

Edinburgh Research Explorer

Imperative functional programs that explain their work

Citation for published version:
Ricciotti, W, Stolarek, J, Perera, R & Cheney, J 2017, Imperative functional programs that explain their
work. in 22nd ACM SIGPLAN International Conference on Functional Programming (ICFP 2017). pp. 14:1-
14:28, 22nd ACM SIGPLAN International Conference on Functional Programming, Oxford, United Kingdom,
3/09/17. DOI: 10.1145/3110258

Digital Object Identifier (DOI):
10.1145/3110258

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
22nd ACM SIGPLAN International Conference on Functional Programming (ICFP 2017)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/195266861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3110258
https://www.research.ed.ac.uk/portal/en/publications/imperative-functional-programs-that-explain-their-work(536d5547-d618-4729-9d28-40a82afef6ca).html

1

Imperative Functional Programs that Explain their Work

WILMER RICCIOTTI, University of Edinburgh

JAN STOLAREK, University of Edinburgh

ROLY PERERA, University of Edinburgh

JAMES CHENEY, University of Edinburgh

Program slicing provides explanations that illustrate how program outputs were produced from inputs. We

build on an approach introduced in prior work by Perera et al. [2012], where dynamic slicing was de�ned for

pure higher-order functional programs as a Galois connection between la�ices of partial inputs and partial

outputs. We extend this approach to imperative functional programs that combine higher-order programming

with references and exceptions. We present proofs of correctness and optimality of our approach and a

proof-of-concept implementation and experimental evaluation.

CCS Concepts: •So�ware and its engineering→ Semantics; So�ware testing and debugging;

Additional Key Words and Phrases: program slicing; debugging; provenance; Galois connection

ACM Reference format:
Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney. 2016. Imperative Functional Programs that

Explain their Work. PACM Progr. Lang. 1, 1, Article 1 (January 2016), 29 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
When a program produces an unexpected result, experienced programmers o�en intuitively “run

the program backwards” to identify the last part of the program that contributed to the output, to

decide where to focus a�ention to �nd the bug. E�ects such as mutable state (references, arrays) or

exceptions can make this a nontrivial challenge. For example, in the following ML-like program

(where !y means the value of reference cell y):

let f(x) = if (x == 0) then y := 6 * !z else (y := 84 / !z; w := g(!y + 12))

suppose we observe, on applying f to some argument, that a�erwards !y has the value 42, when we

were expecting some other value. We might reasonably focus on the two possible assignments in

the else branch, and hypothesise that perhaps the strange output resulted from x having the value

1 and reference cell z containing 2. Of course, this reasoning relies on certain working assumptions,

which may be invalid: we do not know whether w and y are aliases, we do not know whether

g had side-e�ects, and we do not know the value of x that determined which branch was taken.

Furthermore, if the above code executed inside an exception handler:

try f(1) with Division_by_zero -> y := 42

then there is another possible explanation: perhaps !z is 0, so the a�empt to divide 84 by zero failed,

raising an exception whose handler eventually assigned 42 to y. Alternatively, such an exception

could have been raised from within the function g. �is illustrates that the exact sequence of

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2016 ACM. 2475-1421/2016/1-ART1 $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:2 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

events leading to an unexpected result may be impossible to determine based solely on the output.

O�en, programmers resort to interactive debugging, or even manually adding print statements, to

observe the actual control �ow path.

Backwards reasoning to identify the parts of a program that may have contributed to the output

is the basis of a popular analysis technique called program slicing, invented by Weiser [1981]. In

general, slicing techniques take a program and a slicing criterion describing the part of the program’s

output or behaviour of interest, and produce a slice, or subset of the program text, that identi�es the

parts of the program relevant to the criterion, omi�ing (as much as possible) parts that were not

relevant. A typical slicing criterion might consist of a source location P (expression or statement)

and a set of variables, and the slice would contain those parts of the program deemed to be relevant

to the values of those variables at P .

Slicing techniques can be divided into two broad categories: static slicing conservatively analyses

all possible executions of the program and identi�es those parts which potentially in�uence the

slicing criterion, whereas dynamic slicing identi�es those parts of the program which do in�uence

the slicing criterion on a particular execution. Because dynamic slicing analyses a speci�c run, it is

especially useful for debugging and testing, where the goal is to understand a particular scenario

or test case as precisely as possible.

In the above example, a static slicing algorithm might deem it unsafe to exclude any part of the

program from the static slice because any part of the program could have a�ected the �nal value of

y. Using dynamic slicing, we can increase precision by considering exactly what happened, given

the actual store that the program ran in. For example, if we shade elided parts of the program, one

possible slice with respect to output observation !y = 42 is:

let f(x) = if (x == 0) then y := 6 * !z else (y := 84 / !z; w := g(!y + 12))
try f(1) with Division_by_zero -> y := 42

�is slice shows that the Division_by_zero exception was raised and handled (so !z must have

been 0). On the other hand, if slicing yields:

let f(x) = if (x == 0) then y := 6 * !z else (y := 84 / !z; w := g(!y + 12))

try f(1) with Division_by_zero -> y := 42

then this means no exception was raised (so !z was not 0), w did not alias y, and the �nal assignment

of 42 to y must have been a side-e�ect of g which used its prior value of 84 / !z.

�e slicing used in these examples is backward slicing, which works back from outputs to

contributing program parts. Bergere�i and Carré [1985] introduced the complementary technique

of forward slicing, which works forward from program parts to outputs they contribute to. Forward

slicing corresponds to the kind of informal reasoning programmers use during debugging when

they try to understand the consequences of a fragment of code. Needless to say, program slicing,

both forward and backward, has turned out to have many applications in program transformation

and optimisation besides debugging, and has been researched very thoroughly in the context of

mainstream imperative and object-oriented programming languages such as C/C++ and Java; Xu

et al. [2005] cite over 500 papers on slicing. Slicing for functional programs, however, has received

comparatively li�le a�ention. Biswas [1997] developed slicing techniques for a higher-order ML-

like language, including references and exceptions, but only with respect to the whole program

result as slicing criterion. Other authors have investigated slicing for pure or lazy languages such

as Haskell or Curry [Ochoa et al. 2008; Rodrigues and Barbosa 2007; Silva and Chitil 2006].

Perera et al. [2012] introduced a new approach to dynamic slicing for (pure) functional programs

where the slicing criteria take the form of partial values, allowing for �ne-grained slicing particular

to speci�c sub-values. In this approach, input and output values may be partly elided in the same

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:3

way as program slices, with holes (wri�en �) intuitively corresponding to parts of programs or

values that are not of interest. Perera et al. showed how to extend the usual semantics of pure,

call-by-value programs with rules for � to construct a Galois connection for program slicing. �e

forward component of the Galois connection maps a partial input x to the greatest partial output y
that can be computed from x ; the backward component of the Galois connection maps a partial

output y to the least partial input x from which we can compute y. (Note that this use of Galois

connections for dynamic slicing is unrelated to their widespread application to static analysis

techniques such as abstract interpretation [Cousot and Cousot 1977; Darais and Van Horn 2016] or

gradual typing [Garcia et al. 2016].) Once the forward slicing semantics is de�ned, the behaviour

of backward slicing is uniquely determined as the lower adjoint of the forward semantics, whose

existence is established using standard la�ice-theoretic techniques. Perera et al. also showed how

to compute such slices e�ciently, through a semantics instrumented with traces that record details

of program execution.

In this paper, we build on this �ne-grained approach and address the challenges of adapting it to

imperative functional programming: that is, programming with higher-order functions, references,

and exceptions. We focus on a simpli�ed, ML-like core language, so our approach is immediately

relevant to languages such as Standard ML, OCaml, Scheme, or F#. Types do not feature in our

approach, so our results should apply to both statically typed and dynamically typed languages.

However, this paper focuses on foundational aspects of slicing for imperative functional program-

ming, via a core language and proof of correctness, and more work would need to be done to

develop a full-scale slicing tool for a mainstream language.

To illustrate how our approach compares to previous work, here is a (contrived) program that

our slicing system (and no prior work) handles, and its slice explaining why an exception was

raised:

let a = ref 1 in
let b = ref 2 in
map (fun c -> b := !b - 1 ; 1/!c)

[a,b]

let a = ref 1 in
let b = ref 2 in
map (fun c -> b := !b - 1 ; 1/!c)

[a,b]
�is program does not return normally; it raises an exception because of the a�empt to divide 1

by zero. Our approach produces a backward slice (shown on the right) as an explanation of the

exception. It shows that the exception was raised because of the a�empt to divide 1 by !c, when

!c was zero a�er b was decremented the second time. In Biswas’ approach (the only prior work

to handle higher-order functions, references, and exceptions), the whole program would have to

be included in the slice: without the ability to represent slicing criteria as partial values, there is

no way to capture the partial usage of the list value supplied to map (in other words, the fact that

only part of the list was needed to produce the exception). Our approach, in contrast, allows us to

slice each sub-computation with respect to a precise criterion re�ecting exactly the contribution

required for that step. Here, it is safe to slice away the expression that de�ned a as long as we

remember that it did not throw an exception. �e main contribution of this paper is showing how

to make the above intuitions precise and extend the Galois connection approach to higher-order

programming with e�ects.

1.1 Contributions and Outline
In the rest of this paper, we present the technical details of our approach together with a proof-of-

concept implementation. In detail, our contributions are as follows:

• (Section 2) We �rst review (what we call) Galois slicing, the Galois connection approach to

dynamic slicing introduced by Perera et al. [2012], illustrated using a simple expression

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:4 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

language. In particular, we o�er a direct argument showing that any pair of forward and

backward slicing functions that satisfy appropriate optimality properties form a Galois

connection (Prop. 2.1).

• (Section 3) We extend Perera et al.’s core language TML (Transparent ML) with exceptions

and references, and call the result iTML (“imperative TML”). Our core language di�erentiates

between pure expressions and computations that may have side e�ects. We de�ne partial

values, expressions, and traces, and state the rules (similar to those of Perera et al.) for

slicing pure expressions.

• (Section 4) We de�ne forward and backward slicing semantics for e�ectful computations,

which abstract away information about results of sub-computations that return normally

and do not a�ect the slicing criterion. �e Galois connection for a computation includes

the proof term, or trace, that explains how the result was computed, allowing the slicing

semantics to compute a least explanation optimised to a particular partial outcome. �m. 4.6

proves this and is our main technical contribution.

• (Section 5) We consider several natural extensions: slicing in the presence of mutable arrays,

while-loops and sequential composition, and give illustrative examples.

• (Section 6) We present a proof-of-concept implementation of our approach in Haskell,

discuss a more substantial example, and make preliminary observations about performance.

In the remainder of the paper, we discuss related work and future directions in greater detail, and

summarise our �ndings. Detailed proofs of our main results, some straightforward rules, and an

extended example are all included in the appendices of the full version of the paper.

2 BACKGROUND: GALOIS SLICING
In this section we recapitulate the Galois connection approach to dynamic slicing introduced for

pure functional programs by Perera et al. [2012], using a simple expression language as an example.

We call their approach Galois slicing. We then discuss the challenges to adapting this framework to

references and exceptions; the rest of the paper is a concrete instantiation of this framework in

that se�ing.

2.1 Ordered sets, la�ices and Galois connections
We �rst review ordered sets, la�ices and Galois connections. An ordered set (P , ≤) is a set P
equipped with a partial order ≤, that is, a relation which is re�exive, transitive and antisymmetric.

A function f : P → Q between ordered sets (P , ≤P) and (Q, ≤Q) is monotone if it preserves the

partial order, i.e. if x ≤P x ′ implies f (x) ≤Q f (x ′) for all x ,x ′ ∈ P . �e greatest lower bound (or

meet) of two elements x ,y ∈ P (if it exists) is wri�en x uy and is the largest element of P such that

x ≥ x uy ≤ y. �e least upper bound (or join) x ty is de�ned dually as the least element satisfying

x ≤ x t y ≥ y when it exists. Likewise we write

⊔
S or

d
S for the least upper bound or greatest

lower bound of a subset S of P , when it exists.

A la�ice is an ordered set in which all pairwise meets and joins exist. A la�ice is complete if all

subsets have a meet and join, and bounded if it has a least element ⊥ and a greatest element >. All

�nite la�ices are complete and bounded, with ⊥ =
d
P and greatest element > =

⊔
P . A function

f : P → Q where Q is a la�ice is �nitely supported if {x ∈ P | f (x) , ⊥} is �nite, where ⊥ is the

least element of Q . Given x ∈ P , we de�ne the lower set ↓(x) = {x ′ ∈ P | x ′ ≤ x } of all elements

below x . We introduce the notion of a partonomy for a set X , which we de�ne to be a partial order

PX ⊇ X such that every element of X is maximal in PX and ↓(x) is a �nite la�ice for all elements

x ∈ X .

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:5

Given ordered sets (P , ≤P) and (Q, ≤Q), a Galois connection is a pair of (necessarily monotone)

functions (f : P → Q,д : Q → P) that satisfy

f (p) ≤Q q ⇐⇒ p ≤P д(q)

�e function f is sometimes called the lower adjoint and д the upper adjoint. We say f and д are

adjoint (wri�en f a д) when (f ,д) is a Galois connection with lower adjoint f and upper adjoint д.

2.2 Galois connections for slicing
Now we show how to interpret partial programs and partial values in this se�ing of la�ices and

Galois connections. We consider a simple language of expressions with numbers, addition, and

pairs.

e ::= n | e1 + e2 | (e1, e2) | fst e | snd e v ::= n | (v1,v2)

Suppose a standard big-step semantics is de�ned using a judgment e ⇒ v , as follows:

n ⇒ n

e1 ⇒ n1 e2 ⇒ n2

e1 + e2 ⇒ n1 +N n2

e1 ⇒ v1 e2 ⇒ v2

(e1, e2) ⇒ (v1,v2)

e ⇒ (v1,v2)

fst e ⇒ v1

e ⇒ (v1,v2)

snd e ⇒ v2

A partial expression is an expression that may contain a hole �. We de�ne an order on partial

expressions as follows. (From now on we write the partial orders simply as v, omi�ing the

subscripts.)

� v e n v n

e1 v e ′
1

e2 v e ′
2

e1 + e2 v e ′
1
+ e ′

2

e1 v e ′
1

e2 v e ′
2

(e1, e2) v (e ′
1
, e ′

2
)

e v e ′

fst e v fst e ′

e v e ′

snd e v snd e ′

�is relation is simply the compatible partial order generated by � v e , and thus is re�exive,

transitive and antisymmetric. It is easy to verify that meets e1 u e2 exist for any two partial

expressions; for example, (1, 2) u (1, 2 + 2) = (1,�); however, joins do not always exist, since for

example there is no expression e satisfying (1, 2) v e w (1, 2 + 2). Nevertheless, if we restrict

a�ention to the (�nite) set ↓(e) of pre�xes of a given expression e , joins do exist; that is, ↓(e) is a

(�nite) la�ice, with ⊥ = � and > = e . For example, ↓((1, 2)) = {�, (1,�), (�, 2), (1, 2)}, and the join

(1,�) t (�, 2) is de�ned and equal to (1, 2). Since all values happen to be expressions, we can also

derive la�ices ↓(v) of pre�xes of a given value v , obtaining v by restriction from the partial order

on expressions.

Suppose we have some “computation” relation C ⊆ X × Y , which for now we assume to be

deterministic. Given a particular computation (x ,y) ∈ C , we would like to de�ne a technique for

slicing that computation. We start by de�ning partonomies PX and PY for X and Y . Given a partial

input x ′ ∈ ↓(x), it is natural to expect there to be a corresponding partial output y ′ ∈ ↓(y) that

shows how much of the output y can be computed from the information available in x ′. Suppose

such a function fwd : ↓(x) → ↓(y) is given. We already know that given all of the input (x ∈ ↓(x))
we can compute all of the output y. �us if fwd computes as much as possible, then fwd(x) should

certainly be y. By the same token, it seems reasonable that given none of the input (� ∈ ↓(y)) we

should be unable to compute any of the output, so that fwd(�) = �. More generally, we would like

to be able to compute partial output from partial input, so that for example fwd(�, 2 + 2) = (�, 4)
since we can compute the second component of a pair without any knowledge of the �rst. Finally,

a reasonable intuition seems to be that fwd should be monotone, since learning more information

about the input should not make the output any less certain.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

As a concrete example of such a fwd function, we can extend the (deterministic) evaluation

relation⇒ de�ned earlier for expressions to partial expressions as follows:

n ↗ n

e1 ↗ n1 e2 ↗ n2

e1 + e2 ↗ n1 + n2

e1 ↗ v1 e2 ↗ v2

(e1, e2) ↗ (v1,v2)

e ↗ (v1,v2)

fst e ↗ v1

e ↗ (v1,v2)

snd e ↗ v2

�↗ �

e1 ↗ �

e1 + e2 ↗ �

e1 ↗ v1 e2 ↗ �

e1 + e2 ↗ �

e ↗ �

fst e ↗ �

e ↗ �

snd e ↗ �

If the parts needed to perform a given evaluation step are present, we behave according to the

corresponding⇒ rule (top row). Otherwise we use a rule from the bo�om row: if the expression

itself is missing (�), or if a needed intermediate result (e.g. the tuple value for a projection, or

an argument to an addition) is �, then the result is again �. So, for example, (� + 1, 1) ↗ (�, 1).
For a given e ⇒ v and e ′ ∈ ↓(e), it is not possible for e ′ ↗ to get stuck, for example by trying

to add an integer to a pair, and indeed one can verify that these rules de�ne a total, monotone

function fwde : ↓(e) → ↓(v) such that fwde (e ′) = v ′ ⇐⇒ e ′ ↗ v ′. �e function fwde computes

the forward slice of e ′ ∈ ↓(e), namely that portion of v which can be computed using only the

information in e ′.
Now, given fwde : ↓(x) → ↓(y), we would like to de�ne a converse mapping bwde : ↓(y) → ↓(x)

which computes the backward slice for y ′ ∈ ↓(y), namely a partial input large enough to compute

y ′. �at is, we want bwde to satisfy y ′ v fwde (bwde (y ′)) for any y ′ ∈ ↓(y). We call this property

consistency.

�ere may be many consistent choices of bwde . As an extreme example, the constant function

bwd0 (y
′) = x , which simply produces the full input for any output pre�x, is consistent. However,

as a slicing function it is singularly useless: it treats all parts of the input as relevant, failing to take

advantage of the fact that not all of the output was required. Ideally, therefore, we would like bwd
to satisfy the following minimality property:

bwde (y ′) =
l
{x ′ | y ′ v fwde (x ′)} (1)

�is (together with consistency) says that bwde (y ′) is the smallest part of the input that provides

enough information to recompute y ′ using fwde .

Now, if bwde is the lower adjoint of fwde (if bwde and fwde form a Galois connection bwde a
fwde) then the monotonicity, consistency and minimality properties follow by standard argu-

ments [Davey and Priestley 2002]. More surprisingly, these properties su�ce to ensure that

bwde a fwde :

Proposition 2.1. Given complete la�ices P ,Q , suppose д : Q → P is monotone and f : P → Q is
consistent and minimal with respect to д. �en they form a Galois connection f a д.

Proof. First suppose f (p) v q. �en p v д(f (p)) v д(q) by consistency of f and monotonicity

of д. �is proves that f (p) v q ⇒ p v д(q). For the converse, assume that p v д(q). �en

f (p) =
l
{q′ | p v д(q′)} v q

where the equality is the minimality of f and the inequality holds because p v д(q). �is proves

that p v д(q) ⇒ f (p) v q, so f a д. �

It may appear di�cult to design an adjoint pair of functions fwde and bwde , or even to be sure

that one exists for a given candidate de�nition of fwde . Luckily, another standard result applies: if P
is a complete la�ice then д : Q → P has a lower adjoint f : P → Q if and only if д preserves meets,

that is, д(
d
S) =

d
{д(s) | s ∈ S }. For �nite la�ices, it su�ces to consider only binary meets and the

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:7

top element: д(q1 u q2) = д(q1) uд(q2) and д(>Q) = >P . Moreover, the lower adjoint f : P → Q is

uniquely determined by the minimality equation. (Dually, any join-preserving function between

complete la�ices uniquely determines a “maximising” meet-preserving function as its upper adjoint,

but for an evaluation relation it seems more natural to start with forward slicing and induce the

backward-slicing function.)

Of course, for a given computation there may be more than one choice of la�ice structure for

the input and output, and there may also be more than one natural choice of meet-preserving

forward slicing. Once such choices are made, however, a minimising backward-slicing function is

determined by the forward semantics. Nevertheless, there are two considerations (beyond meet-

preservation) that make de�ning a suitable forward-function non-trivial: �rst, the availability of an

e�cient technique for computing the backward-slicing lower adjoint, and second, the precision of

the forward-slicing function (which in turn determines the precision of backward slicing).

To see the �rst point, we return to our simple expression language. It is easily veri�ed that fwde
is indeed meet-preserving in that fwde (e1 u e2) = fwde (e1) u fwde (e2) and fwde (e) = v . Since ↓(e)
is a �nite la�ice, it follows that fwde has a lower adjoint bwde : ↓(v) → ↓(e), which satis�es the

minimality property (Equation 1). �e minimality property alone, however, is not suggestive of an

e�cient procedure for computing bwde . Read naively, it suggests evaluating fwde on all partial

inputs (of which there may be exponentially many in the size of e), and then computing the meet

of all partial inputs e ′ satisfying v ′ v fwd(e ′).
Perera et al. showed how the lower adjoint can be e�ciently computed by adopting an algorithmic

style “dual” to forward slicing: whereas forward slicing pushes � forward through the computation,

erasing any outputs that depend on erased inputs, backward slicing can be implemented by pulling
� back through the computation, erasing any parts of the input which are not needed to compute the

required part of the output. In their functional se�ing, this involves using a trace of the computation

to allow the slicing to proceed backwards. In the toy language we consider here, the expression

itself contains enough information to implement backward slicing in this style. �e following

de�nition illustrates:

bwdn (n) = n bwde1+e2
(n) = bwde1

(fwd(e1)) + bwde2
(fwd(e2))

bwdfst e (v) = bwde (v,�) bwd(e1,e2) (v1,v2) = (bwde1
(v1), bwde2

(v2))
bwdsnd e (v) = bwde (�,v) bwde (�) = �

�e interesting cases are those for addition and projections. For addition, we continue slicing

backwards, using the original values of the subexpressions. �is still leaves something to be desired,

since we use fwd to reevaluate subexpressions e1 and e2. (It is possible to avoid this recomputation

in the trace-based approach by recording extra information about the forward evaluation that

bwd can use.) For projections such as fst e , we slice the subexpression e with respect to partial

value (v,�), expressing the fact that we do not need the second component. If the partial output

is a hole, then we do not need any of the input to recompute the output. For example, suppose

e = (1, fst (1, 2) + 3). �en bwde (�, 4) yields (�, fst (1,�) + 3) because we do not need the �rst 1

or the 2 to recompute the result. One of the key challenges we address in this paper is adapting

this algorithmic style to deal with imperative features like exceptions and stores.

To see the importance of precision for forward slicing, consider the following alternative slicing

rules for pairs:

e1 ↗ �

(e1, e2) ↗ (�,�)

e1 ↗ v1 e2 ↗ v2

(e1, e2) ↗ (v1,v2)
v1 , �

Evaluation goes le�-to-right, and so naively we might suppose that if we know nothing about the

�rst component, we should not proceed with the second component. �e forward-slicing function

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:8 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

for a given computation still preserves meets, and thus has a backward-slicing lower adjoint.

However, again supposing e = (1, fst (1, 2) + 3), we have fwde (�, fst (1, 2) + 3) = (�,�) by the

�rst rule above. If we then use this partial output to backward slice, we �nd bwde (�,�) = (�,�):
if all we need of the output is the fact that it is a pair, then all we actually needed of the program

was the fact that it computes a pair. �us the “round trip” bwde (fwde (e ′)), technically a kernel
operator, reveals all the parts of e that are rendered irrelevant as a consequence of retaining only

the information in e ′, and here bwde (fwde (e ′)) reveals a (spurious) dependency of the second

component of the pair on the �rst. �is motivates the more precise pair-slicing rule we �rst

presented, which sliced each component independently. A key design criterion for forward-

slicing therefore is that it only re�ect genuine dependencies, capturing speci�cally how input was

consumed in order to produce output. De�ning suitably precise forward slicing in the presence of

stores and exceptions is another of the key challenges we address in this paper.

2.3 Summary
To summarise, the Galois slicing framework involves the following steps:

• Given sets of expressions, values and other syntactic objects, de�ne partonomies such that

the set of pre�xes of each object forms a �nite la�ice.

• Given a reference semantics for the language, say a deterministic evaluation relation

⇒ ⊆ X × Y , de�ne a family of meet-preserving functions fwdx : ↓(x) → ↓(y) for every

x ⇒ y. By the reasoning given above, fwdx has a lower adjoint bwdx : ↓(y) → ↓(x) that

computes the least slice of the input that su�ces to recompute a given partial output.

• De�ne a procedure for computing a backward slice, typically by running back along a trace

of x ⇒ y, and show that the procedure computes the lower adjoint bwdx .

�e framework describes a design space for optimal slicing techniques for a given language: we have

latitude to decide on suitable la�ices of partial inputs and outputs and a suitable de�nition of forward

slicing, as long as it is compatible with ordinary evaluation and is a meet-preserving function. �e

de�nition of forward slicing must be precise enough to re�ect accurately how information in the

input is consumed during execution to produce output, and there may be di�erent notions of slicing

suitable for di�erent purposes. Once these design choices are made, the extensional behaviour of

an optimal backward slicing bwd is determined, and the remaining challenge is to �nd an e�cient

method for computing backward slices, using traces where appropriate.

3 CORE CALCULUS AND COMMON CONCEPTS
We now introduce the core calculus iTML, “Imperative Transparent ML”, which extends the TML

calculus of Perera et al. [2012] with ML-like references and exceptions. �ese features potentially

complicate an operational semantics, since any subexpression might modify the state or raise an

exception. To avoid a proliferation of rules and threaded arguments, and to help illuminate the

underlying ideas, we present the language using a variant of �ne-grained call-by-value [Levy et al.

2003], which distinguishes between (pure) expressions and (e�ectful) computations. �e syntax of

the calculus, including runtime constructs, is presented in Figure 1. We omit typing rules, since

static types currently play no role in the Galois slicing approach. Likewise, we omit constructs

associated with isorecursive types since they contribute li�le in the absence of a type system. In

our implementation, the source language is typed and we consider a �xed type for exceptions (for

the moment, this is string, but any other type, such as ML’s extensible exception type, would also

work).

Usually we can consider a core calculus with separate expressions and computations without

loss of generality because general programs can be handled by desugaring. However, since our

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:9

Expression e ::= x | () | inl e | inr e | 〈e1, e2〉 | fst e | snd e | rec f (x).M | �
Computation M,N ::= return e | let x = M1 in M2 | e1 e2

| case e of {inl x .M1; inr y.M2}

| raise e | tryM1 with x → M2

| ref e | e1 := e2 | !e | �

Environment ρ,σ ::= ε | ρ[x 7→ v]

Store µ,ν ::= ε | µ[l 7→ v]

Set of locations L ::= {l1, . . . , ln }

Value u,v ::= () | inl v | inr v | 〈ρ, rec f (x).M〉 | l | �
Outcome k ::= val | exn
Result R ::= kv

Trace T ,U ::= return e | letF (T) | letS (T1,x .T2) | e1 e2 . f (x).T
| caseL (e,x .T ,y) | caseR (e,x ,y.T)
| raise e | tryS (T) | tryF (T1,x .T2)

| refl e | e1 :=l e2 | !le | �k
L

Fig. 1. Abstract syntax

goal is to produce slices of the original program, slicing desugared programs would necessitate

resugaring slices (that is, translating them back to slices of the original program, following Pombrio

and Krishnamurthi [2014, 2015]). Rather than pursue this indirect approach, our implementation

handles general programs directly, extrapolating from the core calculus presented in this paper.

We give further details in Section 6.

�e expression forms include variables, introduction forms for unit, pairs, sums, recursive

functions, and side-e�ect-free elimination forms (pair projections). Computations represent full

programs with e�ects: expressions are li�ed to computations using the return operator (corre-

sponding to monadic return), which represents the program terminating normally and returning

the value of that expression, and computations are composed using let x = M in N , which

corresponds to monadic bind. Abnormal termination is initiated by raise e , which raises e as an

exception and aborts the current computation. Other computation forms include exception handling

try/with, reference cell creation ref e , dereferencing !e , assignment e1 := e2, case analysis, and

function application e1 e2.

�e evaluation of an expression yields a value. Values are closed and include units, pairs,

injections, closures 〈ρ, rec f (x).N 〉, and locations. �e evaluation of a computation yields a result,
which is either a success val v or failure exn v , where v is a value. An environment ρ is a �nitely

supported function from variable names to values. (Recall that this means that ρ (x) is de�ned for

at most �nitely many x .) We write ρ[y 7→ v] for the operation which extends ρ by mapping y to v ,

where ρ (y) was previously unde�ned. A store is a �nitely supported function from locations l to

values. Store update µ[l 7→ v] is similar to environment update except that we do not require µ (l)
to be unde�ned, as the update may overwrite the previous value of l.

For present purposes, we are only concerned with slicing a computation a�er it has terminated,

so a big-step style of operational semantics seems appropriate. �e evaluation rules are given in

Figure 2. (�e Galois slicing approach was investigated in a small-step style for π -calculus by Perera

et al. [2016].) Expression evaluation ρ, e ⇒ v says that the expression e evaluates in environment ρ
to the value v . Computation evaluation ρ, µ,M ⇒ µ ′,R, which makes use of expression evaluation,

says that computation M evaluates in environment ρ and store µ to updated store µ ′ and result R. In

the la�er judgement, we choose to make explicit the derivation treeT that witnesses the evaluation

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:10 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

ρ, e ⇒ v

x ∈ dom(ρ)

ρ,x ⇒ ρ (x) ρ, () ⇒ () ρ, rec f (x).M ⇒ 〈ρ, rec f (x).M〉

ρ, e ⇒ v

ρ, inl e ⇒ inl v

ρ, e ⇒ v

ρ, inr e ⇒ inr v

ρ, e1 ⇒ v1 ρ, e2 ⇒ v2

ρ, 〈e1, e2〉 ⇒ 〈v1,v2〉

ρ, e ⇒ 〈v1,v2〉

ρ, fst e ⇒ v1

ρ, e ⇒ 〈v1,v2〉

ρ, snd e ⇒ v2

T :: ρ, µ,M ⇒ µ ′,R

ρ, e ⇒ v

return e :: ρ, µ, return e ⇒ µ, val v

ρ, e1 ⇒ v1 v1 = 〈ρ
′, rec f (x).M〉 ρ, e2 ⇒ v2 T :: ρ ′[f 7→ v1][x 7→ v2], µ,M ⇒ µ ′,R

e1 e2 . f (x).T :: ρ, µ, e1 e2 ⇒ µ ′,R

ρ, e ⇒ v

raise e :: ρ, µ, raise e ⇒ µ, exn v

ρ, e ⇒ v

refl e :: ρ, µ, ref e ⇒ µ[l 7→ v], val l
l < dom(µ)

ρ, e1 ⇒ l ρ, e2 ⇒ v

e1 :=l e2 :: ρ, µ, e1 := e2 ⇒ µ[l 7→ v], val ()

ρ, e ⇒ l

!le :: ρ, µ, !e ⇒ µ, val µ (l)
l ∈ dom(µ)

T1 :: ρ, µ,M1 ⇒ µ ′, val v T2 :: ρ[x 7→ v], µ ′,M2 ⇒ µ2,R

letS (T1,x .T2) :: ρ, µ, let x = M1 in M2 ⇒ µ2,R

T :: ρ, µ,M1 ⇒ µ ′, exn v

letF (T) :: ρ, µ, let x = M1 in M2 ⇒ µ ′, exn v

T1 :: ρ, µ,M1 ⇒ µ ′, exn v T2 :: ρ[x 7→ v], µ ′,M2 ⇒ µ2,R

tryF (T1,x .T2) :: ρ, µ, tryM1 with x → M2 ⇒ µ2,R

T1 :: ρ, µ,M1 ⇒ µ ′, val v

tryS (T1) :: ρ, µ, tryM1 with x → M2 ⇒ µ ′, val v

ρ, e ⇒ inl v T :: ρ[x 7→ v], µ,M1 ⇒ µ ′,R

caseL (e,x .T ,y) :: ρ, µ, case e of {inl x .M1; inr y.M2} ⇒ µ ′,R

ρ, e ⇒ inr v T :: ρ[x 7→ v], µ,M2 ⇒ µ ′,R

caseR (e,x ,y.T) :: ρ, µ, case e of {inr x .M1; inr y.M2} ⇒ µ ′,R

Fig. 2. Big-step semantics

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:11

of M (similarly to how, in type theory, typed lambda terms are essentially typing derivations); we

call such a proof a trace. To obtain more familiar evaluation rules, it is su�cient to remove the

traces from the judgments; thus we can de�ne

ρ, µ,M ⇒ µ ′,R ⇐⇒ ∃T . T :: ρ, µ,M ⇒ µ ′,R

�e trivial computations return e and raise e evaluate the respective expressions and return

them as a normal or exceptional result respectively. �e evaluation of let x = M in N corresponds

to sequencing: the subcomputation M is evaluated �rst and, if it terminates successfully with valv ,

then N is evaluated next (with v substituted for x); if M terminates with a failure exn v , the whole

let computation fails with exn v . �e trace forms letS and letF correspond to these two possible

evaluation outcomes.

�e computation ref e chooses a fresh location lnon-deterministically, extends the store µ with

a new cell at location l containing the result of evaluating e , and then returns l. �e assignment

e1 := e2 evaluates e1 to a location l and e2 to a value v , updates the cell at lwith v , and returns

the unit value. To evaluate a dereference !e , we evaluate e to a location l, and then return the

cell’s contents µ (l). For convenience later, the trace forms for these three computation rules are

annotated with the respective l involved in the evaluation.

Function application e1 e2 combines two pure expressions into an e�ectful computation as

follows: �rst e1 is evaluated to a closure v1 = 〈ρ, rec f (x).M〉, where M is a computation; then e2

is evaluated to v2. Finally we perform the e�ectful evaluation of M , where recursive calls f have

been replaced by the closure, and the formal argument x by the actual value v2.

�e evaluation of the exception handling try M1 with x → M2 depends on the result of the

valuation of the subcomputation M1: if it succeeds with val v , we simply return this result; if it

fails with exn v , we proceed to evaluate M2 where v has been substituted for x . �e traces tryS
and tryF correspond to the �rst and second case respectively.

Finally, case analysis works as usual, taking into account that its branches are computations,

whose e�ects are triggered a�er the substitution of the respective bound variables, similarly to the

function application case.

Theorem 3.1. If ρ, e ⇒ v1 and ρ, e ⇒ v2, then v1 = v2.
If T :: ρ, µ,M ⇒ µ1,R1 and T :: ρ, µ,M ⇒ µ2,R2, then µ1 = µ2 and R1 = R2.

3.1 Partial expressions and partial computations
�e language iTML is immediately extended by adding holes to expressions, computations, and

values. �is in turn induces the v relation, expressing the fact that two terms of the language

(expressions, values, and computations) are structurally equal, save for the fact that some subterms

of the right-hand side term may be matched by holes in the le�-hand side term. �e de�nition of

this relation is straightforward, but verbose: we set � to be the least element and add a congruence

rule per constructor. Figure 3 illustrates the cases for values, results, environments, and stores;

the cases for expressions and computations are presented in an appendix in the full version of the

paper.

Building on partial values, we can view environments and stores as total functions by de�ning

ρ (x) = � and µ (l) = � whenever x and l are not in the domain of ρ and µ. We can then li� v

pointwise from values to environments and stores. �e least environment, mapping all variables to

�, is also denoted by �; a similar convention applies to stores.

Meets exist for all pairs of expressions, values, computations, environments and stores. Fur-

thermore, as we explained in Section 2, we can de�ne the sets of pre�xes of a given language

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:12 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

v v v ′,R v R′, ρ v ρ ′, µ v µ ′

� v v () v () lv l

v1 v v
′
1

v2 v v
′
2

〈v1,v2〉 v 〈v
′
1
,v ′

2
〉

v v v ′

inl v v inl v ′
v v v ′

inr v v inr v ′

ρ v ρ ′ M v M ′

〈ρ, rec f (x).M〉 v 〈ρ ′, rec f (x).M ′〉

v v v ′

val v v val v ′
v v v ′

exn v v exn v ′

ρ v ρ ′ ⇐⇒ dom(ρ) = dom(ρ ′) ∧ ∀x ∈ dom(ρ). ρ (x) v ρ ′(x)

µ v µ ′ ⇐⇒ dom(µ) = dom(µ ′) ∧ ∀l ∈ dom(µ). µ (x) v µ ′(x)

Fig. 3. Partial value, result, environment, and store prefix relations

term:

↓(t) = {t ′ : t ′ v t } t = e,M,v, ρ, µ

We can show that in a given pre�x set, every pair of terms has a meet and a join, that is, the sets of

partial terms are partonomies for the corresponding sets of ordinary terms.

Lemma 3.2. For all expressions e , computationsM , values v , environments ρ, and stores µ, the sets
↓(e), ↓(M), ↓(v), ↓(ρ) and ↓(µ) form complete la�ices with the relation v.

3.2 Forward and backward slicing for expressions
Figure 4 de�nes the forward slicing and backward slicing relations for expressions, which are

deterministic and free of side-e�ects and recursion. In this situation forward-slicing degenerates

to a form of evaluation extended with a hole-propagation rule. �e judgement ρ, e ↗ v says that

partial expression e in partial environment ρ forward-slices to partial value v .

Backward-slicing for expressions is with respect to the original expression. Suppose ρ, e ⇒ v .

�en for any v ′ v v , the judgement v ′, e ↘ ρ ′, e ′ says that partial value v ′ backward-slices along

expression e to partial environment ρ ′ and partial expression e ′ with (ρ ′, e ′) v (ρ, e). �is must be

taken into account when reading the rules: for example, when we backward-slicev ′ with respect to

an original expression x , the environment �[x 7→ v ′], which maps x to v ′ and every other variable

in the domain to �, is a slice of the original ρ.

�is consideration proves crucial in the backward slicing rules for pairs. To slice 〈v1,v2〉 with

respect to the original expression 〈e1, e2〉, we �rst slice the two component values, obtaining ρ1, e
′
1

and ρ2, e
′
2
, which are then recombined as ρ1 t ρ2, 〈e

′
1
, e ′

2
〉. �at is, ρ1, e1 tells us what part of the

environment is needed to force e1 to evaluate to v1 and likewise for ρ1, e2, and we combine what

we learn about ρ using t. As ρ1 and ρ2 are slices of the same original environment, the join ρ1 t ρ2

is guaranteed to exist (Lemma 3.2). �e rules for slicing functions/closures are the same as given by

Perera et al. [2012], and should be considered together with the rule for slicing function applications

in the next section. We omit rules for primitive operations, which are handled just as in prior

work [Acar et al. 2013; Perera et al. 2012].

Lemma 3.3 (Forward expression-slicing function).

(1) If ρ, e ↗ v and ρ, e ↗ v ′ then v = v ′.
(2) Suppose ρ ′, e ′ ⇒ v ′. If (ρ, e) v (ρ ′, e ′) there exists v v v ′ with ρ, e ↗ v .

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:13

ρ, e ↗ v

ρ,�↗ �

x ∈ dom(ρ)

ρ,x ↗ ρ (x) ρ, () ↗ () ρ, rec f (x).M ↗ 〈ρ, rec f (x).M〉

ρ, e ↗ v

ρ, inl e ↗ inl v

ρ, e1 ↗ v1 ρ, e2 ↗ v2

ρ, 〈e1, e2〉 ↗ 〈v1,v2〉

ρ, e ↗ 〈v1,v2〉

ρ, fst e ↗ v1

ρ, e ↗ �

ρ, fst e ↗ �

ρ, e ↗ 〈v1,v2〉

ρ, snd e ↗ v2

ρ, e ↗ �

ρ, snd e ↗ �

v, e ↘ ρ, e ′

�, e ↘ �,�

v , �

v,x ↘ �[x 7→ v],x 〈ρ, rec f (x).M〉, rec f (x).M ′ ↘ ρ, rec f (x).M

(), () ↘ �, ()

v, e ↘ ρ, e ′

inl v, inl e ↘ ρ, inl e ′
v, e ↘ ρ, e ′

inr v, inr e ↘ ρ, inr e ′

v1, e1 ↘ ρ1, e
′
1

v2, e2 ↘ ρ2, e
′
2

〈v1,v2〉, 〈e1, e2〉 ↘ ρ1 t ρ2, 〈e
′
1
, e ′

2
〉

〈v,�〉, e ↘ ρ, e ′

v, fst e ↘ ρ, fst e ′
〈�,v〉, e ↘ ρ, e ′

v, snd e ↘ ρ, snd e ′

Fig. 4. Forward and backward slicing for expressions

Given Lemma 3.3, we write fwdρ,e for the function which take any element of ↓(ρ, e) to its↗-image

in ↓(v).

Lemma 3.4 (Meet-preservation). Suppose σ , e ⇒ v . �en fwdσ ,e preserves u.

Likewise, if we prioritise the use of the �rst rule (where v = �) over others, backward-slicing

determines a deterministic function, which is total if restricted to any downward-closed subset of

its domain.

Lemma 3.5 (Backward expression-slicing function).

(1) If v, e ↘ ρ, e ′ and v, e ↘ ρ ′, e2 then (ρ, e ′) = (ρ ′, e2).
(2) Suppose ρ, e ⇒ v . If u v v there exists (ρ ′, e ′) v (ρ, e) such that u, e ↘ ρ ′, e ′.

Given Lemma 3.5, we write bwdρ,e for the function which takes any element of ↓(v) to its↘-image

in ↓(ρ, e). �e functions fwdρ,e and bwdρ,e form a Galois connection. �is is essentially a special

case of the Galois connection de�ned by Perera et al. [2012], where the traces associated with the

expression forms are simply the expressions themselves.

Theorem 3.6 (Galois connection for expression slicing). Suppose ρ, e ⇒ v . �en bwdρ,e a
fwdρ,e .

4 SLICING FOR REFERENCES AND EXCEPTIONS
In previous work on slicing for (pure) TML, slicing was initially focused on programs only, with

forward slicing taking a program as its input, and backward slicing producing a slice of the original

program. As program slices proved inadequate to explaining the behaviour of more complex code,

a separate trace slicing procedure was also de�ned that produced a slice of the execution trace.

Trace slicing has also proved useful in subsequent work on the π -calculus, where it is needed to

determine a speci�c concurrent behaviour in an inherently nondeterministic semantics [Perera

et al. 2016].

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:14 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

Evaluation for iTML is also non-deterministic in that it models the allocation of a new reference

by chosing any unused store location. �is nondeterminism is weak, in the sense that any two

executions from the same initial state yield isomorphic results (up to the permutation of newly

allocated locations). It is technically possible to determinise allocation and de�ne forward slicing

as a total function in the presence of references. However, if forward slicing only has access to

the expression and input, it must be extremely conservative when forward slicing a hole: since

we do not know the locations which were wri�en at run-time by the missing expression, we must

conservatively assume that any location may have changed, erasing the whole store. �is, in turn,

forces backward slicing to retain all of the write operations in the program, even those that seem

to have nothing to do with the slicing criterion.

While adding exceptions to a pure language does not necessarily introduce nondeterminism,

exceptions also complicate the picture for slicing considerably: if we replace a subexpression with

a hole, then (in the absence of information about what happened at runtime) it is impossible to

know whether that expression terminated normally or raised an exception. �is means that we

may be forced to retain many parts of the program solely to ensure that we can always be certain

whether or not an exception was raised.

Since trace information has proven useful for implementing backward slicing even for pure

programs, seems well-motivated for dealing with exceptions and references, and is in any case

necessary for other features such as concurrency or true nondeterminism, we accordingly propose

the following generalisation of Galois slicing, which takes explicit account of traces. Speci�cally,

we consider tracing computations C ⊆ X ×T × Y , where T is some set of traces that describe what

happened in a given run of C , such that for any (x , t) there is a unique y such that (x , t ,y) ∈ C .

We assume X ,Y and T are equipped with partonomies so that ↓(x),↓(y) and ↓(t) are complete

la�ices for any x ∈ X ,y ∈ Y and t ∈ T . Given (x , t ,y) ∈ C , we de�ne a meet-preserving function

fwd : ↓(x)×↓(t) → ↓(y) that computes as much as possible of y given the partial information about

the input in x and about the trace in t . �en a lower adjoint bwd : ↓(y) → ↓(x) × ↓(t) is uniquely

determined, and produces the least partial input and partial trace that su�ces to recompute a given

partial input.

Traces, like iTML computations, are made partial by adding holes. However, rather than using

a single, fully unde�ned trace � that could stand for an entirely arbitrary evaluation, providing

no information about its result, the parts of store that have been wri�en, or even whether the

computation succeeded or raised an exception, we provide annotated trace holes allowing for a

less draconian slicing.

An annotated trace hole will be wri�en �k
L

, where L is the set of store locations wri�en by

the otherwise unknown trace and k is the outcome. Unlike the unannotated hole � used in the

pure se�ing, annotated holes retain information about the e�ects and outcome of the computation.

�us, even though annotated holes do not say exactly how a computation evaluated and what its

result (or exception) value was, they still disclose information about its side e�ects.

�e v relation for traces is de�ned analogously to v for values, except that there is no universal

least trace �. Rather, for any traceT , the hole �k
L

is the least element of ↓(T) where L= writes(T)
and k = outcome(T):

writes(T) = L outcome(T) = k

�k
L
v T

�e auxiliary operations writes(T) and outcome(T) are de�ned in Figure 5. �e former computes

the set of locations allocated or updated by T ; the la�er indicates whether T returned normally or

raised an exception. �us �k
L

represents the full erasure of a computation that writes to locations

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:15

writes(�k
L
) = L

writes(return e) = ∅
writes(letF (T1)) = writes(T1)

writes(letS (T1,x .T2)) = writes(T1) ∪ writes(T2)

writes(e1 e2 . f (x).T) = writes(T)

writes(caseL (e,x .T ,y)) = writes(T)

writes(caseR (e,x ,y.T)) = writes(T)

writes(raise e) = ∅
writes(tryS (T1)) = writes(T1)

writes(tryF (T1,x .T2)) = writes(T1) ∪ writes(T2)

writes(refl e) = {l}

writes(e1 :=l e2) = {l}

writes(!le) = ∅

outcome(�k
L
) = k

outcome(return e) = val

outcome(letF (T1)) = exn

outcome(letS (T1,x .T2)) = outcome(T2)

outcome(e1 e2 . f (x).T) = outcome(T)

outcome(caseL (e,x .T ,y)) = outcome(T)

outcome(caseR (e,x ,y.T)) = outcome(T)

outcome(raise e) = exn

outcome(tryS (T1)) = val

outcome(tryF (T1,x .T2)) = outcome(T2)

outcome(refl e) = val

outcome(e1 :=l e2) = val

outcome(!le) = val

Fig. 5. Set of store locations writes(T) wri�en to by T and outcome outcome(T) of T .

in L and returns as described by k. �e v relation is simply the compatible closure of the above

rule; the full de�nition is given in an appendix in the full version of the paper.

Lemma 4.1. For all traces T , the set ↓(T) forms a complete la�ice with the relation v.

We will de�ne both forward and backward slicing as judgments, and show that when T ::

ρ, µ1, e ⇒ µ2,R we can de�ne a Galois connection bwd a fwd between ↓(ρ, µ1, e,T) and ↓(µ2,R).
We �rst motivate our de�nition of forward slicing, then outline its properties, particularly meet-

preservation. We then present the rules for backward slicing. Although backward slicing is uniquely

determined by forward slicing, we give rules that show how to compute backward slicing more

e�ciently than the naive approach. �e main idea, as in the pure case, is to use the trace structure

to guide backward slicing. Nevertheless, due to the presence of side-e�ects and exceptions, there

are a number of subtleties that do not arise in the pure case. �e rules we give will make use of an

operation for partial store erasure, which takes a store and a set of locations L, and returns a copy

of that store with all locations in L replaced by hole.

De�nition 4.2. For partial store µ and set of locations L, the store erasure operation µ /L is

de�ned as follows:

µ /L= µ[l 7→ � | l ∈ L]

4.1 Forward slicing
In a pure language, a subexpression whose value is not needed by the rest of the computation can

be sliced away safely, because we know that any other expression evaluated in its place will not

raise an exception or have side-e�ects. However, when side-e�ects or exceptions are added to the

picture, we need to be more careful when slicing subexpressions whose values were not needed,

because the expression may have had side-e�ects on store locations, or the fact that the expression

raised an exception may have been important to the control �ow of the program. For this reason,

we allow forward slicing to consult the trace, so that when information about reference side-e�ects

or control �ow is not present in the partial program, we can recover it from the trace. �us, forward

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:16 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

slicing for computations is with respect to a partial trace T which determinises allocations and

enables forward-slicing of store e�ects.

Suppose that T :: ρ, µ1,M ⇒ µ2,R. �e forward slicing judgement ρ ′, µ ′
1
,M ′,T ′ ↗ µ ′

2
,R′ takes a

partial expression e ′ v e , partial environment ρ ′ v ρ, partial store µ ′
1
v µ1, and partial traceT ′ v T ,

and should produce an updated store µ ′
2
v µ2 and result R′ v R.

Figures 6 and 7 de�ne the forward slicing rules for computations, which are named for con-

venience. �e signi�cance of T ′ being partial is that forward slicing may be performed with a

computation that has already been sliced, so that the forward slicing rules induce a total function

from partial inputs ↓(ρ, µ1,M,T) to partial outputs ↓(µ2,R). �e rules for forward slicing deserve

explanation, since they embed important design decisions regarding how partial inputs can be used

to compute partial outputs, which in turn a�ect the de�nition of backward slicing.

�e �rst two rules (F-Trace�) and (F-Comp�) are the most important. Recall that a trace hole �k
L

is annotated with the set of locations Lwri�en to by the trace. �e (F-Trace�) rule covers the case

where T = �k
L

. �is means that we know only that while executing M , the original computation

wrote to locations in L and eventually had outcome k, but we have no other information about

what values were wri�en to the locations in L or what value was returned. �us, we have li�le

choice but to erase the locations in L in the store and yield result k �, that is, we know that

evaluation returned with outcome k, but nothing about the value returned.

�e (F-Comp�) rule covers the case where M = �. In this case, we rely on information in the

trace to approximate the downstream e�ects on the store. We could, in principle, use T to continue

recomputing, but we choose not to, since the goal of forward slicing is to show how much output

can be computed from the program M . Instead, we use the auxiliary function writes to �nd the

set of locations wri�en to by T , and the erasure operation µ /L de�ned in Figure 5, to erase all

locations wri�en to by T , and return k � where k = outcome(T).
Observe that the (F-Comp�) and (F-Trace�) rules overlap in the case M = �,T = �k

L
, and in

this case their behaviour is identical because writes(�k
L
) = L and outcome(�k

L
) = k.

Many of the rules are the same (modulo minor syntactic di�erences) as the tracing evaluation

rules. �e rest of the rules handle situations where a partial expression or computation forward

slices to �. We discuss two of these rules, (F-Assign�) and (F-Deref�), in detail. �e (F-Assign�)

rule deals with the possibility that while evaluating e1 := e2, the �rst subexpression evaluates to �.

In this case, we return �, and update the store so that µ (l) = � as well, where l is the updated

location recorded in the trace. �is rule illustrates the bene�ts of using the trace: without knowing

l, we would be forced to conservatively set the whole store to �, since we would have no way

to be sure which location was updated. Nevertheless, we do not continue evaluating using the

expressions e ′
1
, e ′

2
stored in the trace; they are ignored in forward slicing, but are necessary for

backward slicing.

�e (F-Deref�) rule deals with the possibility that when evaluating !e , the subexpression e
evaluates to �. Again, we cannot be certain what the value of µ (l) is so we simply return �. Here

the subscript l is not needed, but again it will be needed for backward slicing.

�e remaining rules (F-CaseL�), (F-CaseR�), and (F-App�) deal with the cases for case ex-

pressions or function applications in which the �rst argument evaluates to an unknown value

or outcome �. In the case expression and function application cases, since we cannot proceed

with evaluation, we proceed as in the previous case. In the other case, such as let-expressions or

try-blocks, note that it is impossible for the outcome of the �rst subcomputation to be unknown,

since we do not allow unknown outcomes �.

Forward slicing is deterministic, and total when restricted to downward-closed subsets of its

domain. In particular in the ref · rules, l is �xed by the fact that we can consult the trace refl e
′

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:17

ρ, µ,M,T ↗ µ ′,R

F-Trace�

ρ, µ,M,�k
L
↗ µ /L,k �

F-Comp�
L= writes(T) k = outcome(T)

ρ, µ,�,T ↗ µ /L,k �

F-Ret

ρ, e ↗ v

ρ, µ, return e, return e ′ ↗ µ, val v

F-Let

ρ, µ,M1,T1 ↗ µ ′, val v ρ[x 7→ v], µ ′,M2,T2 ↗ µ2,R

ρ, µ, let x = M1 in M2, letS (T1,x .T2) ↗ µ2,R

F-LetFail

ρ, µ,M1,T1 ↗ µ ′, exn v

ρ, µ, let x = M1 in M2, letF (T1) ↗ µ ′, exn v

F-CaseL

ρ, e ↗ inl v ρ[x 7→ v], µ,M1,T ↗ µ ′,R

ρ, µ, case e of {inl x .M1; inr y.M2}, caseL (e
′,x .T ,y) ↗ µ ′,R

F-CaseR

ρ, e ↗ inr v ρ[y 7→ v], µ,M2,T ↗ µ ′,R

ρ, µ, case e of {inl x .M1; inr y.M2}, caseR (e
′,x ,y.T) ↗ µ ′,R

F-CaseL�
ρ, e ↗ � L= writes(T) k = outcome(T)

ρ, µ, case e of {inl x .M1; inr y.M2}, caseL (e
′,x .T ,y) ↗ µ /L,k �

F-CaseR�
ρ, e ↗ � L= writes(T) k = outcome(T)

ρ, µ, case e of {inr x .M1; inr y.M2}, caseR (e
′,x ,y.T) ↗ µ /L,k �

F-App

ρ, e1 ↗ v1 v1 = 〈ρ
′, rec f (x).M〉 ρ, e2 ↗ v2 ρ ′[f 7→ v1][x 7→ v2], µ,M,T ↗ µ ′,R

ρ, µ, e1 e2, e
′
1
e ′

2
. f (x).T ↗ µ ′,R

F-App�
ρ, e1 ↗ � L= writes(T) k = outcome(T)

ρ, µ, e1 e2, e
′
1
e ′

2
. f (x).T ↗ µ /L,k �

Fig. 6. Forward slicing for computations: holes, let-bindings, cases and function applications

of ρ, µ, ref e ⇒ µ ′[l 7→ v] which records the already-chosen location of l. Without the trace

argument, forward slicing would not be deterministic, just as ordinary evaluation is not.

Lemma 4.3 (Forward slicing function).

(1) If ρ, µ1,M,T ↗ µ2,R and ρ, µ1,M,T ↗ µ ′
2
,R′ then (µ2,R) = (µ ′

2
,R′).

(2) Suppose T :: ρ, µ1,M ⇒ µ2,R. If (ρ ′, µ ′1,M
′,T ′) v (ρ, µ1,M,T) there exists (µ ′2,R

′) v (µ2,R)
with ρ ′, µ ′

1
,M ′,T ′ ↗ µ ′

2
,R′.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:18 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

ρ, µ,M,T ↗ µ ′,R

F-Raise

ρ, e ↗ v

ρ, µ, raise e, raise e ′ ↗ µ, exn v

F-Try

ρ, µ,M1,T1 ↗ µ ′, val v

ρ, µ ′, tryM1 with x → M2, tryS (T1) ↗ µ ′, val v

F-TryFail

ρ, µ,M1,T1 ↗ µ ′, exn v ρ[x 7→ v], µ ′,M2,T2 ↗ µ2,R

ρ, µ, tryM1 with x → M2, tryF (T1,x .T2) ↗ µ2,R

F-Ref

ρ, e ↗ v

ρ, µ, ref e, refl e
′ ↗ µ[l 7→ v], val l

F-Assign

ρ, e1 ↗ l ρ, e2 ↗ v

ρ, µ, e1 := e2, e
′
1

:=l e
′
2
↗ µ[l 7→ v], val ()

F-Assign�
ρ, e1 ↗ �

ρ, µ, e1 := e2, e
′
1

:=l e
′
2
↗ µ[l 7→ �], val �

F-Deref

ρ, e ↗ l

ρ, µ, !e, !le
′ ↗ µ, val µ (l)

F-Deref�
ρ, e ↗ �

ρ, µ, !e, !le
′ ↗ µ, val �

Fig. 7. Forward slicing for computations: exceptions and references

Given Lemma 4.3, we write fwdT for the function which takes any element of ↓(ρ ′,ν ,M ′,T) to

its forward image in ↓(ν ′,R′). (We write fwdT instead of fwdρ,µ,M,T because T provides enough

information to determinise evaluation.)

Lemma 4.4 (Meet-preservation for fwdT). SupposeT :: ρ, µ1,M ⇒ µ2,R andx ,x ′ v (ρ, µ1,M,T).
�en fwdT (x u x ′) = fwdT (x) u fwdT (x ′).

4.2 Backward slicing
We will de�ne backward slicing inductively using rules for the judgment µ,R,T ↘ ρ, µ ′,M,U ,

which can be read as “To produce partial output store µ, partial result R, and partial trace T , the

input environment ρ, input store µ ′, program M and traceU are required”. �e �rst two arguments

µ and R constitute the slicing criterion, where µ allows us to specify what parts of the output store

are of interest, andT is a trace of the computation (obtained initially from tracing evaluation of the

program.)

Figure 8 de�nes backward slicing for computations. We explain these rules in greater detail,

because there are a number of subtleties relative to the rules for slicing pure programs.

�e (B-Slice�) rule is applied preferentially whenever possible, to avoid a profusion of straight-

forward but verbose side-conditions. �is rule says that if the return value of the slicing criterion is

not needed and none of the locations Lwri�en to by T are needed (i.e. µ /L= µ), then we return

the empty environment �, unchanged store µ, empty program �, and hole trace �k
L

recording the

write set and outcome of T . �e idea here is that we are allowed to slice away information that

contributed only to the outcome of a computation that returns normally, as long as the result value

or side e�ects of the computation are not needed. �us, the annotated trace hole �k
L

records just

enough information about T to allow us to approximate its behaviour during forward slicing.

�e rule (B-Ret) for slicing T = return e is straightforward; we use the expression slicing

judgment. For let-binding, there are two rules: (B-Let) for T = letS (T1,x .T2) when the �rst

subexpression returns, and (B-LetFail) for T = letF (T) when the �rst subexpression raises an

exception. In the �rst case, we slice T2 with respect to the result of the computation. �is yields an

environment of the form ρ[x 7→ v], where v shows what part of the value of x was required in T2.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:19

µ,R,T ↘ ρ, µ ′,M,U

B-Slice�
L= writes(T) µ /L= µ

µ,k �,T ↘ �, µ,�,�k
L

B-Ret

v, e ↘ ρ, e ′

µ, val v, return e ↘ ρ, µ, return e ′, return e ′

B-Let

µ,R,T2 ↘ ρ2[x 7→ v], µ ′,M2,U2 µ ′, val v,T1 ↘ ρ1, µ
2,M1,U1

µ,R, letS (T1,x .T2) ↘ ρ1 t ρ2, µ
2, let x = M1 in M2, letS (U1,x .U2)

B-LetFail

µ, exn v,T1 ↘ ρ, µ ′,M1,U1

µ, exn v, letF (T1) ↘ ρ, µ ′, let x = M1 in �, letF (U1)

B-CaseL

µ,R,T ↘ ρ[x 7→ v], µ ′,M1,U inl v, e ↘ ρ ′, e ′

µ,R, caseL (e,x .T ,y) ↘ ρ t ρ ′, µ ′, case e ′ of {inl x .M1; inr y.�}, caseL (e
′,x .U ,y)

B-CaseR

µ,R,T ↘ ρ[y 7→ v], µ ′,M2,U inr v, e ↘ ρ ′, e ′

µ,R, caseR (e,x ,y.T) ↘ ρ t ρ ′, µ ′, case e ′ of {inr x .�; inr y.M2}, caseR (e
′,x ,y.U)

B-App

µ,R,T ↘ ρ[f 7→ v1][x 7→ v2], µ ′,M,U v2, e2 ↘ ρ2, e
′
2

v1 t 〈ρ, rec f (x).M〉, e1 ↘ ρ1, e
′
1

µ,R, e1 e2 . f (x).T ↘ ρ1 t ρ2, µ
′, e ′

1
e ′

2
, e ′

1
e ′

2
. f (x).U

B-Raise

v, e ↘ ρ, e ′

µ, exn v, raise e ↘ ρ, µ, raise e ′, raise e ′

B-TryFail

µ,R,T2 ↘ ρ1[x 7→ v], µ ′,M2,U2 µ ′, exn v,T1 ↘ ρ2, µ
2,M1,U1

µ,R, tryF (T1,x .T2) ↘ ρ1 t ρ2, µ
2, tryM1 with x → M2, tryF (U1,x .U2)

B-Try

µ, val v,T1 ↘ ρ, µ ′,M1,U1

µ, val v, tryS (T1) ↘ ρ, µ ′, tryM1 with x → �, tryS (U1)

B-Ref

µ (l), e ↘ ρ, e ′

µ, val v, refl e ↘ ρ, µ[l 7→ �], ref e ′, refl e
′

B-Assign

µ (l), e2 ↘ ρ2, e
′
2

l, e1 ↘ ρ1, e
′
1

µ, val v, e1 :=l e2 ↘ ρ1 t ρ2, µ[l 7→ �], e ′
1

:= e ′
2
, e ′

1
:=l e

′
2

B-Deref

l, e ↘ ρ, e ′

µ, val v, !le ↘ ρ, µ t [l 7→ v], !e ′, !le
′

Fig. 8. Backward slicing for computations

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:20 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

We then slice T1 with respect to val v . �e partial environments ρ1 and ρ2 resulting from slicing

the subtraces are joined, while the store µ is threaded through the slicing judgments for T2 and T1.

�e rule for T = letF (T
′) simply slices T ′ with respect to the result R (which may be � or exn v).

�e rules for slicing case expressions (B-CaseL), (B-CaseR) and applications (B-App) are similar

to those for the corresponding constructs in pure TML; we brie�y summarize them. When we slice

T = caseL (e,x .T
′,y), we slice T ′ with respect to the result, and obtain the value v showing what

part of x is needed; we then slice e with respect to inl v . �e rule for caseR (e,x ,y.T
′) is symmetric.

Finally, for application tracesT = e1 e2 . f (x).T
′
, we sliceT ′ with respect to the outcome, and obtain

from this v1 and v2 which show how much of the function and argument were needed for the

recursive call. We also obtain ρ which shows what other values in the closure were needed and M
which shows what part of the function body was needed. �e argument expression e2 is then sliced

with respect to v2 and the function expression e1 is sliced with respect to v1 t 〈ρ, rec f (x).M〉.
(�e (B-App) rule illustrates an additional bene�t of combining program and trace slicing in a single

judgment; Perera et al. [2012] treated program slicing and trace slicing separately, which made it

necessary to traverse the subtrace T ′ twice in order to perform trace slicing).

�e rules for raising exceptions (B-Raise), and for dealing with try (B-Try), (B-TryFail), are

exactly symmetric to the rules for returning normally and for let-binding.

�e rules for references deserve careful examination. For reference cell creation, in rule (B-Ref)

we slice the expression e with respect to the value of µ (l), where l is the location recorded in the

trace, and we update the store to map l to � since l is not allocated before the reference is created.

�e result R is irrelevant in this rule, since rerunning the reference expression will fully restore the

return value l.

For assignment, the rule (B-Assign) slices e2 with respect to µ (l) and we slice e1 with respect to

l itself. Finally, we update the store so that l is mapped to �; this is necessary because we have no

way of knowing the value of lbefore the assignment, and in any case it should be removed from

the slicing criterion until any earlier reads from l are considered. Finally, for dereferencing the

rule (B-Deref) handles the case where we slice with respect to a known return value val v . In

this case, we can assume v , �, since otherwise an earlier rule would apply. �us we slice e with

respect to l and we add v to the slicing criterion µ (l).
Because of the prioritisation of the �rst rule, backward slicing is deterministic, and total for

downward-closed subsets of its domain. Note that this preference for the �rst rule means that the

other rules will only be used when either the value part of the result is not �, or there are locations

l ∈ writes(T) such that µ (l) , �. In particular, rules (B-Ref) and (B-Assign) will only be used

when the either the returned value (lor �) or the value of the location l that is created or assigned

is part of the slicing criterion, i.e. µ (l) , �.

Lemma 4.5 (Backward slicing function).

(1) If µ,R,T ↘ ρ, µ ′,M,U and µ,R,T ↘ ρ ′, µ2,M ′,U ′ then (ρ, µ ′,M,U) = (ρ ′, µ2,M ′,U ′).
(2) Suppose T :: ρ ′,ν ,M ′ ⇒ ν ′,R′. If (µ,R) v (ν ′,R′) there exists (ρ, µ ′,M,U) v (ρ ′,ν ,M ′,T)

such that µ,R,T ↘ ρ, µ ′,M,U .

Given Lemma 4.5, we write bwdT for the function which takes any element of ↓(ν ′,R′) to its

↘-image in ↓(ρ ′,ν ,M ′,T). It computes the lower adjoint of the forward slicing function for a given

computation.

Theorem 4.6 (Galois connection for a computation).

Suppose T :: ρ ′,ν ,M ′ ⇒ ν ′,R′.
(1) If (ρ, µ,M,U) v (ρ ′,ν ,M ′,T) then bwdT (fwdT (ρ, µ,M,U)) v (ρ, µ,M,U).
(2) If (µ,R) v (ν ′,R′) then fwdT (bwdT (µ,R)) w (µ,R).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:21

Analogously to the Galois connection for an expression, �eorem 4.6 implies that bwdT preserves

joins (and is therefore monotonic).

Lemma 4.7 (Join-preservation for bwdT). Suppose T :: σ ,ν ,M ⇒ ν ′, S and (µ,R), (µ ′,R′) v
(ν ′, S). �en bwdT (µ t µ ′,R t R′) = bwdT (µ,R) t bwdT (µ ′,R′).

5 ARRAYS, SEQUENTIAL COMPOSITION, AND LOOPS
Any self-respecting imperative language includes mutable arrays, sequential composition, and

loops. In this section we sketch how they can be added to our framework.

We �rst consider the following extension to the computations and traces to accommodate arrays:

M ::= · · · | array(e1, e2) | e1[e2] | e1[e2]← e3

v ::= · · · | l{n}

T ::= · · · | arrayl,n (e1, e2) | e1[e2]l[n] | e1[e2]←l[n] e3

where array(e1, e2) creates an array of length e1 whose elements are initialised to e2, while e1[e2]

gets element e2 from array e1 and e1[e2]← e3 assigns e3 to e1[e2]. Array values l{n} consist of a

store location l and length n. Furthermore, we extend stores to map locations to either ordinary

valuesv or arrays [v1, . . . ,vn]. Figure 9 sketches the semantics of arrays. We omit routine additional

rules for reading the length of an array. Aside from the fact that they record traces, the evaluation

rules are otherwise straightforward.

Traces for array creation are annotated with the location and length of the array, while dereference

and update operations are annotated with the array location and a�ected index. We extend the

function writes(T) as follows:

writes(arrayl,n (e1, e2)) = {l[0], . . . , l[n − 1]}

writes(e1[e2]l[i]) = {l[i]}

writes(e1[e2]←l[i] e2) = {l[i]}

We simply de�ne outcome(T) as val for array traces T . (Alternatively, we could instead adjust

the semantics of arrays so that exceptions are raised in the event of a�empt to create an array of

negative length or read or write to an out-of-bounds index. In that case we would need to annotate

traces to re�ect these possibilities, but we omit this added complication.)

Figure 10 shows the forward slicing rules for array constructs, which are similar to those for

references. �e main di�erences are that in the rules for dereferencing and updating, we require

both the array and index parameter to be de�ned in order to return a value, and return � if either

argument is �. In that case, we also approximate the e�ect of the read or write on the store.

Figure 11 shows the backward slicing rules for arrays. �ese are again similar to those for

references. In the case for array creation, we use the location and length of the created array to

compute the join of all demanded parts of the initialisation expression e2, and we also require the

length n be recomputed from e1. In the rule for backward slicing for array dereferences, we slice

e2 with respect to i and e1 with respect to l, where the annotation l[i] records the array location

and index; we also place demand v on the nth element of the array at l in the store. Finally, in the

backward rule for array update, using the recorded location and index l[i], we slice e3 with respect

to the current demand on l[i], and slice the index and array subexpressions as before. Finally we

erase the ith element of the array at l since its value before the update is no longer relevant until

some earlier computation reads it.

Sequential composition and while-loops are de�nable in iTML in the usual way:

M1;M2 ⇐⇒ let = M1 in M2

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:22 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

T :: ρ, µ,M ⇒ µ ′,R

ρ, e1 ⇒ n ρ, e2 ⇒ v

arrayl,n (e1, e2) :: ρ, µ, array(e1, e2) ⇒ µ[l 7→ [v, . . . ,v]], val l{n}

ρ, e1 ⇒ l{n} ρ, e2 ⇒ i 0 ≤ i < n

e1[e2]l[i] :: ρ, µ, e1[e2]⇒ µ, val µ[l[i]]

ρ, e1 ⇒ l{n} ρ, e2 ⇒ i ρ, e3 ⇒ v 0 ≤ i < n

e1[e2]←l[i] e3 :: ρ, µ, e1[e2]← e3 ⇒ µ[l[i] = v], val ()

Fig. 9. Traced evaluation for array constructs

ρ, µ,M,T ↗ µ ′,R

ρ, e1 ↗ n ρ, e2 ↗ v

ρ, µ, array(e1, e2), arrayl,n (e1, e2) ↗ µ[l 7→ [v, . . . ,v]], val l{n}

ρ, e1 ↗ �

ρ, µ, array(e1, e2), arrayl,n (e1, e2) ↗ µ[l 7→ [�, . . . ,�]], val �

ρ, e1 ↗ l{n} ρ, e2 ↗ i

ρ, µ, e1[e2], e1[e2]l[i] ↗ µ, val µ[l[i]]

ρ, e1 ↗ � or ρ, e2 ↗ �

ρ, µ, e1[e2], e1[e2]l[i] ↗ µ, val �

ρ, e1 ↗ l{n} ρ, e2 ↗ i ρ, e3 ↗ v

ρ, µ, e1[e2]← e3, e1[e2]←l[i] e3 ↗ µ[l[i] 7→ v], val ()

ρ, e1 ↗ � or ρ, e2 ↗ �

ρ, µ, e1[e2]← e3, e1[e2]←l[i] e3 ↗ µ[l[i] 7→ �], val �

Fig. 10. Forward slicing for array constructs

µ,R,T ↘ ρ, µ ′,M,U

tn−1

i=0
µ (l[i]), e2 ↘ ρ2, e

′
2

n, e1 ↘ ρ1, e
′
1

µ, val v, arrayl,n (e1, e2) ↘ ρ1 t ρ2, µ[l 7→ �], array(e ′
1
, e ′

2
), arrayl,n (e

′
1
, e ′

2
)

i, e2 ↘ ρ2, e
′
2

l, e1 ↘ ρ1, e
′
1

µ, val v, e1[e2]l[i] ↘ ρ1 t ρ2, µ t [l[i] 7→ v], e ′
1
[e ′

2
], e ′

1
[e ′

2
]l[i]

µ (l[i]), e3 ↘ ρ3, e
′
3

i, e2 ↘ ρ2, e
′
2

l , e1 ↘ ρ1, e
′
1

µ, val v, e1[e2]←l[i] e3 ↘ ρ1 t ρ2 t ρ3, µ[l[i] 7→ �], e ′
1
[e ′

2
]← e ′

3
, e ′

1
[e ′

2
]←l[i] e

′
3

Fig. 11. Backward slicing for array constructs

while e do M ⇐⇒ (rec loop ().if e then (M ; loop ()) else ()) ()

Our implementation supports these constructs directly, rather than via desugaring, so that slicing

results in comprehensible slices in terms of these constructs. As a simple example illustrating all of

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:23

(a) (b) (c) (d)

let x = [|0,1,2,3|] in
let i = ref 0 in
let s = ref 0 in
while (!i < 4) do (

s := !s + x[!i];
x[!i+1] <- s;
i := !i + 2

)

let x = [|0,1,2,3|] in
let i = ref 0 in
let s = ref 0 in
while (!i < 4) do (

s := !s + x[!i];
x[!i+1] <- s;
i := !i + 2

)

let x = [|0,1,2,3|] in
let i = ref 0 in
let s = ref 0 in
while (!i < 4) do (

s := !s + x[!i])

x[!i+1] <- s;
i := !i + 2

)

let x = [|0,1,2,3|] in
let i = ref 0 in
let s = ref 0 in
while (!i < 4) do (

s := !s + x[!i];
x[!i+1] <- s;
i := !i + 2

)

Fig. 12. Example of slicing using arrays and while-loops (a) complete program, (b) slice with respect to !s = 2,
(c) slice with respect to !i = 4, (d) slice with respect to x[3] = 2

the above features, consider the program in Figure 12(a), which creates an array and adds up the

numbers in even positions, and writes the partial sums to the odd positions. Slices are shown with

respect to the �nal values of !s , !i , and x[3] in Figure 12(b–d) respectively.

6 IMPLEMENTATION
To validate the ideas presented in the earlier sections we created an implementation

1
in Haskell

(GHC 8.0.1) that allows us to run, trace, and backward slice iTML programs, along with a read-eval-

print loop that allows interactive use of these features.

�e calculus introduced in Section 3 is designed to reduce the number of necessary semantic

rules and at the same time maintain the full expressive power of an ML-like language. �e actual

iTML language in our implementation does not distinguish between expressions and computations,
which means that side-e�ecting, exception-raising computations can occur anywhere. Indeed, even

constructs like nested exceptions (raise (raise e)) are permi�ed. iTML also contains integer,

double, string and boolean types, arithmetic and logical operators, pair types with projections,

arrays, if conditionals, sequencing, and loops.

To implement backward slicing algorithm we had to generalise the slicing rules from Figures 4, 8,

and 11 to the full iTML language. As expected, this causes a blowup in the number of rules, from

a total of twenty-�ve rules to over seventy cases in the actual code. Eliminating the distinction

between expressions and computations also leads to the structure of traces being signi�cantly

di�erent from the one shown in Fig. 3. In our core calculus we have two di�erent trace forms

for let expressions to distinguish whether a let-bound expression raised an exception or not,

and similarly for try-with blocks. Given the much richer structure of expressions in the actual

implementation, an approach of having several trace forms for each expression form would be

impractical. So when a subexpression of a trace raises an exception we simply denote all remaining

sub-traces as �. So, for example, we represent letF (T) as let(T ,x .�).
To evaluate the practical usefulness of our development we decided to implement a non-trivial

algorithm that relies on side-e�ects and may potentially raise exceptions. We picked the Gaussian

elimination method for solving systems of linear equations. Our implementation is naive: it does not

perform pivoting nor does it try to detect situations where a system has in�nitely many solutions

or no solutions at all. �is means that for such systems our program will a�empt a division by

zero, thus raising an exception. Fig. 13(a) shows a matrix of coe�cients in a 4-by-4 system of linear

equations. �e �rst iteration leads to zeroing of elements below the diagonal in the �rst column,

but it also leads to zeroing of an element on the diagonal in the second column (Fig. 13(b), boxed).

1
h�ps://github.com/jstolarek/slicer

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://github.com/jstolarek/slicer

1:24 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

(a) (b) (c)

3 −1 2 −1 −13

3 −1 1 1 1

1 2 −1 2 21

−1 1 −2 −3 −5

3 −1 2 −1 −13

0 0 −1 2 14

0 2
2

3
−1

2

3
2

2

3
25

1

3

0
2

3
−1

1

3
−3

1

3
−9

1

3

3 −1 � � �
3 −1 � � �

1 2 � � �
� � � � �

Fig. 13. Gaussian elimination example. (a) initial matrix; (b) a�er one iteration a 0 appears on the diagonal;
(c) our program identifies relevant elements of original array, 2 in a box indicating place where division by
zero occurred.

In the second iteration we immediately a�empt to divide 2
2

3
by 0, which leads to an exception being

raised. If we now slice the program with respect to the exception value, our implementation will

identify elements of the entry matrix that were relevant in raising the exception – see Fig. 13(c),

where the boxed element is where the exception is raised. Our implementation also identi�es which

expressions in the program were relevant to raising an exception. But since there is only one place

where a division occurs in the code it is pre�y obvious from the start where the division by zero

must have taken place. �e program slice (shown in full in an appendix in the full version of the

paper) does exclude some code that was not relevant to the exception, but analysing a trace slice

might be much more enlightening here.

Note that system in Fig. 13(a) has exactly one solution and if we swap the 2nd and 3rd row our

implementation will �nd it. To test our implementation in a higher-order se�ing we mapped the

solving function over a list of matrices that �rst contained a solvable modi�cation of the system in

Fig. 13(a) and then the original version that leads to division by zero. Our implementation correctly

identi�es the �rst matrix as irrelevant to the exception result and marks the same elements of

second array as the ones shown in Fig. 13(c).

Our main focus has been on developing an intuitively plausible forward slicing semantics and

matching backward semantics that provides useful information in the presence of side-e�ects, and

our implementation has been helpful for establishing the usefulness of this approach. �ough

achieving high performance has not been our focus, it is also an important concern, so we have

conducted preliminary investigations of the performance of our approach, for example by tracing

and slicing computations that create lists or arrays of various lengths. Our initial approach to

backward slicing recomputes writes(T) whenever the (B-Slice�) rule is a�empted, and is observed

to be quadratic in some cases. Understanding the performance of the Haskell implementation is

nontrivial and we plan to investigate more e�cient techniques in future work.

7 RELATEDWORK
Galois connections are widely used in (static) program analysis in the context of abstract interpre-
tation [Cousot and Cousot 1977; Darais and Van Horn 2016]. In that se�ing, one la�ice might be

the (in�nite) set of sets of possible run-time behaviours of a program and another might be the

(�nite) set of abstractions computed by a static analysis. Abstract interpretation has also recently

been related to gradual typing [Garcia et al. 2016], a technique for mixing static and dynamic type

systems. Here one la�ice is the set of sets of (concrete) types and another is the set of gradual

types. However, both abstract interpretation and gradual typing are aimed at static analysis or

typechecking of programs, whereas we consider dynamic analysis via Galois connections between

la�ices of partial inputs and partial outputs of a program run. On the other hand, it is an intriguing

question whether the forward slicing semantics can be derived from ordinary evaluation using

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:25

Galois connections between partial objects and sets of complete objects (analogously to the AGT

approach of Garcia et al. [2016] but at the expression/value level).

�e application of Galois connections to program slicing for pure higher-order programs with

pairs, sums and recursive datatypes was introduced by Perera et al. [2013; 2012]. Subsequent work

investigated applications of related slicing techniques to security and provenance analysis [Acar

et al. 2013] and explaining database queries [Cheney et al. 2014], although these papers did not

employ Galois connections, opting instead for semantic notions of dependence (based on replaying

traces) for which minimal slicing is undecidable. Perera et al. extended the Galois slicing approach

to the π -calculus [2016]. Our work draws on their insight that trace information needs to be taken

into account in the de�nitions of forward and backward slicing, but we consider a core language

iTML for an ML-like language with imperative features, rather than the π -calculus. In principle it

may be possible to translate iTML to the π -calculus, and use Perera et al.’s [2016] slicing technique

on the results, but it is unclear how one might translate back to iTML, or whether the translation

would introduce undesirable artefacts.

As noted earlier, there is a large literature on slicing techniques for imperative and object-

oriented languages [Xu et al. 2005], but to the best of our knowledge none of this work has been

extended to also handle features common to functional programming languages. Also, to the best

of our knowledge the fact that optimal program slicing techniques are Galois connections has not

been discussed in the slicing literature. Field and Tip [1998] present an approach to slicing for

arbitrary sets of rewrite rules, in which forward slicing and backward slicing enjoy correctness

and minimality properties determined by the rewriting rules. However, they considered �rst-order

rewrite systems only, which would not su�ce for a higher-order language.

�e Galois slicing approach is similar in spirit to several previous papers on slicing for pure or

lazy programs based on recording and analysing redex trails [Ochoa et al. 2008; Rodrigues and

Barbosa 2007] and semantics-directed execution monitoring [Kishon and Hudak 1995]. Perera et al.

[2012] give a more detailed comparison with this prior work. �ere is also a clear analogy with

declarative debugging techniques in logic programming (including functional-logic programming

languages such as Curry and Mercury). For example, tracing and dependency-tracking techniques

have also been used in a tool for automated debugging in Mercury [MacLarty et al. 2005], in a

system which helps programmers localise bugs by traversing an execution trace in response to

programmer feedback about correct and incorrect results. Work by Silva and Chitil [2006] on

combining algorithmic debugging and program slicing for pure functional programs could be

generalised to automated debugging for imperative functional programs.

Biswas [1997] did consider slicing for ML programs including references and e�ects, but used a

semantic notion of program slice for which least slices are not computable. In his approach, eliding

an exception handler can allow an exception to propagate unhandled or be handled by a di�erent

handler than in the original (unsliced) program. Similarly, eliding an assignment can expose the

previous value of the store location. �is is in contrast with the Galois connection approach, where

slicing is required to be monotone and the execution of a program slice is always a slice of the

original program’s execution. �us slicing never changes the behaviour of a program, other than

to elide parts in a way consistent with the original execution.

Slicing-like techniques have also been considered recently for explaining type errors. Type error

explanation and diagnosis in the presence of Hindley-Milner-style type inference has been studied

extensively; we mention a few closely related approaches. Haack and Wells [2004] developed meth-

ods for type error slicing for Standard ML that provide completeness and minimality guarantees;

this suggests that it may be possible to view their approach as a Galois connection between la�ices

of programs and type errors. Seidel et al. [2016] present an approach for explaining type errors

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:26 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

using dynamic witnesses, that is, synthesised input values that illustrate how the program will go

wrong. Such explanations may be more immediately useful to novices than conventional type

errors, but can grow large; Seidel et al. suggest that slicing techniques may be useful for providing

smaller explanations. Our work may apply here, since we can slice programs that are not well

typed.

Bidirectional transformations (such as lenses [Foster et al. 2010]) consist of pairs of mappings

between data structures that maintain some notion of consistency among them; for example,

bidirectional transformations are proposed for synchronising di�erent models of a so�ware system,

such as class diagrams and database schemas. Bidirectional transformations satisfy round-tripping

laws that ensure that changes made to one side of the transformation are appropriately propagated

to the other side. Among the growing literature on bidirectional programming, the work of Wang

et al. [2011] seems particularly relevant, since it considers bidirectional transformations on tree-

structured datatypes (e.g. abstract syntax trees). In their approach, changes to one side of the

transformation can be propagated e�ciently to the other side by decomposing the tree into a

context (which does not change) and a focused subtree that is changed. It may make sense to

view backward slicing as a special form of bidirectional transformation in which we only consider

deleting subexpressions from the output; the relationship between Galois slicing and bidirectional

transformations remains to be investigated.

We brie�y considered the possibility of li�ing slicing for the iTML core language to ML-like

source programs by desugaring, slicing the desugared programs, and then somehow resugaring the

sliced program back to an ML-like program. Pombrio and Krishnamurthi [2014, 2015] proposed

an approach to resugaring for languages de�ned compositionally using hygienic macros, so that

evaluation steps in the desugared language can be made meaningful in terms of the source language.

�eir approach establishes equational properties for round-tripping between desugaring and

resugaring, similar to those encountered in bidirectional transformations or Galois connections.

It would be interesting to see whether compatible desugaring/resugaring pairs can be li�ed to

Galois connections on partial expressions, since we could potentially then li� slicing to the source

language by composing with desugaring/resugaring. Other approaches to operational semantics,

such as Charguéraud’s [2013] pre�y big-step semantics, might also be worth considering.

Techniques for working with partial programs have also been considered recently by Omar et al.

in the structured editor system Hazelnut [2017]. �ey explore usage of holes as a way to write

programs in incremental steps, while guaranteeing that incomplete programs are meaningful at

each intermediate editing step. Interestingly, Hazelnut allows holes to take parameters, so that a

term that is not well-typed in the current context can be placed inside a parameterized hole. It may

be fruitful to combine the ideas in our approach to evaluating and slicing partial programs with

Hazelnut’s approach to structured editing.

8 CONCLUSIONS
Despite its long history and extensive exploration in imperative or object-oriented se�ings, program

slicing is not yet well-understood for functional languages. To date, most work on slicing for

functional languages has not considered e�ects; the main exception is Biswas [1997], but his

approach is extremely conservative in the presence of e�ects. On the other hand, work on slicing

for imperative languages has not considered higher-order functions, datatypes or other common

features of functional languages.

In this paper we generalised the Galois slicing approach, which considers �ne-grained forward

and backward slicing techniques as Galois connections between la�ices of partial inputs and outputs,

to also allow for traces that determinise and record information about the e�ects of computations.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

Imperative Functional Programs that Explain their Work 1:27

We de�ned tracing semantics and forward and backward slicing for an imperative core language,

iTML, and proved that they form a Galois connection. We have implemented and evaluated our

approach on a variety of examples, providing additional con�dence in its usefulness. Our main

contribution is the de�nition of forward slicing and matching optimal backward slicing, proofs of

their correctness, and experimental investigation of their qualitative usefulness.

�ere are a number of interesting directions for future work. Currently, there is a gap between

slicing for the core language (which we use for proofs) and the source language, in which we have

to handle many additional cases. It seems straightforward, albeit labour-intensive, to extend the

systems and proofs; we would prefer to �nd a more elegant approach that allows us to li� results

about slicing from the core language to the source language through resugaring and desugaring.

Adapting our approach to a mainstream language may raise additional issues we have not had

to consider in the core language. Extending our approach to consider other e�ects, objects, or

concurrency appears to be a considerable challenge. Finally, we have focused on correctness and

expressiveness, so �nding e�cient techniques for slicing that can be applied to larger programs is

an important next step.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:28 Wilmer Riccio�i, Jan Stolarek, Roly Perera, and James Cheney

REFERENCES
Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. A core calculus for provenance. Journal of Computer Security,

21:919–969, 2013. Full version of a POST 2012 paper.

Jean-Francois Bergere�i and Bernard A. Carré. Information-�ow and data-�ow analysis of while-programs. ACM Trans.
Program. Lang. Syst., 7(1):37–61, January 1985. ISSN 0164-0925. doi: 10.1145/2363.2366. URL h�p://doi.acm.org/10.1145/

2363.2366.

S. Biswas. Dynamic Slicing in Higher-Order Programming Languages. PhD thesis, University of Pennsylvania, 1997.

Arthur Charguéraud. Pre�y-big-step semantics. In Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Proceedings, pages 41–60, 2013. doi: 10.1007/978-3-642-37036-6 3. URL h�p://dx.doi.org/10.

1007/978-3-642-37036-6 3.

James Cheney, Amal Ahmed, and Umut A. Acar. Database queries that explain their work. In Proceedings of the 16th
International Symposium on Principles and Practice of Declarative Programming (PPDP), pages 271–282, 2014.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed la�ice model for static analysis of programs by

construction or approximation of �xpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM. doi: 10.1145/512950.512973. URL

h�p://doi.acm.org/10.1145/512950.512973.

David Darais and David Van Horn. Constructive Galois connections: Taming the Galois connection framework for

mechanized metatheory. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,

ICFP 2016, pages 311–324, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951934. URL

h�p://doi.acm.org/10.1145/2951913.2951934.

B.A. Davey and H.A. Priestley. Introduction to La�ices and Order. Cambridge University Press, 2002.

John Field and Frank Tip. Dynamic dependence in term rewriting systems and its application to program slicing. Information
and So�ware Technology, 40(11–12):609–636, November/December 1998.

Nate Foster, Kazutaka Matsuda, and Janis Voigtländer. �ree complementary approaches to bidirectional programming. In

Jeremy Gibbons, editor, Spring School on Generic and Indexed Programming, volume 7470, pages 1–46. Springer, 2010. doi:

10.1007/978-3-642-32202-0 1.

Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16, pages 429–442, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.2837670. URL h�p://doi.acm.org/10.1145/2837614.2837670.

Christian Haack and J. B. Wells. Type error slicing in implicitly typed higher-order languages. Sci. Comput. Program., 50(1-3):

189–224, March 2004. ISSN 0167-6423. doi: 10.1016/j.scico.2004.01.004. URL h�p://dx.doi.org/10.1016/j.scico.2004.01.004.

Amir Kishon and Paul Hudak. Semantics directed program execution monitoring. J. Funct. Prog., 5(4):501–547, 1995. doi:

10.1017/S0956796800001465.

Paul Blain Levy, John Power, and Hayo �ielecke. Modelling environments in call-by-value programming languages. Inf.
Comput., 185(2):182–210, September 2003. ISSN 0890-5401. doi: 10.1016/S0890-5401(03)00088-9. URL h�p://dx.doi.org/10.

1016/S0890-5401(03)00088-9.

Ian MacLarty, Zoltan Somogyi, and Mark Brown. Divide-and-query and subterm dependency tracking in the mercury

declarative debugger. In Proceedings of the Sixth International Symposium on Automated Analysis-driven Debugging,

AADEBUG’05, pages 59–68, New York, NY, USA, 2005. ACM. ISBN 1-59593-050-7. doi: 10.1145/1085130.1085138. URL

h�p://doi.acm.org/10.1145/1085130.1085138.

Claudio Ochoa, Josep Silva, and Germán Vidal. Dynamic slicing of lazy functional programs based on redex trails. Higher
Order Symbol. Comput., 21(1-2):147–192, 2008. ISSN 1388-3690. doi: h�p://dx.doi.org/10.1007/s10990-008-9023-7.

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Ma�hew A. Hammer. Hazelnut: A bidirectionally typed

structure editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pages 86–99, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4660-3. doi: 10.1145/3009837.3009900. URL

h�p://doi.acm.org/10.1145/3009837.3009900.

Roland Perera. Interactive Functional Programming. PhD thesis, University of Birmingham, Birmingham, UK, July 2013.

h�p://etheses.bham.ac.uk/4209/.

Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. Functional programs that explain their work. In ICFP, pages

365–376, New York, NY, USA, 2012. ACM.

Roly Perera, Deepak Garg, and James Cheney. Causally consistent dynamic slicing. In 27th International Conference on
Concurrency �eory (CONCUR 2016), pages 18:1–18:15, 2016.

Justin Pombrio and Shriram Krishnamurthi. Resugaring: Li�ing evaluation sequences through syntactic sugar. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, pages 361–371,

New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2784-8. doi: 10.1145/2594291.2594319. URL h�p://doi.acm.org/10.1145/

2594291.2594319.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

http://doi.acm.org/10.1145/2363.2366
http://doi.acm.org/10.1145/2363.2366
http://dx.doi.org/10.1007/978-3-642-37036-6_3
http://dx.doi.org/10.1007/978-3-642-37036-6_3
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/2951913.2951934
http://doi.acm.org/10.1145/2837614.2837670
http://dx.doi.org/10.1016/j.scico.2004.01.004
http://dx.doi.org/10.1016/S0890-5401(03)00088-9
http://dx.doi.org/10.1016/S0890-5401(03)00088-9
http://doi.acm.org/10.1145/1085130.1085138
http://doi.acm.org/10.1145/3009837.3009900
http://etheses.bham.ac.uk/4209/
http://doi.acm.org/10.1145/2594291.2594319
http://doi.acm.org/10.1145/2594291.2594319

Imperative Functional Programs that Explain their Work 1:29

Justin Pombrio and Shriram Krishnamurthi. Hygienic resugaring of compositional desugaring. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, pages 75–87, New York, NY, USA, 2015.

ACM. ISBN 978-1-4503-3669-7. doi: 10.1145/2784731.2784755. URL h�p://doi.acm.org/10.1145/2784731.2784755.

Nuno F. Rodrigues and Luı́s S. Barbosa. Higher-order lazy functional slicing. Journal of Universal Computer Science, 13(6):

854–873, June 2007.

Eric L. Seidel, Ranjit Jhala, and Westley Weimer. Dynamic witnesses for static type errors (or, ill-typed programs usually

go wrong). In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,

pages 228–242, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951915. URL h�p:

//doi.acm.org/10.1145/2951913.2951915.

Josep Silva and Olaf Chitil. Combining algorithmic debugging and program slicing. In PPDP, pages 157–166, 2006.

Meng Wang, Jeremy Gibbons, and Nicolas Wu. Incremental updates for e�cient bidirectional transformations. In Proceeding
of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21,
2011, pages 392–403, 2011. doi: 10.1145/2034773.2034825. URL h�p://doi.acm.org/10.1145/2034773.2034825.

Mark Weiser. Program slicing. In ICSE, pages 439–449, 1981.

Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief survey of program slicing. SIGSOFT
So�w. Eng. Notes, 30:1–36, March 2005. ISSN 0163-5948. doi: h�p://doi.acm.org/10.1145/1050849.1050865. URL h�p:

//doi.acm.org/10.1145/1050849.1050865.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2016.

http://doi.acm.org/10.1145/2784731.2784755
http://doi.acm.org/10.1145/2951913.2951915
http://doi.acm.org/10.1145/2951913.2951915
http://doi.acm.org/10.1145/2034773.2034825
http://doi.acm.org/10.1145/1050849.1050865
http://doi.acm.org/10.1145/1050849.1050865

	Abstract
	1 Introduction
	1.1 Contributions and Outline

	2 Background: Galois slicing
	2.1 Ordered sets, lattices and Galois connections
	2.2 Galois connections for slicing
	2.3 Summary

	3 Core calculus and common concepts
	3.1 Partial expressions and partial computations
	3.2 Forward and backward slicing for expressions

	4 Slicing for references and exceptions
	4.1 Forward slicing
	4.2 Backward slicing

	5 Arrays, sequential composition, and loops
	6 Implementation
	7 Related work
	8 Conclusions
	References

