

In this section we show how to construct an ε-optimal randomized policy for the GFP of a minPPS,
x = P (x), in time polynomial in the input encoding size |P | and log(1/ε); note that there may
not exist any deterministic ε-optimal policy (recall Example 3.2). We also consider BMDPs with
the minimum non-reachability (i.e., maximum reachability) objective and show how to construct a
deterministic non-static ε-optimal strategy, again in time polynomial in |P | and log(1/ε).
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Given a minPPS, x = P (x), with n variables, we �rst preprocess it to identify and remove all
variables with value 1 in the GFP; the policy can be set arbitrarily for all these nodes of type M that
have value 1. So assume henceforth that g∗ < 1. We �rst show how to �nd a deterministic LDF
policy σ with ‖g∗−q∗σ‖∞ ≤ 1

2ε. We will then use this policy to construct an ε-optimal (randomized)
policy. Both steps are conducted in time polynomial in |P | and log(1/ε).

We use the following algorithm to construct a deterministic LDF policy σ with ‖g∗−q∗σ‖∞ ≤ 1
2ε.

Note that each step of the algorithm runs in time polynomial in |P | and log(1/ε).

Algorithm minPPS-ε-policy1

1. Compute, using GNM, a 0 ≤ y ≤ g∗ with ‖g∗ − y‖∞ ≤ 2−14|P |−3ε.

2. Let k := 0, and let σ0 be a policy that has Pσ0(y) = P (y), i.e., σ0 chooses for each type M

variable xi a variable xj of Pi(x) that has the minimum value in the vector y.

3. Compute Fσk , the set of variables that, in the dependency graph of x = Pσk(x), either are or
can reach a variable xi which either has form Q or else Pi(1) < 1 or Pi(0) > 0. Let Dσk be
the complement of Fσk .

4. If Dσk 6= ∅, �nd a variable7 xi of type M in Dσk that has a choice xj in Fσk , which isn't its
current choice, such that |yi − yj | ≤ 2−14|P |−2ε. Let σk+1 be the policy which chooses xj at
xi, and otherwise agrees with σk. Let k := k + 1, and return to step 3.

5. Else, i.e., if Dσk is empty, output σk and terminate.

We will show that the �nal policy σ computed by this algorithm has the desirable property. To
start, we will extend the following lemma from [12] to GFPs of minPPS.

Lemma 8.1 (Lemma 4.4 from [12]). If x = P (x) is a max/minPPS, and if 0 ≤ y ≤ q∗, then
‖P (y)− y‖∞ ≤ 2‖q∗ − y‖∞.

Lemma 8.2. If x = P (x) is a minPPS, and if 0 ≤ y ≤ g∗ < 1, then ‖P (y)− y‖∞ ≤ 2‖g∗ − y‖∞.

Proof. Let σ∗ be the (deterministic) LDF policy of Lemma 7.2(3.) that has q∗σ∗ = g∗. We apply
lemma 8.1 to the PPS x = Pσ∗(x). This yields ‖Pσ∗(y)− y‖∞ ≤ 2‖g∗ − y‖∞.

So for any xi not of form M, we have |Pi(y)− yi| = |(Pσ∗(y)− y)i| ≤ 2‖g∗ − y‖∞. For xi of form
M, we have Pi(x) ≡ min{xj , xk} for some variables xj , xk. Suppose wlog that yj ≤ yk and thus
Pi(y) = yj . Then we have Pi(y) = yj ≥ g∗j −‖g∗−y‖∞ ≥ g∗i −‖g∗−y‖∞. Since P (y) ≤ P (g∗) = g∗,
Pi(y) ≤ g∗i . For yi, we also have g∗i −‖g∗− y‖∞ ≤ yi ≤ g∗i . Therefore, |Pi(y)− yi| ≤ ‖g∗− y‖∞.

We use this lemma to bound ‖Pσ(y)− y‖∞ for the policy σ output by the algorithm.

Lemma 8.3. Algorithm minPPS-ε-policy1 always terminates in at most n iterations of steps (3.)-
(4.), and outputs a deterministic LDF policy σ with ‖Pσ(y)−y‖∞ ≤ 2−14|P |−2ε. Since each iteration
runs in time polynomial in |P | and log(1/ε), so does the entire algorithm.

7We will show that such a variable xi always exists whenever we reach this step.
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Proof. We �rst note that if the algorithm terminates, then it outputs an LDF policy since every
variable in Fσk satis�es condition (ii) of Lemma 5.1 applied to the PPS x = Pσk . We need to show
that the algorithm terminates in the speci�ed number of iterations, and that the �nal policy satis�es
the claimed bound.

At step 1 of the algorithm, we have ‖g∗ − y‖∞ ≤ 2−14|P |−3ε. Thus, by Lemma 8.2, we have
‖P (y)−y‖ ≤ 2−14|P |−2ε. It follows by the choice of σ0 that ‖Pσ0(y)−y‖ ≤ 2−14|P |−2ε. Whenever we
switch xi of form M from xl to xj at an iteration k, we have |(Pσk+1

(y)−y)i| = |yj−yi| ≤ 2−14|P |−2ε

since we required that |yi − yj | ≤ 2−14|P |−2ε. So for all k, ‖Pσk(y)− y‖∞ ≤ 2−14|P |−2ε. Thus, if the
algorithm terminates, it outputs an LDF policy σ with ‖Pσ(y)− y‖∞ ≤ 2−14|P |−2ε.

Next we show that if Dσk is non-empty in some iteration k, then it contains an xi of form M

which has a choice xj in Fσk with |yi − yj | ≤ 2−14|P |−2ε. Consider any xl in Dσk . Let σ∗ be a
(deterministic) LDF policy such that g∗ = q∗σ∗ (which exists by Lemma 7.2(3.)). σ∗ is an LDF
policy so there is a path in the dependency graph of x = Pσ∗(x) from xl to some xm which is not
of form M and is either of form Q or has Pm(1) < 1 or Pm(0) > 0. Thus xm is in Fσk . So there must
be a variable xi on the path from xl ∈ Dσk to xm ∈ Fσk , with xi ∈ Dσk , which depends directly on
an xj which is next in the path and such that xj ∈ Fσk . So (Pσ∗(x))i contains a term with xj and
(Pσk(x))i does not. Thus xi is of form M and (Pσk(x))i ≡ xj . But applying Lemma 8.1 to the PPS
x = Pσ∗(x) gave us that ‖Pσ∗(y)− y‖∞ ≤ 2‖g∗− y‖∞. So |yi− yj | ≤ 2‖g∗− y‖∞ ≤ 2−14|P |−2ε. We
can thus switch xi to xj in step 3.

Since no variable in Fσk depends on a variable in Dσk , we have that Fσk+1
⊇ Fσk ∪ {xj}. Since

there are only n variables, this means that for some k ≤ n, all are in Fσk and the algorithm
terminates in at most n iterations of the steps (3.) and (4.).

We now show that the policy σ has the desired property.

Lemma 8.4. The output policy σ of Algorithm minPPS-ε-policy1 satis�es q∗σ < 1 and ‖g∗−q∗σ‖∞ ≤
1
2ε.

Proof. We will show the lemma in two steps. In Step 1, we will show that q∗σ < 1. In Step 2 we
will use this to show that ‖g∗ − q∗σ‖∞ ≤ 1

2ε.

Step 1: q∗σ < 1.
This section of the proof is essentially identical to part of the proof of Theorem 4.7 in [12].

Suppose, for contradiction, that for some i, (q∗σ)i = 1. Then by results in [15], x = Pσ(x) has a
bottom strongly connected component S with q∗S = 1. If xi is in S then only variables in S appear
in (Pσ)i(x), so we write xS = PS(x) for the PPS which is formed by such equations. We also have
that BS(1) is irreducible and that the least �xed point solution of xS = PS(xS) is q∗S = 1. Take yS
to be the subvector of y with coordinates in S.

We will apply Theorem 4.6 (ii) from [12], which states that if a PPS x = P (x) is strongly
connected, has LFP q∗ = 1, and a vector y satis�es 0 ≤ y < 1 = q∗, then (I − B(y))−1 exists,
is nonnegative, and ‖(I − B(y))−1‖∞ ≤ 24|P |/(1 − y)min. Applying this theorem to the PPS
xS = PS(xS) with 1

2(yS + 1) in place of y, gives that

‖(I −BS(
1
2

(yS + 1)))−1‖∞ ≤
24|PS |

1
2(1− yS)min

But |PS | ≤ |P | and (1− yS)min ≥ (1− g∗)min ≥ 2−4|P |. Thus

‖(I −BS(
1
2

(yS + 1)))−1‖∞ ≤ 28|P |+1
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From Lemma 5.3, PS(yS)− PS(1) = PS(yS)− 1 = BS(1
2(1 + yS))(yS − 1). Hence, (I − BS(1

2(1 +
yS)))(1− yS) = 1− yS + PS(yS)− 1 = PS(yS)− yS , and therefore:

1− yS = (I −BS(
1
2

(1 + yS)))−1(PS(yS)− yS)

Taking norms and re-arranging gives:

‖PS(yS)− yS)‖∞ ≥
‖1− yS‖∞

‖(I −BS(1
2(yS + 1)))−1‖∞

≥ 2−4|P |

28|P |+1
≥ 2−12|P |−1

However ‖PS(yS)− yS)‖∞ ≤ ‖Pσ(y)− y‖∞ and ‖Pσ(y)− y‖∞ ≤ 2−14|P |−2ε by Lemma 8.3. This is
a contradiction and so q∗σ < 1.

Step 2: ‖g∗ − q∗σ‖∞ ≤ 1
2ε.

Now that we have q∗σ < 1, we can apply the following generalisation of Theorem 4.6 (i) of [12].

Lemma 8.5 (cf Theorem 4.6 (i) of [12]). If x = P (x) is an LDF PPS with q∗ < 1 and 0 ≤ y < 1,
then B(1

2(y + q∗)))−1 exists, is nonnegative, and

‖(I −B(
1
2

(y + q∗)))−1‖∞ ≤ 210|P |max {2(1− y)−1
min, 2

|P |}

.

Proof. The only di�erence between Lemma 8.5, and the corresponding Theorem 4.6 (i) of [12], is
that instead of assuming that 0 < q∗ < 1 there, here we assume that q∗ < 1 and that x = P (x)
is an LDF PPS. Furthermore, the only part of the proof of Theorem 4.6 (i) which employs the
assumption that q∗ > 0, is Lemma C.8 of [12], for which we now establish the analogous Lemma
8.6 below, under the alternative assumption that x = P (x) is an LDF PPS.

Lemma 8.6. For any LDF-PPS, x = P (x), with LFP q∗ < 1, for any variable xi either

(I) the equation xi = Pi(x) is of form Q, or else Pi(1) < 1, or

(II) xi depends (directly or indirectly) on a variable xj, such that xj = Pj(x) is of form Q, or else
Pj(1) < 1.

Proof. Consider the set S of xi which do not satisfy either (I) or (II); i.e., S is the set of variables
that cannot reach in the dependency graph any node xj that has type Q or is de�cient (Pj(1) < 1).
Suppose for a contradiction that S is non-empty. No element xi in S can depend on an element
outside of S since otherwise by transitivity of dependence it would satisfy (II). Consider the LDF-
PPS xS = PS(xS). Since this has no variables of form Q, PS(xS) is a�ne i.e. we have PS(xS) ≡
BS(0)xS + PS(0). So for any �xed point qS of xS = PS(xS), we have qS = BS(0)qS + PS(0).
Since x = P (x) is LDF, Lemma 5.4 yields that (I − BS(0))−1 exists and is non-negative. So we
get qS = (I − BS(0))−1PS(0), i.e. the linear system is non-singular, it has a unique solution, so
x = PS(xS) has a unique �xed point. But because (I) does not hold for any variable in S, we have
PS(1) = 1. So the unique �xed-point is q∗S = 1. This contradicts the assumption that q∗ < 1 and
so S is empty.
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The rest of the proof of Lemma 8.5 is word-for-word identical to the rest of the proof of Theorem
4.6 (i) from [12] (using Lemma 8.6 instead of Lemma C.8 there), so we will not repeat it here.8

Corollary 8.7. If x = P (x) is an LDF PPS with 0 ≤ q∗ < 1, then

‖(I −B(q∗))−1‖∞ ≤ 214|P |+1

Proof. We substitute y := q∗ in Lemma 8.5 along with the bound (1−q∗)min ≥ 2−4|P | from Theorem
3.12 of [11].

We can now complete Step 2 of the proof of Lemma 8.4. By Lemma 5.3, Bσ(1
2(q∗σ+y))(q∗σ−y) =

q∗σ−Pσ(y). Rearranging this gives q∗σ− y = (I −Bσ(1
2(q∗σ + y)))−1(Pσ(y)− y). Taking norms, using

the fact that y ≤ g∗ ≤ q∗σ (since σ is LDF), and applying Corollary 8.7 on the PPS x = Pσ(x) and
Lemma 8.3, we have:

‖q∗σ − y‖∞ ≤ ‖(I −Bσ(
1
2

(q∗σ + y)))−1‖∞‖Pσ(y)− y‖∞

≤ ‖(I −Bσ(q∗σ))−1‖∞‖Pσ(y)− y‖∞
≤ 214|P |+12−14|P |−2ε

≤ 1
2
ε

By Lemma 7.2(2.), we have g∗ ≤ q∗σ. We have y ≤ g∗ ≤ q∗σ and so ‖q∗σ−g∗‖∞ ≤ ‖q∗σ−y‖∞ ≤ 1
2ε.

We de�ne a randomized policy υ for the minPPS as follows. Let σ be the policy computed by
Algorithm minPPS-ε-policy1 and let τ be a (LDF) deterministic policy that satis�es g∗τ < 1 (which
can be computed in P-time by Proposition 4.1). For each type M variable, the policy υ follows with
probability 2−28|P |−4ε the choice of policy τ , and with the remaining probability 1− 2−28|P |−4ε the
choice of policy σ.

Theorem 8.8. The policy υ satis�es ‖g∗ − g∗υ‖∞ ≤ ε, i.e., it is ε-optimal.

Proof. We will show that q∗υ is close to q∗σ and g∗, and that g∗υ = q∗υ. First note that Pυ(g∗) ≥ g∗:
for variables xi of the minPPS that have type L or Q, (Pυ(g∗))i = Pi(g∗) = g∗i , and for variables
xi of type M, e.g. xi = min(xj , xk), we have g∗i = min(g∗j , g

∗
k), and thus (Pυ(g∗))i ≥ g∗i . Since

Pυ(g∗) ≥ g∗, we have q∗υ ≥ g∗ by Lemma 5.5. We seek a z close to g∗ such that g∗ ≤ q∗υ ≤ z.

Lemma 8.9. For an LDF-PPS x = P (x) with LFP q∗ < 1, let z = q∗ + δ(I − B(q∗))−11 where
0 ≤ δ ≤ 2−28|P |−3. Then P (z) ≤ z − 1

2δ1.

Proof. From Lemma 5.3

B(
1
2

(q∗ + z))(z − q∗) = P (z)− q∗ (1)

From the de�nition of z we have (I −B(q∗))(z − q∗) = δ1 and so

B(q∗)(z − q∗) = z − q∗ − δ1 (2)

8This is the part that starts after the proof of Lemma C.8 on page 37 of [12] and �nishes with the desired norm
bound inequality at the top of page 39 that completes the proof of part (i) of Theorem 4.6 there.
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Subtracting (2) from (1), we obtain

(B(
1
2

(q∗ + z))−B(q∗))(z − q∗) = P (z)− z + δ1

If Pi(x) is of form L, the ith row of B(x) does not depend on x so we have Pi(z) − zi + δ = 0 as
required.

If Pi(x) is of form Q, wlog Pi(x) = xjxk then we have ((B(1
2(q∗ + z)) − B(q∗))(z − q∗))i =

1
2(zj−q∗j )(zk−q∗k)+ 1

2(zk−q∗k)(zj−q∗j ) = (zj−q∗j )(zk−q∗k). Thus we have Pi(z)−zi+δ ≤ ‖z−q∗‖2∞.
But here ‖z − q∗‖2∞ ≤ δ2‖(I −B(q∗))−1‖2 ≤ δ2228|P |+2 ≤ 1

2δ. So we have Pi(z) ≤ zi − 1
2δ.

We apply this Lemma on the PPS x = Pσ(x) with δ = 2−28|P |−4ε. We get that for z =
q∗σ + 2−28|P |−4ε(I − Bσ(q∗σ))−11, Pσ(z) ≤ z − 2−28|P |−3ε. For any x ∈ [0, 1]n, Pσ(x) ∈ [0, 1]n

and Pτ (x) ∈ [0, 1]n, so ‖Pσ(x) − Pτ (x)‖∞ ≤ 1. So, by de�nition of υ, ‖Pσ(x) − Pυ(x)‖∞ =
2−28|P |−3ε‖Pσ(x) − Pτ (x)‖∞ ≤ 2−28|P |−3ε. In particular ‖Pσ(z) − Pυ(z)‖∞ ≤ 2−28|P |−3ε. And so
we have Pυ(z) ≤ Pσ(z) + 2−28|P |−3ε ≤ z. So by Lemma 5.5, q∗υ ≤ z. Now we have g∗ ≤ q∗υ ≤ z, and
so using Lemma 8.4 and Corollary 8.7, we get:

‖q∗υ − g∗‖∞ ≤ ‖z − g∗‖∞
≤ ‖q∗σ − g∗‖∞ + ‖z − q∗σ‖∞

≤ 1
2
ε+ 2−28|P |−3ε‖(I −Bσ(q∗σ))−1‖∞

≤ 1
2
ε+ 2−28|P |−3ε214|P |+1

≤ ε

Recall that a PPS x = P (x) has g∗i < 1 if and only if either Pi(1) < 1 or there is a path in the
dependency graph from xi to an xj with Pj(1) < 1. If there is a path from xi to xj in the dependency
graph of x = Pτ (x), then the same path exists in x = Pυ(x). Then by the same graph analysis that
gave us g∗τ < 1, we have g∗υ < 1. And so by Lemma 5.5, q∗υ = g∗υ. So we have ‖g∗υ − g∗‖ ≤ ε. That
is, υ is an ε-optimal policy.

So, in a BMDP with minimum non-reachability (i.e., maximum reachability) objective, we can
construct e�ciently, in time polynomial in the encoding size of the BMDP and log(1/ε), a ran-
domized static ε-optimal strategy. The following theorem shows that we can also construct a
deterministic non-static strategy.

Theorem 8.10. For a BMDP with minPPS x = P (x), and minimum non-reachability probabilities
given by the GFP g∗ < 1, the following deterministic non-static strategy α is also ε-optimal starting
with one object of any type:

Use policy σ that is the output of Algorithm minPPS-ε-policy1, until the population has

size at least 24|P |+1

ε for the �rst time; thereafter use a deterministic static policy τ such
that g∗τ < 1.

Proof. It follows from Lemma 5.6 that if we start the BP with an initial population of a single
object with type corresponding to xi, 1− (q∗σ)i is the probability that we either reach the target or
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else the population tends to in�nity as time tends to in�nity. So under the strategy α, with at least

probability 1− (q∗σ)i, we either reach a population of more than 24|P |+1

ε or we reach the target.

Let p be the probability that we reach the population 24|P |+1

ε under σ without reaching the

target. Then 1 − (q∗σ)i − p is the probability that we reach the target while staying under 24|P |+3

ε
population.

We claim that the probability of reaching the target from any population of sizem ≥ 24|P |+1

ε using
τ is at least 1− 1

2ε. For a single object of type corresponding to xj , this probability is 1− (g∗τ )j ≥
2−4|P |. Since we can consider descendants of each member of the population independently, the
probability that any of them reach the target is at least 1− (1− 2−4|P |)m ≥ 1−m2−4|P | ≥ 1

2ε
The probability of reaching the target using α is then at least 1 − (q∗σ)i − p + p(1 − 1

2ε) ≥
(1− g∗i − 1

2ε) + p1
2ε ≥ 1− g∗i − ε. So α is ε-optimal.

Corollary 8.11. Given a BMDP with a minimum non-reachability (i.e. maximum reachability)
objective, and any ε > 0, we can compute a static randomized ε-optimal strategy or a deterministic
non-static ε-optimal strategy in time polynomial in both the encoding size of the BMDP and in
log(1/ε).

9 P-time detection of GFP g∗i = 0 for max-minPPSs and reachabil-

ity value 1 for BSSGs.

In this section we give a P-time algorithm for deciding whether the value of a BSSG reachability
game is equal to 1 (i.e., whether g∗i = 0 for a given max-minPPS), in which case we show that the
value is actually achieved by a speci�c, memoryful but deterministic, strategy for the maximizing
player, which we can compute in P-time. Thus there is no distinction between limit-sure vs. almost-
sure reachability for BSSG. Recall however that, as shown by Example 3.1, for a BSSG (or even
BMDP) with reachability value equal to 1 there need not exist a static (even randomized) strategy
that achieves almost-sure reachability.

Before presenting the algorithm, we need to extend the concept of LDF policies to max-minPPSs
and prove a basic lemma about them. We de�ne a policy τ for the min player to be LDF if for all
policies σ of the max player, x = Pσ,τ (x) is an LDF PPS. The following Lemma directly generalizes
Lemma 7.2 to max-minPPSs, and indeed its proof also provides the missing proof of Lemma 7.2 for
minPPSs.

Lemma 9.1. If a max-minPPS x = P (x) has g∗ < 1 then:

1. There is a deterministic LDF policy τ for the min player with g∗∗,τ < 1,

2. g∗ ≤ q∗∗,τ ′ for any LDF policy τ ′ for the min player, and

3. There is a deterministic LDF policy τ∗ for the min player whose associated LFP, q∗∗,τ∗, has
g∗ = q∗∗,τ∗.

Proof.

1. Recall the P-time algorithm to detect whether g∗i = 1 (see Proposition 4.1 and its proof).
That algorithm yields a deterministic policy τ with g∗∗,τ < 1. For all max player policies σ,
we have g∗σ,τ < 1. Lemma 5.2 gives that all such PPSs x = Pσ,τ (x) are LDF. Thus, τ is LDF.
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2. To prove part (2.), let τ ′ be any LDF policy for the min player. Note that g∗ = P (g∗) ≤
P∗,τ ′(g∗). So there exists a σ with g∗ ≤ P∗,τ ′(g∗) = Pσ,τ ′(g∗). Namely, σ simply chooses, for
each equation xi = max{xj , xk}, the neighbor xj if g∗i = max{g∗j , g∗k} = g∗j , and otherwise
chooses xk, since then g∗i = max{g∗j , g∗k} = g∗k. By applying Lemma 5.5 to the LDF-PPS
x = Pσ,τ ′(x), with y := g∗, we get g∗ ≤ q∗σ,τ ′ ≤ q∗∗,τ ′ .

3. We will �rst show there exists a deterministic LDF policy τ∗ such that P (q∗∗,τ∗) = q∗∗,τ∗ , and
we will then argue that g∗ = q∗∗,τ∗ . This proof is somewhat similar to the proof of Lemma 3.14
from [12], as well as the proof of Lemma 7.4 in this paper. The proof uses policy improvement
to demonstrate the existence of the claimed policy (but not as an algorithm to compute it).

Part (1.) of this Lemma yields that there is a deterministic LDF policy τ with g∗∗,τ < 1. Thus
we have q∗∗,τ ≤ g∗∗,τ < 1.

At step 1, we start policy improvement with τ1 := τ . At step i, we have a deterministic
LDF policy τi with q∗∗,τi < 1. If P (q∗∗,τi) = q∗∗,τi , stop (because then, as we will see, policy
τi satis�es g

∗ = q∗∗,τi). Otherwise, there must be an xj with Pj(q∗∗,τi) < (q∗∗,τi)j , because
P (q∗∗,τi) ≤ P∗,τi(q

∗
∗,τi) = q∗∗,τi . Note that xj belongs to min, because otherwise we would have

Pj(q∗∗,τi) = (P∗,τi(q
∗
∗,τi))j . So we must have Pj(x) = min{xk, xτi(j)} for some xk. Then set τi+1

to be the policy that selects xk at xj for some xj with Pj(q∗∗,τi) < (q∗∗,τi)j , but is otherwise
identical. We need �rst to show that τi+1 is LDF.

Claim 9.2. The policy τi+1 is LDF.

Proof. Suppose for a contradiction that τi+1 is not LDF. Then there exists a policy σ for max
such that a bottom SCC S of x = Pσ,τi+1(x) is linear degenerate. This SCC must contain
xj and xk since otherwise S would also be a linear degenerate SCC of x = Pσ,τi(x) and so τi
would also not be LDF.

By construction, P∗,τi+1(q∗∗,τi) ≤ q∗∗,τi with strict inequality (P∗,τi+1(q∗∗,τi))j < (q∗∗,τi)j in the
coordinate j ∈ S.
Let j′′ = arg minj′∈S(q∗∗,τi)j′ be any coordinate of the vector (q∗∗,τi)S which has minimum value.
We have (P∗,τi+1(q∗∗,τi))j′′ ≤ (q∗∗,τi)j′′ .

We claim that any xj′ ∈ S that appears in (P∗,τi+1(x))j′′ must also have this minimum value,
i.e. (q∗∗,τi)j′ = (q∗∗,τi)j′′ . If (P∗,τi+1(x))j′′ has form L, then (P∗,τi+1(q∗∗,τi))j′′ is just a convex
combination of coordinates of (q∗∗,τi)S . If any of these are bigger than their minimum value
then we would have (P∗,τi+1(q∗∗,τi))j′′ > (q∗∗,τi)j′′ which is a contradiction. If (P∗,τi+1(x))j′′
belongs to min, then it is equal to xj′ ∈ S. Again we have (q∗∗,τi)j′ ≤ (q∗∗,τi)j′′ which is an
equality by minimality of j′′. If (P∗,τi+1(x))j′′ belongs to max, then we must have (q∗∗,τi)j′ ≤
(P∗,τi+1(x))j′′ ≤ (q∗∗,τi)j′′ which again is an equality by minimality of j′′. Lastly (P∗,τi+1(x))j′′
can not have form Q since S is linear degenerate in x = Pσ,τi+1(x). This completes the proof
of the claim that such xj′ are also minimal.

Since S is strongly-connected in x = Pσ,τi+1(x), xj and xk depend (directly or indirectly) on xj′′
in x = Pσ,τi+1(x) and so in x = P∗,τi+1(x) as well. By induction, we have that (q∗∗,τi)j = (q∗∗,τi)j′′
and (q∗∗,τi)k = (q∗∗,τi)j′′ . But now we have (q∗∗,τi)j = (q∗∗,τi)k. This contradicts (q∗∗,τi)k < (q∗∗,τi)j
which is why we switched xj to xk in τi+1. Thus τi+1 is LDF.
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1. Initialize S := { xi ∈ X | Pi(0) > 0, i.e., Pi(x) contains a constant term }.

2. Repeat the following until neither are applicable:

(a) If a variable xi is of form L or Mmax and Pi(x) contains a variable that is already in S,
add xi to S.

(b) If a variable xi is of form Q or Mmin and both variables in Pi(x) are already in S, add xi
to S.

3. Let F := { xi ∈ X − S | Pi(1) < 1, or Pi(x) has form Q }.

4. repeat the following until no more variables can be added:

(a) If a variable xi ∈ X − S is of form L or Mmin and Pi(x) contains a term whose variable is
in F , add xi to F .

(b) If a variable xi ∈ X − S is of form Mmax and both variables in Pi(x) are in F , add xi to
F .

5. If X = S ∪ F , terminate and output F .

6. Otherwise set S := X − F and return to step 2.

Figure 1: P-time algorithm for computing {xi ∈ X | g∗i = 0} for a max-minPPS with GFP g∗ < 1.

By construction of τi+1, we have P∗,τi+1(q∗∗,τi) ≤ q
∗
∗,τi with strict inequality in the j coordinate.

There is a policy σ for max that has q∗∗,τi+1
= q∗σ,τi+1

For such a σ, we have Pσ,τi+1(q∗∗,τi) ≤ q
∗
∗,τi

with strict inequality in the j coordinate. By Lemma 5.5, applied to the LDF-PPS, x =
Pσ,τi+1(x) with y := q∗∗,τi , this implies q∗σ,τi+1

≤ q∗∗,τi . So q
∗
∗,τi+1

≤ q∗∗,τi .
This cannot be an equality since P∗,τi+1(q∗∗,τi) 6= q∗∗,τi . So the algorithm cannot revisit the same
policy, i.e., for all k 6= i, we have τk 6= τi. Since there are only �nitely many deterministic
policies, the algorithm must terminate.

So the algorithm terminates with a deterministic LDF policy τ∗ with P (q∗∗,τ∗) = q∗∗,τ∗ . All
that remains is to show that g∗ = q∗∗,τ∗ . P (q∗∗,τ∗) = q∗∗,τ∗ , so q

∗
∗,τ∗ is a �xed point of x = P (x)

and the GFP g∗ satis�es g∗ ≥ q∗∗,τ∗ . By part (2.) of this Lemma, g∗ ≤ q∗∗,τ∗ . Therefore,
g∗ = q∗∗,τ∗ .

We are now ready to give the algorithm. First, we identify and remove all variables xi with
g∗i = 1 (which we can do in P-time, by Proposition 4.1). Let X be the set of all variables in the
remaining max-minPPS x = P (x) in SNF form, with GFP g∗ < 1. The algorithm is described in
Figure 1, and Theorem 9.3 shows that it computes the set {xi ∈ X | g∗i = 0}.

Theorem 9.3. The procedure in Figure 1, applied to a max-minPPS x = P (x) with g∗ < 1, always
terminates and outputs precisely the set of variables {xi ∈ X | g∗i = 0}, in time polynomial in
|P |. Furthermore we can compute in P-time a deterministic policy σ for the max player such that
(g∗σ,∗)i > 0 for all the variables xi in {xi ∈ X | g∗i > 0}.
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Proof. Firstly we show that all variables xi in the output F have g∗i = 0. To do this we construct
an LDF policy τ∗ for the min player such that (q∗∗,τ∗)i = 0, and then argue that g∗i = 0.

By Lemma 9.1(1.), there is an LDF policy τ with g∗∗,τ < 1. We de�ne τ∗ so that it agrees with
τ on variables in S. For a variable xi of form Mmin in F , policy τ∗ chooses a variable of Pi(x) that
was already in F and which caused xi to be added to F in step 4. So, for any �xed policy σ for
the max player, every variable xi in F depends (directly or indirectly) in the PPS x = Pσ,τ∗(x) on
a variable xj in F with Pj(1) < 1 or of form Q. So every variable in F satis�es one of two out of
the three conditions in Lemma 5.1 part (ii), with respect to x = Pσ,τ∗(x). Now consider a variable
xi in S. τ is LDF, so for the �xed policy σ for the max player, there is a path in the dependency
graph of x = Pσ,τ (x) from xi to an xj which satis�es one of the three conditions in Lemma 5.1 part
(ii). If this path does not contain any variable in F , then it is also a path in the dependency graph
of x = Pσ,τ∗(x). If it does, then xi depends on a variable in F , so by transitivity of dependence, it
also depends on a variable which satis�es one of the conditions in Lemma 5.1 (ii). The policy σ for
the max player was chosen arbitrarily. So τ∗ is LDF.

Next we need to show that (q∗∗,τ∗)F = 0. Since for all variables xi in F , Pi(x) does not contain
a constant term, we have (P∗,τ∗(0))F = 0. Note that all variables in F of type L, Mmin and Mmax

depend directly only on variables of F in x = P∗,τ∗(x), and every variable of type Q depends on
some variable in F (otherwise it would have been added to S in the previous step 2). It follows
then by an easy induction that (P k∗,τ∗(0))F = 0 for all k. So (q∗∗,τ∗)F = 0.

Since τ∗ is an LDF policy, Lemma 9.1(2.) tells us that q∗∗,τ∗ ≥ g∗. Since g∗ ≥ 0, we have that
g∗F = 0 as required.

Finally, we need to show that g∗S > 0, and specify a policy σ for the max player that ensures
this. We will only specify the policy for the Mmax nodes in S; the choice for the other Mmax nodes
does not matter and can be arbitrary. To show the claim, we need to show inductively that when
we add a variable xi to S, if all variables xj already in S have g∗j > 0 (and (g∗σ,∗)j > 0), then g∗i > 0
(and (g∗σ,∗)i > 0).

For the basis case, note that for the variables xi added to S in step 1, Pi(x) contains a positive
constant term, hence g∗i ≥ Pi(0) > 0. Consider now the variables xi added in an execution of
step 2. If Pi(x) is of form L then it contains an xj that was added earlier to S; hence g∗j > 0
(and (g∗σ,∗)j > 0), and thus g∗i = Pi(g∗) > 0 (and (g∗σ,∗)i > 0). If xi = xjxk or xi = min{xj , xk}
for some xj ,xk, then both xj ,xk were added earlier to S; hence g∗j > 0 and g∗k > 0, and thus
g∗i = Pi(g∗) > 0 (and similarly, (g∗σ,∗)i > 0). If xi = max{xj , xk}, then at least one of xj , xk was
added earlier to S, say xj , hence g

∗
j > 0 and (g∗σ,∗)j > 0. Let the policy σ choose σ(xi) = xj ; then

g∗i ≥ (g∗σ,∗)i = (g∗σ,∗)j > 0.
Consider now the set R of variables added to S in an execution of step 6 and assume inductively

that all the variables xj assigned so far to S have g∗j > 0 (and (g∗σ,∗)j > 0). Since the variables
xi of R were not added to F in steps 3-4, they all satisfy Pi(1) = 1, they are not of type Q, every
variable of type L or Mmin does not depend directly on any variable in F , and every variable of type
Mmax depends directly on at least one variable that is not in F . Let the policy σ choose actions for
variables in S as before, and for each variable xi of type Mmax in R let σ choose an arbitrary variable
of Pi(x) that is not in F . (For the variables xi of type Mmax that are in F , the choices of σ do not
matter at this point.) Then the dependency graph of x = Pσ,∗(x) has no edges from R to F .

We claim that (g∗σ,∗)R > 0. Let τ ′ be an LDF policy for the min player in the minPPS,
x = Pσ,∗(x), such that g∗σ,∗ = q∗σ,τ ′ (we know τ ′ exists by Lemma 7.2(1)). Let U be the set of
variables xi ∈ R with (q∗σ,τ ′)i = 0. We need to show that U is empty. Consider any xj ∈ U . We
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claim that any variable xk appearing in (Pσ,τ ′(x))j is in U . We know that the dependency graph
of x = Pσ,∗(x) has no edges from R to F , so xk /∈ F . It remains to show that (q∗σ,τ ′)k = 0, since
then by inductive assumption xk /∈ S, and so we must have xk ∈ R, and thus xk ∈ U . If xj is of
type M, then (Pσ,τ ′(x))j ≡ xk, so (q∗σ,τ ′)k = (q∗σ,τ ′)j = 0. If xj has type L, then if (q∗σ,τ ′)k > 0 then
(q∗σ,τ ′)j > 0 so we must have (q∗σ,τ ′)k = 0. Since xj ∈ U , it can not have type Q since such variables
not in S were put in F . So xk ∈ U .

We have that variables in U depend in the PPS x = Pσ,τ ′(x) only on other variables in U .
However, no variable xj that satis�ed one of the three conditions of Lemma 5.1 (ii) is in U ⊆ R
since it would have been put in S or F in an earlier step. Since x = Pσ,τ ′(x) is an LDF-PPS,
for any xi, by Lemma 5.1, there is a path from xi to such an xj . If xi ∈ U , then this path must
remain entirely in U which is a contradiction. Therefore U is empty and we have that (g∗σ,∗)R > 0
as required.

The fact that the algorithm runs in P-time follows easily from the fact that each iteration of the
outer loop adds at least one element to S, and no element is ever removed. The individual steps
of the algorithm are each easily computable in P-time, by performing AND-OR reachability on the
dependency graph.

We remark that the policy τ∗ for the min player constructed in the proof of Theorem 9.3 does
not necessarily ensure value 0 in the GFP for a variable xi with g∗i = 0 (i.e., it is possible that
(g∗∗,τ∗)i > 0). In fact, there may not exist any such policy (deterministic or randomized) ensuring
value 0 for the min player in a max-minPPS (or even a minPPS). Similarly, in a BSSG (or even
RMDP) with optimal non-reachability value 0 (i.e. reachability value 1), there may not exist any
optimal static strategy for the player that wants to minimize the non-reachability probability; recall
Example 3.1. We show however that we can construct a non-static optimal deterministic strategy.

Theorem 9.4. There is a non-static deterministic optimal strategy for the player minimizing the
probability of not reaching a target type in a BSSG, if the value of not reaching the target is 0.

Proof. Let x = P (x) be the max-minPPS for the given BSSG, whose GFP g∗ gives the non-
reachability values. Let Z = {xi|g∗i = 0} be the �nal value of the set F that is returned by the
algorithm of Fig. 1. Let τ∗ be the LDF policy for player min constructed in the proof of Theorem
9.3 that has the property that g∗i = 0 i� (q∗∗,τ∗)i = 0. Recall that τ∗ selects for each type Mmin

variable xi ∈ Z a variable xj of Pi(x) that was added earlier to F (and hence is also in Z). From
Proposition 4.1, we can also compute in P-time an LDF policy τ with g∗∗,τ < 1. We combine τ∗ and
τ in the following non-static policy:

We designate one member of our initial population with type in Z to be the queen. The rest
of the population are workers. We use policy τ∗ for the queen and τ for the workers. In following
generations, if we have not reached an object of the target type, we choose one of the children in
Z of the last generation's queen (which we next show must exist) to be the new queen. Again, all
other members of the population are workers.

We �rst show the policy is well de�ned, i.e., we can always �nd a new queen as prescribed. If
g∗i = 0, then Pi(g∗) = (P∗,τ∗(g∗))i = g∗i = 0. If Pi(x) has form L then all xj appearing in Pi(x) have
g∗j = 0 and there is no constant term. If Pi(x) has form Q then at least one xj in Pi(x) will have
g∗j = 0. If Pi(x) has form Mmin, then the xj = τ∗(xi) in (P∗,τ∗(x))i has g∗j = 0. Finally, if Pi(x) has
form Mmax, then for all variables xj in P∗,τ∗(x) we have g∗j = 0. In other words, using τ∗, an object
of a type in Z has o�spring which either includes the target or an object of a type in Z. Thus the
next generation always includes a potential choice of queen.
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Next we show that if we never reach the target type, the queen has more than one child in�nitely
often with probability 1. Indeed we claim that with probability at least 2−|P | within the next n
steps, either the queen has more than one child or we reach the target. For this purpose, we de�ne
inductively for every variable xi ∈ Z a (directed) tree Ti with root xi, which shows why xi was
added to F in the �nal iteration of the algorithm. If Pi(1) < 1 or xi has type Q then Ti is a single
node labeled xi. If xi has type L (respectively Mmin) and was added in step 4 because of variable
xj ∈ Pi(x) that was already in F (resp., where xj = τ∗(xi)), then Ti consists of the edge xi → xj
and the subtree Tj rooted at xj . If xi has type Mmax then Ti contains edges xi → xj for all xj ∈ Pi(x)
and a subtree Tj hanging from each xj .

Suppose that in some step the queen is an object corresponding to xi ∈ Z. Then with positive
probability (in fact probability at least 2−|P |), in the next (at most) n steps, the process will follow
a root-to-leaf path of the tree Ti, regardless of the strategy of the max player: whenever the path
is at a node of type L, the process follows the edge to the (unique) child (which becomes the new
queen) with the probability of the corresponding transition of the BSSG; when it is at a node of
type Mmin, it follows necessarily the edge to its child because we are using policy τ∗ for the queen;
and when it is at a node of type Mmax, it follows an edge selected by the max player. Thus, with
probability at least 2−|P |, the process arrives at a leaf of Ti. If the leaf corresponds to a variable xj
with Pj(1) < 1 then the process has reached a target type. If the leaf corresponds to a variable of
type Q then the queen generates two children.

Thus, if the queen never reaches the target throughout the process, then the queen will generate
more than one child in�nitely often with probability 1.

By our choice of the policy τ followed by the workers, g∗∗,τ < 1. The descendants of a worker
of type xi have positive probability (1− g∗∗,τ )i > 0 of reaching the target regardless of the strategy

of the max player (this probability is ≥ 2−4|P | by Lemma 3.20 of [12] applied to the maxPPS
x = P∗,τ (x)). For each worker descended from the queen these probabilities are independent. So
with probability 1, one of them will have descendants that reach the target. Thus we reach the
target with probability 1.

10 Approximating the value of BSSGs and the GFP of max-minPPSs

In this section we build on the prior results to show that the value of a Branching Simple Stochastic
Game (BSSG) with reachability as the objective can be approximated in TFNP. Equivalently, we
show that the GFP, g∗, of a max-minPPS can be approximated in TFNP.

We will �rst show that we can test in polynomial time whether a (deterministic) policy τ for
the min player in a max-minPPS is LDF. Recall, from Section 9, what it means for a policy τ for
the min player to be LDF.

We borrow the concept of a closed set, studied in [7], which we adapt for maxPPSs as follows:

De�nition 10.1. A closed set of a maxPPS, x = P (x), is a subset of variables S such that:
(i) the dependency subgraph induced by S is nontrivial (i.e., contains at least one edge, but not
necessarily more than one variable), and is strongly connected (i.e., every variable in S depends
on every variable in S via a directed path going only through variables in S); (ii) S contains only
variables of type M and L; and (iii) for all variables xi in S of type L, P (x)i contains only variables
in S, and furthermore Pi(0) = 0 and Pi(1) = 1.
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Lemma 10.2. A policy τ for the min player is LDF if and only if the maxPPS x = P∗,τ (x) contains
no closed sets.

Proof. To prove the (⇒) direction, suppose that S is a closed set. Since S is strongly-connected,
every variable xi of form Mmax must have a choice in S, because otherwise no variable in S would
depend on it via S. Let σ be a policy that picks a choice in S for every variables xi in S. No
variable in S in x = Pσ,τ (x) depends on any variable outside of S. So there must be a bottom SCC,
T , of x = Pσ,τ (x) with T ⊆ S. T is a linear degenerate SCC, since it contains no variables of form
Q and has (Pσ,τ )T (0) = 0 and (Pσ,τ )T (1) = 1. So τ is not LDF.

To prove the (⇐) direction, suppose that τ is a policy for min in x = P (x) which is not LDF,
i.e., there exists a σ such that there is a bottom SCC S of x = Pσ,τ (x) that is linear degenerate.
We claim that S is a closed set in x = P∗,τ (x). It is strongly-connected because it is an SCC of
x = Pσ,τ (x). It contains no variables of form Q and every variable of form L satis�es (iii).

Lemma 10.3. Given a max-minPPS x = P (x) and a policy τ for the min player, we can determine
in linear time whether τ is LDF.

Proof. By Lemma 10.2, τ is LDF if the maxPPS x = P∗,τ (x) contains no closed sets. A P-time
algorithm was given in [7] to �nd the maximal closed subsets (called the closed components) of a
�nite state MDP (and an improved algorithm was given in [5]). These algorithms could be readily
adapted to our setting, in order to compute all maximal closed subsets of the maxPPS. However,
our problem is simpler here: we only need to determine if there is any closed set. We can test this
condition more directly as follows. Let G be the dependency graph of the maxPPS x = P∗,τ (x).
Note that the variables xi of type Min have become now type L variables in the maxPPS x = P∗,τ (x)
and the corresponding polynomial (P∗,τ )i(x) satis�es (P∗,τ )i(0) = 0 and (P∗,τ )i(1) = 1.

Perform AND-OR reachability on G, where the set T of target nodes includes all nodes (vari-
ables) of type Q and all nodes xi of type L where Pi(0) > 0 or Pi(1) < 1; the set of OR nodes
consists of all type L variables xi where Pi(0) = 0 and Pi(1) = 1 (this includes all type Min nodes);
and the set of AND nodes consists of all type Max variables. Recall, from the second paragraph of
Section 4, the de�nition of the set of nodes that can and-or reach the set T . Let U be the set of
nodes that cannot AND-OR reach the set T of target nodes. We claim that τ is LDF if and only if
U is empty.

Suppose �rst that τ is not LDF. Then the maxPPS x = P∗,τ (x) contains a closed set S. By
the de�nition of a closed set, every type Max node of S has a successor in S (because S is strongly
connected), and every type L node xi of S has all its successors in S and satis�es Pi(0) = 0 and
Pi(1) = 1. Therefore, when we perform AND-OR reachability, no node of S will be accessed, i.e.,
no node of S can AND-OR reach the set T of target nodes. Hence S ⊆ U and thus U is not empty.

On the other hand, suppose that U is not empty, and let S be a bottom SCC of the subgraph
G[U ] of G induced by U . Then S satis�es the conditions of a closed set. Hence τ is not LDF.

We can show now the main result of this section.

Theorem 10.4. The problem of approximating the GFP of a max-minPPS x = P (x), i.e. comput-
ing a vector g̃ ∈ [0, 1]n such that ‖g∗ − g̃‖∞ ≤ ε, is in TFNP.

Proof. We �rst compute in polynomial time, by Proposition 4.1, the set of indices D = {i ∈ [n] |
g∗i = 1}. We then eliminate all variables xi such that i ∈ D from the max-minPPS, substituting
them by the value 1 and removing their corresponding equations.
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So, assume henceforth that g∗ < 1. By Lemma 9.1, for any deterministic LDF policy τ for min,
and deterministic policy σ for max, we have that g∗σ,∗ ≤ g∗ ≤ q∗∗,τ . Furthermore, by Lemma 9.1 and
Corollary 3.3, there exist such policies which make both of these inequalities tight. Thus, to put
the problem of approximating g∗ in TFNP, it su�ces to guess such policies with g∗σ,∗ and q

∗
∗,τ close

enough to each other, approximate the two vectors, and verify that they are close.
In more detail, the algorithm is as follows. Guess deterministic policies σ and τ for the max

and min players. Check whether τ is LDF (in P-time, by Lemma 10.3). If it is not, we reject this
guess. Otherwise, using our P-time algorithm for computing g∗ for minPPSs, together with the
P-time algorithm for computing q∗ for maxPPSs from [12], we compute approximations vσ and vτ
to g∗σ,∗ and q

∗
∗,τ from below, such that ‖vσ − g∗σ,∗‖∞ ≤ ε/2 and ‖vτ − q∗∗,τ‖∞ ≤ ε/2. Check whether

‖vσ − vτ‖∞ ≤ ε/2. If so, then output g̃ = vσ; otherwise, we reject this guess.
We have to show that the algorithm is sound and complete: (1) There is at least one guess

for which the algorithm produces an output, and (2) For every guess σ, τ for which the algorithm
produces an output, the output g̃ = vσ is within ε of g∗.

For claim (1), consider a deterministic policy σ for the max player and deterministic LDF policy
τ for the min player such that g∗σ,∗ = g∗ = q∗∗,τ . The algorithm computes values vσ ≤ g∗σ,∗ = g∗ and
vτ ≤ q∗∗,τ = g∗ such that ‖vσ − g∗‖∞ ≤ ε/2 and ‖vτ − g∗‖∞ ≤ ε/2. Therefore, ‖vσ − vτ‖∞ ≤ ε/2,
the algorithm accepts the guess and outputs g̃ = vσ.

For claim (2), suppose that the algorithm accepts a guess σ, τ and outputs g̃ = vσ. Since
vσ ≤ g∗σ,∗ ≤ g∗ ≤ q∗∗,τ , we have:

‖g∗ − vσ‖∞ ≤ ‖q∗∗,τ − vσ‖∞
≤ ‖q∗∗,τ − vτ‖∞ + ‖vτ − vσ‖∞

≤ ε

2
+
ε

2
= ε.
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