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Multilateral Bargaining in Networks:
On the Prevalence of Inefficiencies

Joosung Lee
Business School, University of Edinburgh, 29 Buccleuch Place, Edinburgh EH8 9JS, UK, joosung.lee@ed.ac.uk

We introduce a new noncooperative multilateral bargaining model for network-restricted environments in

which players can bargain only with their neighbors. The main theorem characterizes a condition on net-

work structures for efficient equilibria. If the underlying network is either complete or circular, an efficient

stationary subgame perfect equilibrium exists for all discount factors – all the players always try to reach

an agreement as soon as practicable, and hence no strategic delay occurs. In any other network, however,

an efficient equilibrium is impossible if a discount factor is greater than a certain threshold, as some players

strategically delay an agreement. We also provide an example of a Braess-like paradox, in which network

improvements decrease social welfare.

Key words : noncooperative bargaining, coalition formation, cooperation restriction, strategic delay,

Braess’s Paradox

Subject classifications : Games/group decisions: Bargaining, Noncooperative; Networks/graphs: Theory

Area of review : Games, Information, and Networks

1. Introduction

Bargaining occasionally requires an agreement among three or more players. Sometimes each player

can directly cooperate with all the other players; while other times, some players can cooperate

only with some of the other players for some informational, legal, political, or physical reasons.

In many U.S. states, for instance, because of franchise laws, automobile manufacturers (such as

General Motors and Ford) cannot sell their products directly to customers, but only through

independent dealers. Accordingly, manufacturers are banned from using online marketplaces (such

as autotrader.com) as their sales channels, and hence they can bargain or negotiate only with their

franchised dealers, who can then sell their franchisees’ cars through online marketplaces.

1
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Such cooperation restrictions per se hinder an immediate agreement among all players. Addi-

tional delay, due to players’ strategic concerns, may also occur in reaching a final agreement to

generate the joint surplus – players may strategically bargain only with some of their neighbors

first to postpone negotiating with the others. In the U.S. automobile industry example, each of

the franchised dealers can bargain with the manufacturers as well as the online marketplaces, but

the dealers may form a trade organization (such as National Automobile Dealers Association) to

unify their negotiation channel, before bargaining against other industrial bodies. Although such

a strategic delay in realization of the joint surplus yields an inefficient outcome, it could alter how

the surplus might be allocated among the players.

To analyze the role of cooperation restriction in bargaining, this paper introduces a noncooper-

ative bargaining model in which each player can bargain only with its directly connected players

in a given network. In each period, a randomly selected proposer makes an offer specifying a coali-

tion among the neighbors and monetary transfers to each member in the proposed coalition. If all

the members in the coalition accept the offer, then the proposer thereafter controls the coalition

including the members’ network connections. Otherwise, the offer dissolves. The game repeats until

the grand coalition forms, after which the player who controls the grand coalition wins the unit

surplus. All the players have a common discount factor over discrete time.

The main result characterizes a condition on network structures for efficient equilibria. If the

underlying network is either complete or circular, then for any discount factor there exists an

efficient stationary subgame perfect equilibrium. In such an efficient equilibrium, all the players

always strive to reach an agreement as soon as practicable. Hence, strategic delay never occurs.

In any other network, however, strategic delay occurs and an efficient stationary subgame perfect

equilibrium is impossible if a discount factor is greater than a certain threshold level – players can

take a better position for bargaining in a network by deliberately excluding some of their neighbors

from the bargaining partners.

We also provide an interesting example, in which adding a new communication link decreases

social welfare. This observation is reminiscent of the Braess’s paradox (Braess 1968), which refers
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to a situation where constructing a new route reduces overall performance when players choose

their route selfishly. Analogously in our model, the more links are available, the fewer links are

actually used for bargaining, as each player strategically chooses only some of the links. As a result,

network improvements may decrease social welfare.1

In our bargaining model, inefficiency is caused by strategic delay, which has been a central

issue in the literature. Many noncooperative bargaining models focus on incomplete information

or uncertainty as a source of delay.2 The coalitional bargaining literature, including Seidmann and

Winter (1998), Okada (2000), Gomes (2005), and Lee (2016), has found that strategic delay occurs

even under complete information settings except in cases of unanimity games – when subcoalitions

generate a strictly positive surplus, players may form an inefficient coalition as an intermediate

bargaining step. In this paper, however, we show that strategic delay is prevalent, even in unanimity

games, if cooperation restrictions are imposed.3

The model proposed has two important features, which distinguish it from the existing non-

cooperative bargaining models in networks.4 First, we allow strategic coalition formation so that

players can choose their bargaining partners. In the literature of bargaining in networks, however,

players are supposed to bargain within a random meeting.5 In those models, the players in the

random meeting bargain over their joint surplus, but they cannot choose their bargaining partners.

Second, we also allow players to buy out other players, enabling them to form a coalition gradually.

In the literature of noncooperative bargaining, the idea of successive bargaining through buyout

was firstly introduced by Gul (1989) for a sequence of bilateral bargainings and by Krishna and

Serrano (1996) in which players can bargain with two or more players at the same time.6 To the

best of our knowledge, this paper is the first to allow multilateral bargaining through coalition

formation in networks.7

The paper is organized as follows. In Section 2, we introduce a noncooperative multilateral bar-

gaining model for a network-restricted environment. Section 3 provides the main characterization

result on efficient equilibria. Section 4 outlines the core part of the proof and further investigates
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the players’ strategic interactions, with some leading examples. Based on such examples, we dis-

cuss a Braess-like paradox in Section 5. Lastly, in Section 6, further discussions on the main result

for robustness and extensions follow. The missing proofs and the technical verifications for the

constructed equilibria are presented in the e-companion to this paper.

2. A Model
2.1. Networks

A network (or a graph) g = (N,E) consists of a finite set N = {1,2, · · · , n} of players (or nodes)

and a set E of links (or edges) of N . When g= (N,E) is not the only network under consideration,

the notations N(g) and E(g) are used for the player set and the link set rather than N and

E to emphasize the underlying network g. Through this paper, we assume that g is simple and

connected.8

Given g= (N,E) and S ⊆N , the subgraph restricted on S is g|S = (S,{ij ∈E | {i, j} ⊆ S}). The

(closed) neighborhood of i ∈N is given by Ni(g)≡ {j ∈N | ∃ij ∈ E} ∪ {i}. The degree of i in g,

denoted by degi(g), is the cardinality of a set {j ∈N | ∃ij ∈E}. The (geodesic) distance between

i and j in g, denoted by d(i, j;g), is the number of links in a shortest path between them. The

diameter of g, denoted by diam(g), is the greatest distance between any two players in g.

A coalition S ⊆N is dominating in g if, for all i∈N , either i∈ S or there exists j ∈ S such that

ij ∈E. A player i∈N is a dominating player in g if {i} is a dominating set. Let D(g) be a set of

dominating players in g. For any integer k≥ 2, a network is k-regular if degi(g) = k for all i∈N(g).

A network g is complete if it is (|N(g)| − 1)-regular, or equivalently if D(g) =N(g). A connected

network g is circular if it is 2-regular.9

2.2. A Noncooperative Bargaining Game

A noncooperative bargaining game, or shortly a game, is a triple Γ = (g, p, δ), where g is a underlying

network, p∈R|N |++ is an initial recognition probability with
∑

i∈N pi = 1, and 0< δ < 1 is a common

discount factor.10

A game Γ = (g, p, δ) proceeds as follows. In each period, one of the players is randomly selected

as a proposer according to p. Then, the proposer i makes an offer; that is, i strategically chooses a
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pair (S,y) consisting of a coalition S ⊆Ni(g) and monetary transfers {yj}j∈S\{i}. Each respondent

j ∈ S \{i} sequentially either accepts the offer or rejects it.11 If any j ∈ S \{i} rejects the offer, then

the offer dissolves and all the players repeat the same game in the next period. If each j ∈ S \ {i}

accepts the offer, then i buys out S \ {i}, that is, each respondent j ∈ S \ {i} leaves the game with

receiving yj from the proposer i and the remaining players (N \S)∪{i} play the subsequent game

Γ(i,S) in the next period.12

After i buys out S \ {i}, or i forms a coalition S, the subsequent game Γ(i,S) =
(
g(i,S), p(i,S), δ

)
is

defined in the following way:

i) The induced network g(i,S) =
(
N (i,S),E(i,S)

)
, where N (i,S) = (N \S)∪{i} and

E(i,S) = {ij | (∃i′j ∈E) i′ ∈ S and j ∈N \S}
⋃
{jk | (∃jk ∈E) j, k ∈N \S}. (1)

That is, after i’s S-formation, S \ {i} leaves the network, but i inherits all the network

connections from S. Note that, in terms of graph theory, a coalition formation can be viewed

as a vertex contraction and an induced network is called a minor of the original one.

ii) The induced recognition probability p(i,S) defined on N (i,S):

p
(i,S)
j =


pS if j = i

pj if j ∈N \S.
(2)

That is, the proposer i takes the respondents’ chances of being a proposer as well. In Section

6, we also consider an alternative protocol, in which players cannot inherit others’ proposal

power from buying out.

The game continues until only one last player remains, after which the last player acquires one

unit of surplus.

2.3. Coalitional States

A (coalitional) state π is a partition of N , specifying a set of active (or remaining) players Nπ ⊆N .

For each active player i∈Nπ, i’s partition block [i]π represents the player i together with the other
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players whom she has previously bought out. Denote π◦ by the initial state, that is, Nπ◦ =N and

[i]π◦ = {i} for all i∈N .

A state π is feasible in g, if there exists a sequence of coalition formations {(i`, S`)}L`=1 such that

i1 ∈ N and Si1 ⊆ Ni1 ; and i` ∈ N (i1,S1)···(i`−1,S`−1) and S` ⊆ N
(i1,S1)···(i`−1,S`−1)

i`
for all ` = 2, · · · ,L;

and Nπ =N (i1,S1)···(iL,SL). Let Π(g) be a set of all feasible states in g. According to (1) and (2), for

each π ∈Π(g), the induced network gπ = (Nπ,Eπ) and the induced recognition probability pπ are

uniquely determined as Eπ ≡
⋃
i∈Nπ

{
ij | ∃i′j′ ∈E (i′ ∈ [i]π and j′ ∈ [j]π)

}
and pπi =

∑
j∈[i]π

pj for

i∈Nπ.

When there is no danger of confusion, we omit π◦ in notations, for instance, gπ
◦

= g, gπ
◦(i,S) =

g(i,S), and so on. The description of the underlying network g may also be omitted, when it is clear.

For notational simplicity, for any v ∈R|N | and any S ⊆N , we denote vS =
∑

j∈S vj.

2.4. Stationary Subgame Perfect Equilibria

We focus on stationary subgame perfect equilibria as usual in the literature of coalitional bargain-

ing.13 A stationary strategy depends only on the current coalitional state and the within-period

histories, but not the histories of past periods. The existence of a stationary subgame perfect equi-

librium is known in the literature including Eraslan (2002) and Eraslan and McLennan (2013). See

Lee (2014) for the formal description of stationary strategies, in which players can form interme-

diate coalitions.

We first consider a special class of stationary strategies, namely cutoff strategies. A cutoff strategy

profile (x,q) consists of a value profile x = {{xπi }i∈Nπ}π∈Π and a coalition formation strategy profile

q = {{qπi }i∈Nπ}π∈Π, where xπi ∈ R and qπi is a probability measure in {S | i ∈ S ⊆ Nπ
i } for each

π ∈Π(g). A cutoff strategy profile (x,q) specifies the behaviors of an active player i ∈Nπ in the

following way:

i) player i proposes (S,{δxπj }j∈S\{i}) with probability qπi (S); i.e., a proposer chooses bargaining

partners according to her coalitional formation strategy and offers them their discounted

stationary value;
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ii) player i accepts any offer (S,y) with i∈ S if and only if yi ≥ δxπi ; i.e., a respondent accepts

any offer, which is no less than his discounted stationary value.

A cutoff strategy profile (x,q) induces a probability measure µx,q on the set of all possible

histories. Given history h, let π̃(h) = {πt(h)}Tt=0 be a sequence of states, which is determined by h.

Given (x,q), define the set of inducible states:

Πx,q(g) = {π ∈Π(g) | (∃h ∃t) µx,q(h)> 0 and π= πt(h)}.

Given x, for each π ∈Π(g), i∈Nπ, and S ⊆Nπ
i , define a player i’s excess surplus of S-formation:

eπi (S,x) =


δx

π(i,S)
i − δxπS if S (Nπ

1− δxπNπ if S =Nπ.

A cutoff strategy profile (x,q) induces a continuation payoff in π for each active player i∈Nπ:

uπi (x,q) = pπi
∑
S⊆Nπ

qπi (S)eπi (S,x) +
∑
j∈Nπ

pπj

( ∑
S:i∈S⊆Nπ

qπj (S)δxπi + δ

( ∑
S:i 6∈S⊆Nπ

qπj (S)x
π(j,S)
i

))
. (3)

The first term in the right-hand side of (3) means, when player i is recognized as a proposer she will

expect a weighed sum of her excess surpluses eπi (S,x). In addition, as the second term captures,

no matter who makes an offer, if she is included in the proposed coalition she earns δxπi , she can

otherwise still expect her stationary value x
π(j,S)
i in the next period. Rearranging the above terms,

(3) can be written as:

uπi (x,q) = pπi
∑
S⊆Nπ

qπi (S)eπi (S,x) + δ

(∑
j∈Nπ

pπj
∑
S⊆Nπ

qπj (S)
(
1(i∈ S)xπi +1(i 6∈ S)x

π(j,S)
i

))
. (4)

As Lemma 1 below shows, any stationary subgame perfect equilibrium can be uniquely represented

by a cutoff strategy equilibrium in terms of the players’ payoff. Thus, when we are interested in

the players’ equilibrium payoff or efficiency, without loss of generality, we may only consider cutoff

strategy equilibria. Hence, in this paper, an equilibrium refers to a cutoff strategy equilibrium.

Lemma 1. For any stationary subgame perfect equilibrium, there exists a cutoff strategy equilib-

rium, which yields the same equilibrium payoff vector.
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Remark 1. In a cutoff strategy equilibrium, proposers always make an acceptable offer and

respondents always accept the offer proposed. The space of cutoff strategies is, however, rich enough

to represent all the possible stationary strategies. For instance, player i’s strategy of choosing

S = {i} represents that the player i cannot make an acceptable offer and that any offer, which is

profitable to i must be rejected by others – it can also be viewed that the player declines to be a

proposer.

Another benefit of using cutoff strategies is its greater tractability. Lemma 2 characterizes a

cutoff strategy equilibrium with two tractable conditions, optimality and consistency.

Lemma 2. A cutoff strategy profile (x,q) is a stationary subgame perfect equilibrium if and only

if, for all π ∈Π and i∈Nπ, the following two conditions hold,

i) Optimality: qπi (S)> 0 =⇒ (∀S′ ⊆Nπ
i ) eπi (S,x)≥ eπi (S′,x),

that is, proposers choose their bargaining partners to maximize their excess surplus;

ii) Consistency: xπi = uπi (x,q),

that is, players’ stationary value coincides to their continuation payoff.

The proofs of the above lemmas are omitted as they can be found in Lee (2014).

3. The Main Result: Efficient Equilibria

In this section, we characterize a necessary and sufficient condition on network structures for

efficient equilibria. First, we formally define efficiency under network restrictions. Given g, define

a maximum coalition formation strategy profile q̄ = {{q̄πi }i∈Nπ}π∈Π(g) with

q̄πi (S) =


1 if S =Nπ

i

0 otherwise,

that is, for each state π ∈Π(g), each proposer i∈Nπ chooses a maximum coalition Nπ
i to bargain

with. Given Γ = (g, p, δ), let ū(Γ) be a maximum welfare. Note that ū(Γ) is obtained by any cutoff

strategy profile involving a maximum coalition formation strategy profile. A strategy profile (x,q)

is efficient if ∑
i∈N

ui(x,q) = ū(Γ).
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It is worth noting that an efficient strategy profile does not necessarily consist of maximum

coalition formation strategies, as the maximum welfare depends only on the total number of periods

for the final agreement. Example 1 below shows how non-maximum coalition formation strategies

can achieve efficiency.

Example 1. Consider a game Γ with a four-player circular network. Under the maximum coali-

tion formation strategy profile, each proposer forms a three-player coalition in the first period,

after which the two remaining players continue to bargain. Thus, forming a grand coalition requires

two periods and the maximum welfare is ū(Γ) = δ. Instead of forming three-player coalitions, how-

ever, the players can also obtain the maximum welfare by forming two-player coalitions in the first

period, as the three remaining players can still form a grand coalition in the second period. Thus,

such a strategy profile with non-maximum coalition formation also takes two periods to generate

the surplus. �

The following Lemma 3 characterizes the coalition formation strategies, which constitute an

efficient equilibrium.

Lemma 3. Given Γ = (g, p, δ), an equilibrium (x,q) is efficient if and only if, for all π ∈Πx,q(g)

and all i∈Nπ,

qπi (S)> 0 =⇒ (∀S′ ⊆Nπ
i ) ū

(
Γπ(i,S)

)
≥ ū
(

Γπ(i,S′)
)
.

Now we are ready to state the main theorem.

Theorem 1. An efficient stationary subgame perfect equilibrium exists for all discount factors

if and only if the underlying network is either complete or circular.

Under network restrictions, players tend to exclude some of the neighbors from their bargaining

partners for the purposes of taking a better position for future bargaining in the induced networks.

Such strategic behaviors, however, delay the realization of the joint surplus.

On the other hand, if the underlying network is either complete or circular, any coalition for-

mation does not alter the network structure significantly – in terms of graph theory, any minor of
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a complete (or circular) network is still complete (or circular). When players cannot change their

position through coalition formations, the only way to increase their payoff is forming the largest

possible coalition in each period in order to reach an agreement as soon as practicable, and hence

no strategic delay occurs.

We prove the theorem through the four propositions. For the sufficient condition, we construct an

efficient equilibrium in a complete network (Proposition 1) and in a circular network (Proposition

2). For the necessary condition, Proposition 3 shows the inefficiency result in a special class of

networks, namely pre-complete networks. Proposition 4 then completes the necessary condition by

showing that, for any game with an incomplete non-circular network, there must be a sequence of

coalition formations, which induces a pre-complete non-circular network.

3.1. The Sufficient Condition: Complete or Circular Networks

In the literature, it is well-known that there is a unique efficient equilibrium in a unanimity game

without network restrictions (Chatterjee et al. 1993, Okada 1996), even when gradual coalition

formations are allowed (Seidmann and Winter 1998, Okada 2000). Furthermore, players’ expected

payoffs are the same as their recognition probabilities in any equilibrium and in any discount

factor. Proposition 1 restates this well-known result in our setting.

Proposition 1. Consider a game (g, p, δ) with a complete network g. For any δ, the payoff

vector in any equilibrium equals to the recognition probability p.

The proof relies on the fact that any induced network of a complete network must be complete.

Based on the existence and the uniqueness of an equilibrium in smaller (but still complete) net-

works, one can prove the result for larger networks using mathematical induction. The complete

proof is in the e-companion to this paper.

The uniqueness of equilibrium payoff in a complete network will play an important role later

in proving the result of inefficiency in other incomplete networks. It is worth noting that the

uniqueness of equilibrium payoff holds even without imposing stationarity on strategies as Krishna

and Serrano (1996) shows.14 In an incomplete network, however, the uniqueness may not hold any
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1
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Figure 1 Bargaining in a Circular Network: It takes exactly two periods for a grand coalition in any equilibrium.

See Example 2 and Section 5.

longer even under the stationarity assumption. In a circular network, one can construct an efficient

equilibrium for any recognition probability and any discount factor although it is not necessarily

unique.

Proposition 2. Consider a game (g, p, δ) with a circular network g. For any δ, there exists an

equilibrium, in which the payoff vector equals to δdiam(g)−1p.

Recall that, for any game (g, p, δ) with a circular network g, the maximum welfare is ū(g, p, δ) =

δdiam(g)−1. That is, in a circular network, each proposer can form a three-player coalition to reduce

the diameter by one in each period and hence the total number of periods for a unanimous agree-

ment equals to the diameter of the underlying network. Thus, Proposition 2 shows that the maxi-

mum welfare is obtained by an equilibrium. Similarly to Proposition 1, the players’ expected payoff

is proportional to their recognition probability in the equilibrium constructed.15

Proposition 2 can also be proved by mathematical induction, as any induced network of a circular

network must be circular (except for one- or two-player networks). The complete proof is pre-

sented in the e-companion and the following example illustrates the players’ incentive on maximum

coalition formation.

Example 2 (A Four-Player Circular Network). Let g be a four-player circular network

as in Figure 1. We show that (x, q̄) constitutes an equilibrium, where x= δp and xπ = pπ for any π

with 2≤ |Nπ| ≤ 3. For any i∈N and any S ⊆Ni such that |S| ≥ 2, as g(i,S) is complete, Proposition

1 implies x
(i,S)
i = xS and hence ei(S,x) = pSδ − δxS = δ(1− δ)pS, which strictly increases in pS.

Thus, it follows that ei(Ni,x)> ei(S,x), which confirms the optimality condition. Since player i is
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complete

circular

pre-complete

other networks

· · ·· · ·
· · ·

· · · · · ·

Figure 2 Classification of Networks: In either a complete or a circular network (the shaded area in blue), Propo-

sition 1 and Proposition 2 show that an efficient equilibrium exists for any discount factor. In any other

network, however, an efficient equilibrium is impossible for discount factors high enough. Proposition

3 firstly shows this inefficiency result for pre-complete non-circular networks (the slashed area in red).

In any incomplete and non-circular, Proposition 4 then finds that there exists a sequence of coalition

formations, which induces a pre-complete non-circular network so that delay occurs with a positive

probability.

also selected as a bargaining partner as long as her adjacent players become a proposer, we have∑
`∈N p`

∑
S3i q`(S) = pNi and

∑
`∈N p`

∑
S 63i q`(S) = 1− pNi . Therefore, i’s expected payoff is:

ui(x, q̄) = pi · δ(1− δ)pNi + δ [pNi · δpi + (1− pNi) · pi] = δpi,

which satisfies the consistency condition. For any non-initial state, the proposed strategies consti-

tute an equilibrium due to Proposition 1. �

3.2. The Necessary Condition: Prevalence of Inefficiency

The challenging part of Theorem 1 is its necessary condition – the impossibility of efficiency

equilibria in any incomplete non-circular network. First, we prove it in a special class of networks,

namely pre-complete networks, in which all the players can induce a complete network.

Definition 1. A network g is pre-complete if g is not complete, but for all i∈N(g) there exists

S ⊆Ni(g) such that g(i,S) is complete.
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Figure 2 illustrates the classification of networks particularly in relation to pre-complete net-

works. In the class of pre-complete networks, there are only two circular networks, 4-player and

5-player circle. In such networks, as Proposition 2, there exists an efficient equilibrium for any

discount factor. In any other pre-complete network, however, Proposition 3 below shows that an

efficient equilibrium is impossible for discount factors higher than a certain threshold.

Proposition 3. Let g be a pre-complete non-circular network. For any p, there exists δ̄ < 1

such that for all δ > δ̄, any efficient strategy profile (x,q) cannot be an equilibrium in Γ = (g, p, δ).

As Proposition 3 is the core of the main result and its proof provides novel insights on strategic

interactions in multilateral bargaining, in Section 4 we present the outline of its proof and construct

an inefficient equilibrium in some leading examples. Here, a simple example below illustrates why

an efficient equilibrium is impossible in a three-player chain.

Example 3 (Impossibility of Efficient Equilibria in a Chain). Consider a three-player

chain with N = {1,2,3} and E = {12,13}. Suppose there exists an efficient equilibrium (x,q). Then

player 1 is always included in a proposed coalition, that is, q1(N) = q2({1,2}) = q3({1,3}) = 1. Thus,

player 1’s expected payoff is u1(x,q) = p1(1−δxN)+δx1. Since x1 = u1(x,q) and xN = p1 +(1−p1)δ,

it follows (1− δ)x1 = p1(1− δ(p1 + (1− p1)δ)), or equivalently,

x1 = p1(1 + (1− p1)δ). (5)

On the other hand, player 2’s expected payoff is

u2(x,q)≥ p2 max
S⊆N2

e2(S,x) + δ((p1 + p2)x2 + p3p2)≥ δ(1− p3)x2 + p3p2δ.

By the consistency, we have x2 ≥ δp2p3
1−δ(1−p3)

and similarly x3 ≥ δp2p3
1−δ(1−p2)

. Together with (5), it requires

that

xN ≥ p1(1 + (1− p1)δ) +
δp2p3

1− δ(1− p3)
+

δp2p3

1− δ(1− p2)
.

To see a contradiction, as δ converges to 1, observe that the right-hand side converges to 1 +

p1(1− p1), which is strictly greater than 1 as long as p1 > 0. However, xN never exceeds 1. Thus,

for a sufficiently high δ, the efficient strategy profile (x,q) cannot be an equilibrium. Its actual

equilibrium will be constructed in Example 5. �
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g: incomplete non-circular network
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Figure 3 In an incomplete non-circular network g, if player 2 is selected as a proposer, then delay occurs with a

positive probability. If player 2 forms {2}, then delay obviously occurs as g(2,{2}) = g. If she forms any

S ⊆ N2(g) with |S| ≥ 2, then g(2,S) is pre-complete non-circular, and hence delay occurs in the next

period due to Proposition 3.

Now consider any incomplete non-circular network. If any coalition formation yields either a

complete network or a circular network, then Proposition 1 and Proposition 2 imply that it must

result in an efficient equilibrium. However, we can always find a player who cannot induce either

a complete network or a circular network, as Proposition 4 below shows. Such a process can be

repeated until a pre-complete non-circular network emerges; otherwise, the surplus can never be

realized. Once a pre-complete non-circular network is induced, delay occurs due to Proposition

3. That is, in any game with an incomplete non-circular network, there must be a sequence of

coalition formations, which involves a delay.

Proposition 4. Let g be an incomplete non-circular network. If g is not pre-complete, there

exists i∈N(g) such that, for all S ⊆Ni(g), g(i,S) is incomplete and non-circular.

The next example illustrates how pre-complete non-circular networks must be induced when a

particular player becomes a proposer.

Example 4. Consider a network g with N = {1,2,3,4,5,6} and E = {12,23,34,45,56,16,25} as

in Figure 3. If player 1 is selected as a proposer and she forms a coalition {1,2,6}, then delay will

not occur as g(1,{1,2,6}) is circular. However, if player 2 becomes a proposer – it must happen with

a positive probability as p2 > 0, then delay occurs. In particular, for any S ⊆N2(g) with |S| ≥ 2,

g(2,S) is pre-complete (See the second row in Figure 3). Then, delay occurs in the next period due
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to Proposition 3. If he forms a singleton {2}, that is, he declines to be a proposer, then delay

obviously occurs. �

4. Sources of Strategic Delay

In this section, we outline the proof of Proposition 3 and investigate the role of dominating players

in strategic delay, by explicitly constructing an inefficient equilibrium in some examples. We divide

pre-complete non-circular networks into three subclasses based on the number of dominating play-

ers: networks with a single dominating player, networks with multiple dominating players, and

networks with no dominating player. Each subclass provides a different insight on strategic delay

in the following subsections.

4.1. Networks with a Single Dominating Player

When there is a single dominating player, the unique dominating player has a significant advantage

over the other players. Hence the dominating player demands a substantial payoff. To be specific,

Lemma 4 provides a lower bound of the unique dominating player’s equilibrium payoff.

Lemma 4. Let g be a pre-complete network with D(g) = {i∗}. If (x,q) is an equilibrium of

Γ = (g, p, δ), then

xi∗ ≥ pi∗ + pi∗(1− pi∗)δ. (6)

Example 5 is an extreme case, in which only the dominating player takes a positive surplus.

It is remarkable that the non-dominating players in the three-player chain takes nothing for any

recognition probability, even for discount factors strictly less than one.

Example 5 (Inefficient Equilibrium in a Chain). Let g= ({1,2,3},{12,13}) as in Exam-

ple 3. We construct an inefficient equilibrium. Let δ̄ = max
{

p2
(p1+p2)(1−p1)

, p3
(p1+p3)(1−p1)

}
so that

δ̄ < 1. Consider a strategy profile (x,q) such that

• x1 = p1
1−(1−p1)δ

; x2 = x3 = 0; and

• q1(N) = q2({2}) = q3({3}) = 1,

and in any two-player subgame the active players follow the strategy according to Proposition 1.

Since both player 2 and player 3 decline to be a proposer in the initial state, the strategy profile
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is inefficient. To see that (x,q) constructs an equilibrium for δ > δ̄, due to Lemma 2, it suffices to

verify the following two conditions.

i) Optimality: Calculate each player’s excess surpluses. It is easy to see that e1(N,x)> 0 and

ei({i},x) = 0 for all i ∈N . For all i ∈ {1,2}, due to Proposition 1, x
(i,{1,2})
i = p1 + p2, and

hence

ei({1,2},x) = δ(p1 + p2)− δ(x1 +x2) = δ(p1 + p2)− δ
(

p1
1−(1−p1)δ

+ 0
)

= δ
1−(1−p1)δ

(p2− (p1 + p2)(1− p1)δ).

Then, δ > δ̄ implies ei({1,2},x)< 0. Similarly, we have ei({1,3},x)< 0 for all i ∈ {1,3}.

Therefore, arg maxS⊆N1
e1(S,x) = {N}, arg maxS⊆Ni ei(S,x) = {i} for i= 2,3, and hence the

optimality is confirmed.

ii) Consistency: Compute each player’s expected payoff:

• u1(x,q) = p1e(N,x) + δx1 = p1(1− δx1) + δx1 = p1
1−(1−p1)δ

• u2(x,q) = p2e({2},x) + δx2 = p2 · 0 + δ · 0 = 0

• u3(x,q) = p3e({3},x) + δx3 = p3 · 0 + δ · 0 = 0.

Therefore, ui(x,q) = xi for all i∈N and the consistency is confirmed. �

It is important to observe that the non-dominating players in Example 5 have a limited power in

bargaining. For a non-dominating player to form a coalition with the dominating player, he has to

guarantee the dominating player her discounted stationary value. However, even if he declines to

form a coalition with her, since they face the same network in the next period, she is still expecting

her discounted stationary value. Thus, the dominating player’s equilibrium payoff does not depend

on non-dominating players’ strategies. Similarly in any other pre-complete network with a single

dominating player, even if the dominating player is not selected as a bargaining partner by the

non-dominating players, she will still be the unique dominating player in the subsequent game.

On the other hand, any efficient equilibrium requires non-dominating players to induce a complete

network. In a complete network, however, the dominating-player advantage disappears as all the
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Figure 4 Pre-complete Networks with a Single Dominating Player: A dark node represents dominating player.

The unique dominating player has an advantage in bargaining. Hence, non-dominating players are

reluctant to induce a complete network, because the dominating player is too expensive to buy out.

players become a dominating player. That is, a non-dominating player should pay a premium when

he buys out the unique dominating player, but the dominating-player advantage will disappear

soon after. Therefore, non-dominating players are reluctant to induce a complete network, as the

dominating player is too expensive to buy out, yet the dominating-player advantage will be shared

with the other non-dominating players. See Figure 4 for some examples of pre-complete networks

with a single dominating player.

Using Lemma 4, now we prove Proposition 3 in the case with a single dominating player.

Proof of Proposition 3 (Case 1: |D(g)|= 1)

Let Ci(g) = {S ⊆Ni(g) | g(i,S) is complete}. Since g is pre-complete, there exists j1 and j2 such that

d(j1, j2;g) = 2. Let J1(g) =Nj1(g) \D(g), J2(g) =Nj2(g) \D(g), and J(g) = J1(g)∪J2(g). Suppose

that an equilibrium (x,q) is efficient. Take any j ∈ J1. Since (x,q) is efficient, we have (∀j′ ∈ J2)∑
S∈Cj′

qj′(S) = 1 and (∀i∈D∪J1)
∑

j∈S⊆N qi(S) = 1. Thus, player j’s payoff is

uj(x,q) = pj max
S⊆Nj

ej(S,x) + δ(pD + pJ1)xj + δ
∑
j′∈J2

pj′
∑
S⊆N

qj′(S)x
(j′,S)
j

≥ δ(pD + pJ1)xj + δpJ2pj,

which implies that xj ≥
pjpJ2δ

1−(1−pJ2 )δ
. Summing j over J1, we have xJ1 ≥

pJ1pJ2δ

1−(1−pJ2 )δ
. Similarly for J2,

we have xJ2 ≥
pJ1pJ2δ

1−(1−pJ1 )δ
. Letting D(g) = {i∗}, on the other hand, Lemma 4 implies that xi∗ ≥

pi∗ + pi∗(1− pi∗)δ. Therefore, it follows

xN = xJ1 +xJ2 +xi∗ ≥ pJ1pJ2δ
(

1

1− (1− pJ1)δ
+

1

1− (1− pJ2)δ

)
+ pi∗ + pi∗(1− pi∗)δ. (7)

As δ→ 1, the right-hand side of (7) converges to pJ1 +pJ2 +pi∗+pi∗(1−pi∗) = 1+pi∗(1−pi∗). Since

0< pi∗ < 1, there exists δ̄ < 1 such that (7) contradicts to the fact of xN ≤ 1 for δ > δ̄. Q.E.D.
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1

2

3

4

Figure 5 Bargaining in a Chordal Network: The expected periods for a grand coalition is strictly greater than

two. See Example 6 and Section 5.

4.2. Networks with Multiple Dominating Players

An efficient equilibrium requires each dominating player to form a grand coalition immediately.

However, if the advantage for being a unique dominating player is substantial, the dominating

players may form a smaller coalition to be a unique collective dominating player by excluding the

other non-dominating players.

In the next example, we construct an equilibrium, in which the dominating players form a

coalition only with each other.

Example 6 (A Chordal Network). Let g = ({1,2,3,4},{12,23,34,41,13}) and p =

( 1
4
, 1

4
, 1

4
, 1

4
). Let δ̄ ≈ 0.91 be a solution to δ(8− 8δ+ δ2) = (4− δ)(1− δ)(4 + 2δ− δ2). For δ > δ̄, one

can construct an equilibrium (x,q) such that

• x1 = x3 = (6−δ)δ
4(4−δ)(2−δ) ; x2 = x4 = (6−6δ+δ2)δ

4(4−δ)(2−δ) ;

• q1({1,3}) = q3({1,3}) = 1; q2({1,2}) = q2({2,3}) = q4({1,4}) = q4({3,4}) = 1
2
.

In any subgame in which the number of active players is less than or equal to three, they follow

the equilibrium strategies according to Proposition 1 and Example 5. See the e-companion to

verify that the proposed strategy profile constitutes an equilibrium. In the initial state, the two

dominating players form a coalition with each other and exclude the other non-dominating players,

after which delay occurs by the non-dominating players in the induced chain network, as in Figure

5. Note that the equilibrium welfare is xN = δ(3−δ)
2(2−δ) . The equilibrium payoff vector converges to(

5
12
, 1

12
, 5

12
, 1

12

)
as δ goes to one. �
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Figure 6 Examples of Pre-complete Networks with Multiple Dominating Players: As the thick red lines illustrate,

dominating players form a coalition by themselves to be a unique dominating player and split the other

players, rather than immediately forming a grand coalition.

See Figure 6 for some pre-complete networks with multiple dominating players. Again due to

Lemma 4, Proposition 3 is proved for the case with multiple dominating players.

Proof of Proposition 3 (Case 2: |D(g)| ≥ 2)

Suppose (x,q) is an efficient equilibrium and define J1(g), J2(g), and J(g) as in Case 1. Take any

i∈D. Player i’s optimality implies ei(N,x)≥ ei(D,x), or equivalently,

1− δxN ≥ δx(i,D)
i − δxD. (8)

Since g(i,D) has a single dominating player, Lemma 4 implies x
(i,D)
i ≥ pD+pD(1−pD)δ and it follows

from (8) that

1− pDδ(1 + δ− pDδ) ≥ δxJ .

By (7) in Case 1, we have

1− pDδ(1 + δ− pDδ) ≥ pJ1pJ2δ
2

(
1

1− (1− pJ1)δ
+

1

1− (1− pJ2)δ

)
. (9)

As δ goes to one, the right hand side of (9) converges to pJ ; while the left hand side converges to

p2
J . Since pJ < 1, there exists δ̄ < 1 such that the inequality (9) yields a contradiction for δ > δ̄.

Q.E.D.

4.3. Networks with No Dominating Player

Now we consider a network without a dominating player. In such a case, some players can be a

dominating player in the induced network by buying out only a part of their neighbors. As in

Example 7 below, it is particularly interesting that strategic exclusion and delay occurs even in

regular networks, where all the players are initially identical, as they strategically exclude some of



Lee: Multilateral Bargaining in Networks
20 Article submitted to ; manuscript no.

6

1

2

3

4

5

(a) 6-player 4-regular network
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(b) Players form a 3-player coalition
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(c) A chordal network is induced

Figure 7 Strategic Delay in a Regular Network: Each player forms a three-player coalition to induce a chordal

network, instead of forming a four- or five-player coalition, which induces a complete network. See

Example 7.

their neighbors to create a dominating-player advantage by destroying the regularity in the initial

network.

Example 7 (A 6-Player 4-Regular Network). Consider a 6-player 4-regular network g as

in Figure 7 (a) and let pi = 1
6

for all i= 1,2, · · · ,6. Each proposer can form a 4- or 5-player coalition

for an efficient outcome. However, players form a 3-player coalition in equilibrium rather than

pursuing an efficient outcome. To see this, suppose there exists an efficient equilibrium (x,q). Since

ū(g, p, δ) = δ, it is easy to see xi = δ
6

for all i= 1,2, · · · ,6. If a player forms a 3-player coalition as

in Figure 7 (b), then a chordal network is induced. For the induced game Γ(1,{1,2,5}), for sufficiently

high δ, one can construct an equilibrium, in which player 1 and player 4 form a cut coalition with

each other and player 3 and player 6 form a coalition with one of the connected players as similar

in Example 6. In this induced game, the equilibrium payoffs are:

• x(1,{1,2,5})
1 = −δ2+21δ+18

6(3−δ)(6−δ) ,

• x(1,{1,2,5})
3 = x

(1,{1,2,5})
6 = δ(δ2−11δ+12)

6(3−δ)(6−δ) , and

• x(1,{1,2,5})
4 = −δ2+13δ−6

2(3−δ)(6−δ) ,

and converge to 19
30

, 1
30

, and 3
10

, as δ goes to one. Go back to the initial game to compare the excess

surpluses. For any S ⊆ N1 with |S| ≥ 4, player 1’s S-formation induces a complete network and

hence

e1(S,x) = δx
(1,S)
1 − δxS = δpS − δxS = δ(1− δ) |S|

6
,
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Figure 8 Examples of Pre-complete Networks with No Dominating Player: As the thick red lines illustrate, some

players strategically induce an incomplete network to become a dominating player in the following

period.

which converges to zero, as δ goes to one. On the other hand,

e1({1,2,5},x) = δx
(1,{1,2,5})
1 − δ (x1 +x2 +x5) = δ

(
−δ2 + 21δ+ 18

6(3− δ)(6− δ)
− δ

3

)
,

which converges to 3
10

, as δ goes to one. Thus, the optimality condition is violated for sufficiently

high δ, and hence an efficient equilibrium is impossible. �

See Figure 8 for other examples of pre-complete networks with no dominating player. Proving

Proposition 3 for the case with no dominating player is not straightforward. First, for any non-

circular pre-complete network with no dominating player, Lemma 5 shows that there is a pair of

players who can be a collective dominating player in the subsequent game.

Lemma 5. Let g be a pre-complete non-circular network with D(g) = ∅. There exist i, j ∈N(g)

such that i∈D(g(i,{i,j}))(N(g(i,{i,j})).

Whenever there is a dominating player in an pre-complete network, Lemma 6 then shows any

dominating player has a strict advantage compared to her recognition probability.

Lemma 6. Let g be a pre-complete network with ∅(D(g) (N(g) and (x,q) be an equilibrium

of (g, p, δ). For any i∈D(g), there exists ∆i > 0 such that xi− pi ≥∆i as δ converges to 1.

Under a hypothetically efficient equilibrium in a network with no dominating player, however,

Lemma 7 shows that each player’s payoff should be strictly less than her recognition probability.

Lemma 7. Let g be a pre-complete network with D(g) = ∅. If (x,q) is an efficient equilibrium of

Γ = (g, p, δ), then for all i∈N , xi = δpi.
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Combining those lemmas, therefore, when an efficient equilibrium is assumed, there exist some

players who are strictly better off by strategically delaying a unanimous agreement – however, this

contradicts to the assumption of efficient equilibrium. We complete the proof of Proposition 3 for

the last case.

Proof of Proposition 3 (Case 3: D(g) = ∅)

As in Case 1, let Ci(g) = {S ⊆Ni(g) | g(i,S) is complete}. Suppose (x,q) is an efficient equilibrium.

Due to Lemma 7, for all i∈N and all S ∈ Ci,

ei(S,x) = δ
(
x

(i,S)
i −xS

)
= δ (pS − δpS) = δ(1− δ)pS,

which converges to 0 as δ→ 1. By Lemma 5, there exists i, j ∈N(g) such that i ∈D(g(i,{i,j})) and

{i, j} 6∈ Ci. Due to Lemma 6, there exists ∆i such that x
(i,{i,j})
i − p(i,{i,j})

i ≥∆i. By Lemma 7, then

we have

ei({i, j},x) = δ
(
x

(i,{i,j})
i − (xi +xj)

)
≥ δ

(
(p

(i,{i,j})
i + ∆i− δ(pi + pj)

)
= δ∆i + δ(1− δ)(pi + pj).

As δ → 1, note that ei({i, j},x) ≥ ∆i > 0. For a sufficiently high δ, therefore, it follows that

ei({i, j},x)> ei(S,x) for all S ∈ Ci, which contradicts to optimality of player i. Q.E.D.

5. Braess’s Paradox

Comparing Example 2 with Example 6, we observe a negative welfare effect of adding a new

communication link. In the four-player circle with pi = 1
4

for all i∈N , the maximum welfare level

δ is achieved in an equilibrium as in Example 2. Suppose a link between player 1 and player 3 is

added in the circular network so that it becomes a chordal network. Since player 1 and player 3

can form a grand coalition immediately, the maximum welfare is now 1
2
(1 + δ), which is strictly

greater than δ, which is the maximum welfare level in the circle. As Example 6 shows, however,

the equilibrium welfare is δ(3−δ)
2(2−δ) , which is strictly less than δ. In fact, this result holds for any

recognition probability p, as long as p2 + p4 > 0.
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The negative welfare effect of adding a new link can also be investigated by computing the

expected periods for a unanimous agreement, as Figure 1 and Figure 5 depict. In the circular

network, for any δ and any p, it takes exactly two periods for a grand coalition in the equilibrium.

Note that all the players fully use their communication links whenever they are recognized as a

proposer. In the chordal network, as the odd players can form a grand coalition immediately, the

expected periods for a unanimous agreement can be 1× (p1 +p3)+2× (p2 +p4) = 1+p2 +p4, which

is strictly less than two.

An equilibrium, however, results in the expected periods for a unanimous agreement being strictly

greater than two. If the even players are recognized as a proposer in the first period, then they

choose one of the odd players as a bargaining partner to induce a three-player circle, after which

a grand coalition immediately forms. However, if the odd players are initially recognized as a

proposer, they induce a three-player chain. Once in the chain, the leaf players will then decline to

make an offer and hence an additional delay occurs with positive probability. As such, the expected

periods for a unanimous agreement in equilibrium is 2 + p2 + p4 as δ converges to one.

Remark 2. In the Braess’s paradox with the original traffic network context, all the players are

worse off with network improvement; while in this bargaining game, some players may be better

off despite overall performance deteriorating.

Remark 3. In this random-proposer bargaining model, the equilibrium may not be unique

even in the class of stationary subgame perfect equilibria.16 However, the equilibrium constructed

in Example 2, Example 5, and Example 6 is unique in the class of symmetric cutoff-strategy

equilibria, in which identical players, in terms of their positions in a network and their recognition

probabilities, play an identical cutoff strategy.

6. Discussions and Extensions
6.1. Robustness

While non-cooperative bargaining models explicitly take players’ strategic interactions into account,

one of the limitations compared to cooperative models is that the outcome may depend on the

detail of the bargaining protocol. Accordingly, in such random proposer models, the equilibrium
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payoffs generically depend on the recognition probability, which captures players’ exogenously given

relative bargaining power. The main result in this paper is, however, detail-free, that is, for any

recognition probability p, Theorem 1 holds, as long as each player has a positive chance of being

recognized.

The general inefficiency result is also robust in terms of the updating rule of recognition prob-

abilities. We have assumed that recognition probabilities are transferable – when players form a

coalition (or a partnership), its representative player takes its members’ chances of being a proposer

as well. Alternatively, players’ bargaining power can be viewed as their innate right, which can-

not be traded. In such environments where players’ recognition probabilities are not transferable,

instead of (2), one may define the induced recognition probability p(i,S):

p
(i,S)
j =


pj

1−pS+pi
if j 6∈ S \ {i}

0 if j ∈ S \ {i}.
(10)

Remark 4. If all the active players are always recognized with equal probability in each state,

it is a special case of non-transferable recognition probabilities.

With non-transferable recognition probabilities, it turns out that an efficient equilibrium is

impossible for higher discount factors even in circular networks. This result highlights another

source of inefficiency in multilateral bargaining due to positive externalities on recognition proba-

bilities. That is, a player forms an intermediate coalition, even the other players who are not in the

coalition get higher chances of being a proposer later, and hence players reluctant to form larger

coalitions. With non-transferable recognition probabilities, Theorem 1 is then re-stated as follows.

Theorem 2. Suppose players cannot transfer their recognition probabilities. An efficient sta-

tionary subgame perfect equilibrium exists for all discount factors if and only if the underlying

network is complete.

The proof can be found in Lee (2014). The following example constructs an inefficient equilibrium

in a four-player circular network.
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Example 8 (A Circular Network with Non-Transferable Recognition Probabilities).

Let g = ({1,2,3,4},{12,23,34,14}) and p =
(

1
4
, 1

4
, 1

4
, 1

4

)
. If δ > 2

3
, then one can construct an

equilibrium (x,q) such that

• x1 = x2 = δ
3(2−δ) ; x3 = x4 = δ

6(2−δ) ;

• q1({1}) = q2({2}) = 1; q3({3,4}) = q4({3,4}) = 1.

Here, player 1 and player 2 decline to make an offer and wait for a three-player complete network

induced by either player 3 or player 4. The equilibrium payoff vector converges to ( 1
3
, 1

3
, 1

6
, 1

6
). See

the e-companion for details.17 �

6.2. How Inefficient?

It is worth noting that inefficiency occurs for high discount factors but it is still asymptotically

efficient. As the discount factor increases over a certain threshold, delay occurs more and more

frequently but it becomes less and less costly. As such, the inefficiency eventually disappears as

the discount factor converges to one. On the other hand, if the discount factor is low enough,

then any equilibrium must be efficient no matter what the underlying network is, as the impatient

players will undoubtedly try to reach an agreement as soon as possible. In summary, the efficiency

loss occurs if the discount factor is strictly greater than a certain threshold but strictly less than

one. If the network is either complete or circular, then there is no such threshold and an efficient

equilibrium exists for all discount factors.

Although inefficiency disappears as the discount factor converges to one, it could be substantial

for a range of discount factors. To measure the efficiency loss, define the Price of Anarchy (PoA)

for an environment (g, p):

PoA(g, p) = max
δ

ū(g, p, δ)

min(x,q)∈E
∑

i∈N ui(x,q)
,

where E is the set of cutoff strategy equilibria. If g is a three-player chain and p= (1/3,1/3,1/3)

for example, then one can verify PoA(g, p) = 1.25.18 One can also compute that the upper bound

of PoA of a three-player chain is two, which can be obtained when the central player’s recognition
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probability is close to one. This is contrast to the fact that the upper bound of PoA of either

any complete network or any circular network is one, as an efficient outcome can be obtained in

equilibrium.

6.3. Power Indices in Networks

In addition to investigating efficiency, analyzing the equilibrium payoff vector in the noncooperative

model and comparing it with cooperative solution concepts would be important for future research.

It is particularly noteworthy that the limiting equilibrium payoff vector in the model proposes a

plausible power index in networks, which captures players’ bargaining power based on their position

in networks. For instance, in a 4-player chordal network the equilibrium outcome assigns 5
12

to

the dominating players and 1
12

to the non-dominating players; while the Myerson-Shapley value

(Myerson 1977) assigns the same value 1
4

to all the players.19 In this regard, it would be the subject

of future research to develop an algorithm for finding an equilibrium payoff vector and to study its

normative properties.

7. Conclusion

We have introduced a new noncooperative coalitional bargaining model for network-restricted envi-

ronments. Players in a different position in a network have different bargaining powers, and hence

they strategically choose their bargaining partners to take a better position in future bargaining.

Such strategic behaviors cause delay in reaching an agreement to generate a joint surplus. Only

two types of networks support efficient equilibria for all discount factors: complete networks and

circular networks. In such networks, the players are all symmetric in terms of their position not only

in the initial network but also in any subsequent network induced by coalition formations. Thus,

they have a common interest to reach an agreement as soon as practicable, leading to efficiency.

Endnotes

1. Gofman (2011) provides a similar result that adding a new trading relationship decreases

efficiency in a different environment. In his model, inefficiency is caused by misallocation due to

intermediaries because prices are bilaterally determined. In our model, players can bargain with

more than two players at the same time and inefficiency is caused by players’ strategic delay.
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2. There are huge amounts of literature in this area from earlier studies in bilateral bargaining,

such as Admati and Perry (1987), to a recent work in trading networks, including Bedayo et al.

(2013).

3. Another strand of literature, such as Wright and Wong (2014), Nguyen et al. (2016), and

Nguyen (2017), studies the role of transaction cost in delay where physical goods are traded among

buyers, sellers, and intermediaries in given network. In their models, the network does not change

after each transaction. Compared to this, we adopt a coalition-formation approach, in which merg-

ing assets are required to generate surplus, and a sequence of coalition formations alters the network

structure. Therefore, in our model, players’ competition to take a better position in networks is

the main source of delay.

4. Cooperation restrictions have been an important issue in economic theory and operations

research, and hence it has been studied extensively in the literature of cooperative games since

Aumann and Dreze (1974) and Myerson (1977). Myerson (1977) adopts a network to describe a

structure of cooperation restrictions and proposes a cooperative solution using the Shapley value.

Other one-point solution concepts for cooperative games in networks are introduced by Owen

(1986), Borm et al. (1992), Hamiache (1999), Borkotokey et al. (2015) among others. Core alloca-

tions for cooperative games in graph structure are also studied by Herings et al. (2000). Saad et al.

(2009) classify these environments as coalitional graph games and introduce some applications

in computer science. In addition to theoretical studies, a growing body of experimental research,

including Bolton et al. (2003), investigates the role of communication restrictions in multilateral

bargaining.

5. Various types of random meetings have been considered in literature – a bilateral meeting

(Rubinstein and Wolinsky 1985, Calvó-Armengol 2001, Gale and Sabourian 2006, Gale and Kariv

2007, Gofman 2011, Manea 2011, Abreu and Manea 2012a,b), a multilateral meeting (Nguyen 2015,

Polanski and Lazarova 2015), or a trading route (Bedayo et al. 2013, Siedlarek 2015). As Hart and

Mas-Colell (1996) pointed out, however, a random-meeting model does not entirely capture players’
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strategic behaviors and strategic decisions on coalition formation should also be considered. Only

some recent papers such as Abreu and Manea (2012b) (Section 4) and Elliott and Nava (2015) allow

players to choose their bargaining partner but at most one, as it is limited to bilateral bargaining.

In our model, players can make an offer to multiple bargaining partners at once.

6. In Gul (1989), multilateral bargaining can be done only through a sequence of random bilateral

meetings, and hence players can bargain with only one partner at a time and they cannot choose

their bargaining partner. Some other papers Calvó-Armengol (2001), Gale and Kariv (2007), and

Manea (2015), in which players repeatedly trade or bargain in a sequence of bilateral meetings,

but we allow sequential multilateral bargaining by buying out other players’ resources and rights.

In addition to Krishna and Serrano (1996), the models of gradual multilateral bargaining include

Seidmann and Winter (1998), Gomes (2005), and Lee (2016).

7. In the existing network bargaining models such as Manea (2011), Nguyen (2015), and Nguyen

et al. (2016), after some players reach an agreement they must exit the game with what they have

produced and they replaced by their clones. In our model, players can buy out others resources

and rights by forming a coalition with a binding agreement.

8. A simple network is an unweighted and undirected network without self-loops or multiple edges.

A network is connected if there is a path, or a sequence of links, between every pair of players.

9. A circular network (or a circle) should not be confused with a cycle in a network. A circular

network is a network that consists of a single cycle.

10. We assume that pi > 0 for any i∈N . That means, each player has a positive chance of being a

proposer. It is easy to see that the equilibrium payoff to the players with zero recognition probability

is always zero.

11. The result does not depend on the order of responses.

12. We assume that players have a full commitment power through upfront transfers. To clarify,

they initially have money in their own pocket, allowing them to pay monetary transfers in order

to buy other players before the surplus generates. Allowing buyout with upfront transfers enables

players to form an intermediate coalition even though it generates nothing.
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13. Without stationarity, due to a huge multiplicity of equilibria, a model fails to provide a mean-

ingful prediction.

14. Krishna and Serrano (1996) consider intermediate bargaining steps to obtain a unique equilib-

rium of a multilateral bargaining game, in which only a unanimous agreement generates a surplus.

15. The main result depends only on the existence of an efficient equilibrium, but does not rely on

its uniqueness.

16. To overcome the multiplicity of equilibria, the uniqueness of equilibrium payoffs has been

studied in the random-proposer bargaining model. Eraslan (2002) shows the equilibrium payoff

uniqueness for a weighted majority game and Eraslan and McLennan (2013) generalizes this result

to a general simple game using fixed point index theorem. Unfortunately, those results cannot be

applied to the model, in which a player has a buyout option, because a player can expect some

partial payoff by forming an intermediate subcoalition and hence the actual characteristic function

that the players play is not of a simple game. The uniqueness of stationary equilibrium payoffs

is conjectured in a broader class of characteristic function form games, but it remains an open

question. See Eraslan and McLennan (2013) for a discussion.

17. The equilibrium payoff vector is not unique even as δ→ 1. There exists another class of equi-

librium payoff vectors, which converge to ( 1
3
, 1

3
, 1

3
,0) or its permutations. However, there is no

symmetric equilibrium.

18. This result is not trivial even for this simple example, as all the stationary subgame perfect

equilibria for all discount factors should be considered.

19. The Myerson-Shapley value in any unanimity game assigns the same value to all the players

no matter what the underlying network is. The reason for this is that only the grand coalition

generates a positive surplus and all the players have the same marginal contribution in a unanimity

game.
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Technical Proofs and Equilibrium Verifications

EC.1. Missing Proofs
EC.1.1. Proof of Lemma 3

If |N(g)|= 2, then the statement is obviously true. As an induction hypothesis, suppose the state-

ment is true for any less-than-n-player game. Consider g with |N(g)|= n. For any π ∈Π(g), observe

that summing (4) over Nπ yields

∑
i∈Nπ

uπi (x,q) =
∑
i∈Nπ

pπi
∑
S⊆Nπ

qπi (S)

[
eπi (S,x) + δ

(∑
j∈S

xπj +
∑
j 6∈S

x
π(i,S)
j

)]
=
∑
i∈Nπ

pπi
∑
S⊆Nπ

qπi (S)Xπ(i,S), (EC.1)

where Xπ(i,Nπ) = 1 and Xπ(i,S) = δ
∑

j∈Nπ(i,S) x
π(i,S)
j for all S (Nπ.

Sufficiency: Let (x,q) is an efficient equilibrium. By the consistency condition, for all S (Nπ,

∑
j∈Nπ(i,S)

x
π(i,S)
j =

∑
j∈Nπ(i,S)

u
π(i,S)
j (x,q).

Since (x,q) is efficient, the induction hypothesis and the definition of efficiency yield Xπ(i,S) =

δū(Γπ(i,S)) for all S ( Nπ. Suppose for contradiction that there exists π ∈ Πx,q(g), i ∈ Nπ, and

S,S′ ⊆Nπ
i such that qπi (S)> 0 and ū(Γπ(i,S))< ū(Γπ(i,S′)). Then i can strictly improve the sum of

the players’ payoff by putting more weight on S′ in his coalition formation strategy and hence qπi

cannot be a part of an efficient equilibrium.

Necessity: Given g, π ∈ Π(g), and (x,q), define a partial strategy profile (x|π,q|π) =

{(xπ′ , qπ′)}π′∈Π(gπ). By induction hypothesis, for all π ∈ Πx,q(g) \ {π◦}, (x|π,q|π) is an efficient

equilibrium for a game with gπ. Consider the initial state. By (EC.1), in order to maximize∑
i∈N ui(x,q), each player i must maximize

∑
S⊆N qi(S)X(i,S). Since, for all i ∈N and all S ∈ Ei,

(x|(i,S),q|(i,S)) is an efficient equilibrium for a game with g(i,S), the condition qi ∈∆(Ei) maximizes∑
i∈N ui(x,q) and hence (x,q) is efficient. Q.E.D.



ec2 e-companion to Lee: Multilateral Bargaining in Networks

EC.1.2. Proof of Proposition 1

Let g be a complete network. We will use mathematical induction on the number of players to

show that, for any Γ = (g, p, δ), there exists a unique cutoff strategy equilibrium (p, q̄), where

p = {{pπi }i∈Nπ}π∈Π as in (2). The equilibrium payoff vector is then {ui(p, q̄)}i∈N = p. Furthermore,

due to Lemma 1, the payoff vector is unique in the class of stationary subgame perfect equilibria.

Case 1: |N(g)|= 2.

First, we show that (p, q̄) is an equilibrium by verifying the conditions in Lemma 2. For each i∈N ,

note that Ni = {{i},N}. It is easy to verify the optimality condition as ei(N,p) = 1− δ is strictly

greater than ei({i}, p) = δpi − δpi = 0. To verify the consistency condition, compute the expected

payoff for player i:

ui(p, q̄) = piei(N,p) + δpi = pi(1− δ) + δpi = pi,

as desired.

Next, we show the uniqueness of the equilibrium. Suppose that there exists an equilibrium (x, q)

with qi(N)< 1 for any i. The optimality requires ei({i}, x)≥ ei(N,x), or 0≥ 1−δxN . By rearranging

the terms, we have xN ≥ 1/δ, which in turn contradicts that the coalition formation strategy profile

is inefficient. Thus, (x, q) cannot be an equilibrium and the equilibrium must involve with q̄. Now

suppose (x, q̄) is an equilibrium. Since this equilibrium is efficient, it must be u1(x, q̄)+u2(x, q̄) = 1

and hence xN = 1. For each player i, the expected payoff is

ui(x, q̄) = piei(N,x) + δxi = pi(1− δ) + δxi.

Due to the consistency, it follows that xi = pi(1− δ) + δxi. Rearranging the terms, for any δ < 1, it

must be that xi = pi. Thus, (p, q̄) is the unique cutoff strategy equilibrium.

Case 2: |N(g)|> 2.

Suppose that, for any game (g′, p′, δ) with |N(g′)| < |N(g)|, (p′, q̄′) is the unique equilibrium,

where p′ = {{p′πi }i∈Nπ}π∈Π(g′) and q̄′ = {{q̄πi }i∈Nπ}π∈Π(g′). Note that, in such an equilibrium, for

each i ∈ N(g′), player i’s expected payoff is p′i. We show the inductive step: a cutoff strategy
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profile (p, q̄) is the unique equilibrium for (g, p, δ). Due to the induction hypothesis, each player i

expects p
(i,S)
i = pS in the subsequent game (g(i,S), p(i,S), δ) by forming S (N . It is easy to verify the

optimality condition as ei(N,p) = 1− δ is strictly greater than ei(S,p) = δp
(i,S)
i − δpS = 0 for all

S (N . The consistency condition can also be verified by computing each player’s expected payoff

as before, and hence (p, q̄) is an equilibrium for (g, p, δ).

Next, we show the uniqueness. Suppose that there exists an equilibrium (x,q). Due to the induction

hypothesis, any non-maximum coalition formation strategy must be played only in the non-initial

state wherever possible. Suppose there exists i∈N and S (N such that qi(S)> 0. The optimality

requires ei(S,x)≥ ei(N,x), or equivalently

δx
(i,S)
i − δxS ≥ 1− δxN > 1− δ,

where the second inequality is due to the inefficient coalition formation strategy. By the induction

hypothesis, the inequality implies

δxS + 1< δpS + δ. (EC.2)

On the other hand, by letting Qj =
∑

k∈N pk
∑

S⊆N qk(S)1(j ∈ S), for each j ∈ S, we have

xj = uj(x,q) ≥ pj (1− δxN) + δ(Qjxj + (1−Qj)pj)

> pj (1− δ) + δ(Qjxj + (1−Qj)pj)

= pj + δQj(xj − pj). (EC.3)

Rearranging the terms, (EC.3) yields xj > pj for all j ∈ S. However, this contradicts to (EC.2).

Thus, any equilibrium must involve with q̄. As in the base case, one can confirm that for any cutoff

equilibrium involving maximum coalition formation strategies q̄ must yield a equilibrium payoff

vector p. Q.E.D.

EC.1.3. Proof of Proposition 2

Let g be a circular network. We will use mathematical induction on the diameter of networks

to show that, for any Γ = (g, p, δ), there exists a unique cutoff strategy equilibrium (x, q̄), where
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x = {{δdiam(gπ)−1pπi }i∈N(gπ)}π∈Π(g).

Case 1: diam(g) = 1.

If g is circular and diam(g) = 1, then g must be a three-player circle, which is complete. Thus,

Section EC.1.2 proves this case.

Case 2: diam(g)> 2.

As an induction hypothesis, suppose that, for all circular network g′ such that diam(g′)<m, a cutoff

strategy profile (x′, q̄′) is an equilibrium for (g′, p′, δ), where x′ = {{δdiam(g′π)−1p′πi }i∈N(g′π)}π∈Π(g′).

Now we show that a cutoff strategy profile (x, q̄) is an equilibrium for (g, p, δ) with a circular

network g and diam(g) = m, where x = {{δdiam(gπ)−1pπi }i∈N(gπ)}π∈Π(g). Take any i ∈ N and let

Ni = {i, j, k}. We verify the equilibrium conditions for player i.

i) Optimality: After i’s maximum coalition formation, the active players face a game with a

circular network g′ and diam(g′) =m−1. Due to the induction hypothesis, since x
(i,{i,j,k})
i =

δm−1(pi + pj + pk), we have

ei({i, j, k},x) = δm(pi + pj + pk)− δ(xi +xj +xk)

= δm(pi + pj + pk)− δ(δmpi + δmpj + δmpk)

= δm(1− δ)(pi + pj + pk). (EC.4)

Suppose i decline to make an offer, that is i forms {i}. Since ei({i},x) = 0 is strictly less

than (EC.4), i’s {i}-formation is not optimal. Suppose i forms {i, j}. Note that

x
(i,{i,j})
i =


δm−1(pi + pj) if |N(g)| is even,

δm(pi + pj) if |N(g)| is odd.

Thus, we have

ei({i, j},x)≤ δm(pi + pj)− δ(xi +xj) = δm(1− δ)(pi + pj),

which is strictly less than (EC.4), and hence i’s S-formation with |S|= 2 is not optimal.
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ii) Consistency: Since all the players play maximum coalition formation strategies, player i’s

continuation payoff is:

ui(x,q) = piei({i, j, k},x) + δ

(pi + pj + pk)xi +
∑

`∈N\{i,j,k}

p`x
(`,N`)
i


= piδ

m(1− δ)(pi + pj + pk) + δ(pi + pj + pk)xi + δ(1− (pi + pj + pk))δ
m−1pi.

Since ui(x,q) = xi, rearranging the terms, we have

(1− δ(pi + pj + pk))xi = piδ
m(1− δ)(pi + pj + pk) + (1− (pi + pj + pk))δ

mpi,

which yields xi = δmpi. Q.E.D.

EC.1.4. Proof of Proposition 4

Let g be an incomplete and non-circular network. In addition, assume that g is not pre-complete.

By definition of a pre-complete network, there exists i∈N(g) such that, for all S ⊆Ni(g), g(i,S) is

incomplete. If, for all S ⊆Ni(g), g(i,S) is non-circular, there is nothing to prove. Now suppose there

exists S ⊆ Ni(g) such that g(i,S) is circular (but it is still incomplete). Then S must be directly

connected to only two distinct players, say a and b, and g|N(g)\S must be a chain in which a and b

are the two ends of the chain. As g(i,S) is incomplete, |N(g)\S| ≥ 3. Take j ∈N(g)\ (S∪{a}∪{b}).

For any S′ ∈Nj(g), g(j,S′) is non-circular, otherwise g must be circular. If |N(g)\S| ≥ 4, then g(j,S′)

is incomplete for any S′ ∈ Nj(g), because a and b are not directly connected in g(j,S′). Suppose

|N(g) \S|= 3 and there exists S′ ∈Nj(g) such that g(j,S′) is complete. Then g|S must be complete

and all the players in S must be directly connected either a or b. Hence, for any k ∈N(g) \ {j},

g(k,Nk(g)) is a three-player complete network. This implies that g is pre-complete, which causes

a contradiction. For all S′ ∈ Nj(g), therefore, g(j,S′) is neither complete nor circular, as desired.

Q.E.D.

EC.1.5. Proof of Lemma 4.

Step 1: Consider a three-person chain, that is, J1 = {j1} and J2 = {j2}. Since x
(j1,J1)
d = x

(j2,J2)
d = xd

and uN(x,q)≤ ū(Γ) = pd + δ(1− pd), player i’s expected payoff is

xd ≥ pded(N,x) +
∑
k∈N

pk
∑
S3i

qk(S)δxd + δ
∑
k∈N

pk
∑
S 63i

qk(S)xd

≥ pd(1− δ(pd + δ(1− pd))) + δxd.
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Rearranging the terms, we have the desired result.

Step 2: As an induction hypothesis, assume that for any pre-complete network g′ with D(g′) = {d},

1≤ |J1(g′)| ≤ a, and 1≤ |J2(g′)| ≤ b, x′d ≥ p′d+p′d(1−p′d)δ. Now we consider a pre-complete network

g with D(g) = {i}, |J1(g)|= a, and |J2(g)|= b+ 1. Player i’s expected payoff is

xd ≥ pded(N,x) +
∑
k∈N

pk
∑
S3i

qk(S)δxd + δ
∑
k∈N

pk
∑
S 63i

qk(S)x
(k,S)
d . (EC.5)

For any k ∈N and S ⊆N such that i 6∈ S, the induction hypothesis implies x
(k,S)
d ≥ pd+pd(1−pd)δ.

Suppose by way of contradiction that pd + pd(1− pd)δ > xd. Then, (EC.5) can be written as xd ≥

pd (1− δ(pd + δ(1− pd))) + δxd, or equivalently, xd > pd + pd(1− pd)δ, which yields a contradiction.

Induction argument completes the proof. Q.E.D.

EC.1.6. Proof of Lemma 5.

First, we define some graph-theoretic definitions. A complete cover of g is a collectionM of subsets

of N(g), such that, ∪M=N(g) and g|M is a complete network for all M ∈M. A complete covering

number of g is the minimum cardinality of a complete cover of g. A minimal complete cover is a

complete cover of which cardinality is minimum.

Since g is pre-complete non-circular, its complete covering number is 2. Let M be a minimal

complete cover of g. Since D(g) = ∅, M must be disjoint. Given i ∈ N , then let Mi ∈M such

that i ∈Mi. Since D(g) = ∅, for all k ∈N , there exists at least one k′ ∈M c
k such that kk′ 6∈E(g),

that is, it must be |M c
k \Nk(g)| ≥ 1. We will show that there exists i ∈N and j ∈M c

i such that

i ∈ D(g(i,{i,j})) ( N(g(i,{i,j})), by constructing such a pair of i and j in the following two cases.

First, suppose there exists k ∈ N such that |M c
k \Nk(g)| ≥ 2. Take i ∈M c

k \Nk(g) and j ∈M c
i

with ij ∈E(g). Take i′ ∈M c
k \Nk(g) with i′ 6= i. Since g|Mi

and g|Mc
i

are complete, i ∈D(g(i,{i,j})).

Since d(k, i′;g) = d(k, i′;g(i,{i,j})) = 2, k 6∈ N(g(i,{i,j})), as desired. Second, suppose, for all k ∈ N ,

|M c
k \Nk(g)|= 1. Take any i ∈N and j ∈M c

i such that ij ∈E(g). Take k ∈Mi \ {i} and k′ ∈M c
i

such that d(k, k′;g) = 2. Again we have i ∈ D(g(i,{i,j})) and d(k, k′;g) = d(k, k′;g(i,{i,j})) = 2, as

desired. Q.E.D.
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EC.1.7. Proof of Lemma 6.

It requires two additional lemmas. Lemma EC.1 shows that for any dominating player, her expected

payoff is strictly greater than her recognition probability.

Lemma EC.1. Let g be a pre-complete network with ∅(D(g) (N(g) and (x,q) be an equilib-

rium of (g, p, δ) with δ < 1. If i∈D(g) then xi > pi.

Proof of Lemma EC.1. If |N(g)|= 3, due to Lemma 4, then xi ≥ pi + pi(1− pi)δ > pi for any

i∈D. As an induction hypothesis, suppose the statement is true for any g′ with |N(g′)|<n. Now

consider g with |N(g)|= n. Take any i ∈D(g). For any k ∈N and any S such that i 6∈ S, if g(k,S)

is complete then x
(k,S)
i = pi; and if g(k,S) is incomplete then x

(k,S)
i > pi by the induction hypothesis.

Thus, letting Qi =
∑

k∈N pk
(∑

S3i qi(S) + qk({k})
)
, we have xi ≥ pi(1− δxN) +Qiδxi+ δ(1−Qi)pi,

and hence xi ≥ pi + δ(1−δ)
1−δQi

pi > pi. Q.E.D.

However, we need a stronger result: the difference between the expected payoff and the recog-

nition probability is bounded away from zero. Lemma EC.2 below shows that there exists such a

dominating player before proving it for all dominating players. For notational convenience, denote

∆i = xi − pi and ∆
(j,S)
i = x

(j,S)
i − p(j,S)

i . If g(i,S) is complete with |N(g(i,S))| ≥ 2, by Proposition 1,

note that ei(S,x) = δ(x
(i,S)
i −xS) = δ(pS −xS) =−δ∆S.

Lemma EC.2. Let g be a pre-complete network with ∅(D(g) (N(g) and (x,q) be an equilib-

rium of (g, p, δ). There exists h∈D(g) such that

xh− ph ≥
ph (pD(1− pD)δ2− (1− δ))

1 + (|D| − 1)phδ
.

Furthermore, limδ→1(xh− ph)≥ phpD(1−pD)

1+(|D|−1)ph
> 0

Proof of Lemma EC.2. Take any h ∈ arg maxi∈N ∆i and let Qh =
∑

i∈N
∑

S3h piqi(S). For any

i ∈N and S ⊆N such that h 6∈ S, since h ∈D(g(i,S)), Lemma EC.1 implies x
(i,S)
h ≥ ph, and hence

we have

xh ≥ pheh(D,x) +Qhδxh + δ(1−Qh)ph

≥ phpD(1− pD)δ2− ph∆Dδ+Qhδ(ph + ∆h) + (1−Qh)δph

≥ phpD(1− pD)δ2− ph|D|∆hδ+ δph + ph∆hδ, (EC.6)



ec8 e-companion to Lee: Multilateral Bargaining in Networks

where the second inequality is due to Lemma 4, which implies

eh(D,x) = δ
(
x

(h,D)
h −xD

)
≥ δ(pD + pD(1− pD)δ−xD) = pD(1− pD)δ2−∆Dδ,

and the last inequality comes from ph ≤Qh, ph ≥ xh, and ∆D ≤ |D|∆h. Subtracting ph from both

sides of (EC.6), we have ∆h ≥
ph(pD(1−pD)δ2−(1−δ))

1+(|D|−1)phδ
, as desired. Since D(N , it must be pD < 1 and

hence limδ→1 ∆h ≥ phpD(1−pD)

1+(|D|−1)ph
> 0. Q.E.D.

Now we are ready to prove Lemma 6: For any dominating player i, her advantage ∆i is bounded

away from zero. We will show that limδ→1 mini∈D ∆i > 0. Let L= arg mini∈D ∆i. Since g is a pre-

complete, as before there exists j1 and j2 such that d(j1, j2;g) = 2, and let J1(g) =Nj1(g) \D(g),

J2(g) =Nj2(g)\D(g), and J(g) = J1(g)∪J2(g). Recall Lemma EC.1, which implies (∀i∈D) ∆i > 0.

Thus, for any j ∈ J1 and S (N , if qj(S)> 0 then either S ⊆ J1 or S ∩D= {`} for some `∈L.

Case 1: Suppose |J1|= |J2|= 1. Then, for each j ∈ J , qj({j})+
∑

`∈L qj({j, `}) = 1, and hence there

exists ` ∈ L such that
∑

j∈J pj (qj({j}) + qj({j, `}))≥ pJ
|L| . Let Q` =

∑
j∈J pj (qj({j}) + qj({j, `})) +∑

i∈D
∑

S3` piqi(S), then Q` ≥ pJ
|L| + p`. Since x` ≥ p`e`(J ∪{`},x) +Q`δx` + (1−Q`)δp`, it follows

∆` ≥ δp`(∆` + ∆J) + δ

(
pJ
|L|

+ p`

)
∆`− (1− δ)p`,

which implies ∆` ≥ −δp`∆J−(1−δ)p`
1−δ pJ|L|

. Since xN − pN = ∆N < 0, we have −∆J ≥∆D ≥∆h. Thus, by

Lemma EC.2, we have the desired result,

lim
δ→1

∆` ≥−
|L|p`
|L| − pJ

∆J ≥
|L|p`
|L| − pJ

∆h ≥
p`phpD(1− pD)|L|

(|L| − pJ)(1 + (|D| − 1)ph)
> 0.

Case 2: As an induction hypothesis, for any pre-complete network g′ with ∅ ( D(g′) ( N(g′)

and 1 ≤ |J1(g′)| ≤ a and 1 ≤ |J2(g′)| ≤ b and any equilibrium (x′,q′) of (g′, p′, δ), assume that

limδ→1 mini∈D(g′)(x
′
i − p′i) > 0. Now we consider a pre-complete network g with ∅ (D(g) ( N(g)

and |J1(g)|= a and |J2(g)|= b+ 1. Due to the induction hypothesis, there exists ∆′` > 0 such that

∆′` ≥ limδ→1(x
(j,J ′)
` − p`) for all α∈ {1,2}, j ∈ Jα, and J ′ ⊆ Jα. Then, we have

x` ≥ p`e`(J ∪{`},x) +

p` +
∑

α∈{1,2}

∑
j∈Jα

pj (qj({j}) + qj(Jα ∪{`}))

 δ(p` + ∆`)

+

 ∑
α∈{1,2}

∑
j∈Jα

∑
J ′⊆Jα

pjqj(J
′)

 δ(p` + ∆′`) + pD\{`}δp`. (EC.7)
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If limδ→1 ∆` ≥∆′`, then there is nothing to prove. Suppose that limδ→1 ∆` ≤∆′`. As δ→ 1, then

(EC.7) yields x` ≥−p`δ∆J + δp`+ (1−pD)δ∆`, or equivalently, (1− (1−pD)δ)∆` ≥−δp`∆J − (1−

δ)p`. Take any h∈ arg maxi∈D ∆i. Since −∆J >∆D >∆h, it follows that

(1− (1− pD)δ)∆` > δp`∆h− (1− δ)p`.

By Lemma EC.1, we have the desired result, limδ→1 ∆` ≥ p`ph(1−pD)

1+(|D|−1)ph
> 0. Q.E.D.

EC.1.8. Proof of Lemma 7.

Since g is pre-complete and (x,q) is efficient, for all j ∈ N , qj(S) > 0 implies g(j,S) is complete.

Thus, each player i can expect pi in the next period by rejecting any offer. Suppose player i gets

an offer with yi < δ
2pi. By rejecting yi, i can be strictly better since the stationary strategy profile

guarantees δpi in the next period. Hence, xi ≥ δpi for all i ∈ N . If there exists i ∈ N such that

xi > δpi, then it must be xN > δpN = δ, which is infeasible. Q.E.D.

EC.2. Equilibrium Verifications
EC.2.1. Equilibrium in Example 6

We verify the equilibrium (x,q) with

• x1 = x3 = (6−δ)δ
4(4−δ)(2−δ) ; x2 = x4 = (6−6δ+δ2)δ

4(4−δ)(2−δ) ;

• q1({1,3}) = q3({1,3}) = 1; q2({1,2}) = q2({2,3}) = q4({1,4}) = q4({3,4}) = 1
2
,

for δ > δ̄, where δ̄≈ 0.91 is a solution to δ(8− 8δ+ δ2) = (4− δ)(1− δ)(4 + 2δ− δ2). Due to Lemma

2, it suffices to confirm the following conditions.

Optimality:

i) Odd Players’ Optimality: Since δ > 3
4
, Example 5 implies that x

(1,{1,3})
1 = p1+p3

1−(1−p1−p3)δ
= 1

2−δ

and x
(1,{1,3})
1 = x

(1,{1,3})
4 = 0. Given x, calculate player 1’s excess surpluses:

• e1({1,2},x) = δx
(1,{1,2})
1 − δ(x1 +x2) = δ(1−δ)(4−δ)

4(2−δ)

• e1({1,3},x) = δx
(1,{1,3})
1 − δ(x1 +x3) = δ(8−8δ+δ2)

2(2−δ)(4−δ)

• e1({1,2,4},x) = δx
(1,{1,2,4})
1 − δ(x1 +x2 +x4) = δ(6−6δ+δ2)

2(4−δ)

• e1(N,x) = 1− δxN = (1−δ)(4+2δ−δ2)

2(2−δ)
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Given e1(S,x) for all S ⊆ N1, it is routine to see that, δ > δ̄ =⇒ arg maxS⊆N1
e1(S,x) =

{{1,3}}. Similarly, we also have δ > δ̄ =⇒ arg maxS⊆N3
e3(S,x) = {{1,3}}.

ii) Even Players’ Optimality: For any {2}( S ⊆N2, player 2’s S-formation induces a complete

network. Thus, given x, one can compute player 2’s excess surpluses:

• e2({1,2},x) = e2({2,3},x) = δx
(2,{1,2})
2 − δ(x1 +x2) = δ(1−δ)(4−δ)

4(2−δ)

• e({1,2,3},x) = δx
(2,{1,2,3})
2 − δ(x1 +x2 +x3) = δ(24−36δ+11δ2−δ3)

4(2−δ)(4−δ)

Observe that e2({1,2},x) = e2({2,3},x)> 0 for all δ; while e({1,2,3},x) is strictly negative

if δ > δ̄. Thus, for any δ > δ̄, we have arg maxS⊆N2
e2(S,x) = {{1,2},{2,3}} and similarly

arg maxS⊆N4
e4(S,x) = {{1,4},{3,4}}.

Consistency: Given (x,q), compute each players’ expected payoffs:

• u1(x,q) = p1e({1,3},x) + δ
[(
p1 + p3 + 1

2
(p2 + p4)

)
x1 + p2

2
x

(2,{2,3})
1 + p4

2
x

(4,{3,4})
1

]
= 1

4
· δ(8−8δ+δ2)

2(2−δ)(4−δ) + δ
[

3
4
· (6−δ)δ

4(4−δ)(2−δ) + 1
2
· 1

8

]
= (6−δ)δ

4(4−δ)(2−δ) = x1

,

• u2(x,q) = p2e({1,2},x) + δ [p2x2 + p4p2 + (p1 + p3) · 0]

= 1
4
· δ(1−δ)(4−δ)

4(2−δ) + δ
[

1
4
· (6−6δ+δ2)δ

4(4−δ)(2−δ) + 1
4
· 1

4

]
= (6−6δ+δ2)δ

4(4−δ)(2−δ) = x2

,

and similarly u3(x,q) = x3 and u4(x,q) = x4, and hence the consistency is verified. �

EC.2.2. Equilibrium in Example 8

We verify the equilibrium (x,q) with

• x1 = x2 = δ
3(2−δ) ; x3 = x4 = δ

6(2−δ) ;

• q1({1}) = q2({2}) = 1; q3({3,4}) = q4({3,4}) = 1.

Again due to Lemma 2, it suffices to confirm the following conditions.

Optimality: Since recognition probabilities are not transferable, note that x
(1,{1,2})
1 = x

(1,{1,4})
1 = 1

3

and x
(1,{1,2,4})
1 = 1

2
. Given x, player 1’s excess surpluses are:

• e1({1,2},x) = 1
3
δ− δ(x1 +x2) = δ(2−3δ)

3(2−δ)

• e1({1,4},x) = 1
3
δ− δ(x1 +x4) = δ(1−2δ)

6(2−δ)
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• e1({1,2,3},x) = 1
2
δ− δ(x1 +x2 +x3) = δ(1−3δ)

6(2−δ) .

Provided δ > 2
3
, for all {1} ( S ⊆ N1, we have e1(S,x) < 0 = e1({1},x) and hence q1({1}) = 1.

Similarly, we have q2({2}) = 1. Now calculate player 3’s excess surpluses:

• e3({2,3},x) = 1
3
δ− δ(x2 +x3) = δ(2−3δ)

3(2−δ)

• e3({3,4},x) = 1
3
δ− δ(x3 +x4) = δ(1−δ)

3(2−δ)

• e3({2,3,4},x) = 1
2
δ− δ(x2 +x3 +x4) = δ(2−3δ)

6(2−δ) .

Provided δ > 2
3
, since e3({3,4},x) > 0 and e1(S,x) < 0 for any other {1} ⊆ S ⊆ N1, we have

q3({3,4}) = 1, and similarly q4({3,4}) = 1.

Consistency: Given (x,q), calculate each player’s expected payoff:

• u1(x,q) = p1e1({1},x) + δ
(
(p1 + p2)x1 + (p3 + p4) 1

3

)
= 1

4
· 0 + δ

(
1
2

δ
3(2−δ) + 1

2
1
3

)
= δ

3(2−δ) = x1,

• u3(x,q) = p3e3({3,4},x) + δx3

= 1
4

(
1
3
δ− 2 · δ2

6(2−δ)

)
+ δ2

6(2−δ) = δ
6(2−δ) = x3,

and similarly, u2(x,q) = x2 and u4(x,q) = x4. �


