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 20 

Abstract 21 

The diet of the population interred at the Islamic necropolis of Can Fonoll, Ibiza, Spain, which 22 

was in use between the 10th and 13th centuries AD, is reconstructed from the carbon (δ13C) and 23 

nitrogen (δ15N) stable isotope ratios of bone collagen from 112 individuals. The mean±sd(1σ) 24 

δ13C (–19.0±1.3‰) and δ15N (10.3±0.8‰) values of the Can Fonoll population indicate a diet 25 

based largely on terrestrial C3 resources. However, the wide range of both δ13C (–20.6‰ to –26 

8.6‰) and δ15N (7.0‰ to 12.1‰) values attested at Can Fonoll indicate significant variation 27 

in individual diet. The elevated δ13C values of a small proportion of the individuals buried at 28 

Can Fonoll are consistent with the consumption of a large proportion of, or dependence on, C4 29 

resources, such as millet. Comparison of the δ13C and δ15N values of the Can Fonoll population 30 

with those of other mediaeval populations from the Balearic Islands and mainland Spain 31 

highlights a wide range of stable isotope values, which reflects not only significant differences 32 

in diet but also points to widespread mobility within the Mediterranean Basin.  33 

Key Words: C4, Ibiza, Islamic, Millet, Stable Isotopes 34 
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INTRODUCTION 36 

The Spanish island of Ibiza, part of the Balearic Islands in the Western Mediterranean has seen 37 

an influx of peoples from the eastern and central Mediterranean (in particular North Africa) 38 

since at least the mid-7th century BC (McMillan and Boone 1999; O’Connor 2003). In the 8th 39 

century AD the Iberian Peninsula came under Moorish influence, which resulted in linguistic, 40 

social, economic, technological, cultural and religious change (McMillan and Boone 1999). 41 

There is evidence that Islamic influence in Ibiza started at least in the 8th or 9th centuries and 42 

the island was under Islamic control certainly from the 10th century until 1235 with the 43 

Christian conquest by the Crown of Aragon (Davies 2014; Gurrea Barricarte and Martín 44 

Parrilla 2016).  45 

Fuller et al. (2010) investigated the impact of cultural change on diet, one aspect of cultural 46 

behaviour through which identity may be expressed. Diet was reconstructed through carbon 47 

(δ13C) and nitrogen (δ15N) stable isotope analysis of human bone collagen of archaeological 48 

Ibizan populations. This study suggested that there was a significant shift in diet associated 49 

with Moorish expansion into Ibiza. The Islamic population from the early mediaeval necropolis 50 

of Es Soto, in Ibiza town, which was in use from the 10th to the 13th centuries, exhibited a 51 

greater reliance on C4 resources than earlier populations on Ibiza (Fuller et al. 2010; Nehlich 52 

et al. 2012). However, Ibiza town was an important centre for trade and the diet of the Es Soto 53 

population may not be representative of populations elsewhere on the island. 54 

Here, we present the results of carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of a 55 

contemporaneous Islamic population from a necropolis located at Can Fonoll in the 56 

southwestern region of Ibiza (Figure 1 and Figure 2). Those interred in the cemetery (maqbara) 57 

may have been involved in agricultural production on the island (Castro 2009) and likely 58 

represent a more residentially stable community than that of Ibiza town. The Can Fonoll 59 

assemblage represents one of the largest mediaeval Islamic populations from Ibiza to be studied 60 

to date (Kyriakou et al. 2012). Comparison with the urban population at Es Soto (Fuller et al. 61 

2010) and other mediaeval populations from the Iberian Peninsula offers a broader 62 

understanding of dietary variability within the Balearic Islands and beyond. 63 

Figure 1. Location of Can Fonoll, Ibiza, Spain. 64 

  65 
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Figure 2. Photograph of excavated graves at Can Fonoll necropolis (© Jonathan Castro 66 

Orellana and Joan Roig). [about here] 67 

 68 

RECONSTRUCTING DIET 69 

The Balearic Islands witnessed a population influx from mainland Al Andalus following the 70 

establishment of Islamic control in the early 10th century (Kirchner 2009a). Thirteenth-century 71 

records detailing land rents in rural areas of Ibiza indicate small groups of settlements and 72 

associated farmland, with names of Arabic-Berber derivation (Kirchner 2009b). Watermills, 73 

constructed to irrigate small allotments on valley floors, were also used to grind cereals into 74 

flour (Kirchner 2009b). While it is known that intense agriculture and irrigation took place, 75 

direct evidence for the diets of mediaeval Ibizans is limited.  76 

By comparison, Islamic period agricultural practices, cultivars, and diets on mainland Spain 77 

are relatively well attested. Agricultural intensification is evident: use of fertilizers, such as ash 78 

and straw, was widespread (Bolens 1978). Systems of irrigated terraces were constructed to 79 

support exotic, introduced crops such as sugarcane and citrus fruits (Watson 1983; Puy and 80 

Balbo 2013). However, the primary importance of cereals is underscored by an abundance of 81 

naked wheat and hulled barley in archaeobotanical assemblages, while oil-bearing plants and 82 

nuts are also evident (Bolens 1978; Alonso Martinez 2005; Alonso et al. 2014). Historical 83 

accounts of diet in medieval Spain support the prominence of cereals and other plant foods in 84 

diet: wheat, sorghum and millet, fruits and olives were all described as important staples 85 

(García-Sánchez 1996, 2002; Constable 2013). Pulses such as lentils and chickpeas, were 86 

reported to have been widely consumed, particularly by those of lower status (García-Sánchez 87 

2002). The meat of goat, sheep and chicken, as well as milk, cheese, butter and eggs were also 88 

important components of the Islamic diet (Grewe 1981; García-Sánchez 2002; O’Connor 2003; 89 

Constable 2013). Textual evidence further indicates that in the mediaeval period Muslims 90 

abstained from wine, shellfish, pork and lard, as well as the meats of other animals that were 91 

not prepared according to Islamic law (Constable 2013). 92 

However, historical records provide a limited overview of mediaeval diet, often describing 93 

foods consumed by elites with little mention of the habits of individuals of lower status, or 94 

alternatively, focussing on religious restrictions on foods and eating practices (Bolens 1978; 95 
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Grewe 1981; Constable 2013). Additionally, information on the relative importance of 96 

foodstuffs is often contradictory (cf. O’Connor 2003; Constable 2013; Burns 2015). 97 

Stable Isotope Analysis 98 

In contrast to historical sources, δ13C and δ15N stable isotope ratio analysis of human remains 99 

can determine population level dietary intake and highlight individual variations in diet 100 

(Katzenberg 2000; Lee-Thorp 2008; Reitsema 2013). Carbon and nitrogen stable isotope ratios 101 

of bone collagen are reliable indicators of long-term (mainly) dietary protein intake in a protein 102 

adequate diet (e.g. van der Merwe and Vogel 1978; Sealy et al. 1987; Sealy 2001; Müldner and 103 

Richards 2007; Schoeninger 2010; Fuller et al. 2012a; Commendador et al. 2013; Quintelier et 104 

al. 2014).  105 

Plants in different environments (terrestrial [i.e. C3 vs C4], marine and freshwater) fix/acquire 106 

carbon during photosynthesis in different ways. Plants utilised as dietary staples generally fix 107 

carbon by one of two pathways, either the C3 or C4 pathway (DeNiro and Epstein, 1978; 108 

Krueger and Sullivan, 1984; Ambrose and Norr, 1993). C3 plants comprise most grasses and 109 

plants native to temperate regions, including oats, barley, wheat, and also rice. C4 plants include 110 

important cereal staples such as maize and millet. C3 plants generally have more depleted 13C 111 

values than C4 plants. For example, a typical consumer of foods drawn from the terrestrial C3 112 

food web would have δ13C values between approximately –20‰ and –18‰, while a consumer 113 

entirely dependent on resources from the C4 food web would be expected to have δ13C around 114 

–7.5‰ (cf. van der Merwe and Vogel 1978; Tykot 2004). Marine plants also fix carbon by the 115 

C3 pathway. However, the δ13C values of marine plants are distinctive from those of terrestrial 116 

C3 plants because marine carbon isotope ratios are enriched relative to atmospheric carbon 117 

isotope ratios (Tykot 2004). A typical consumer of predominantly marine resources might have 118 

isotope values of δ13C = –12‰. Although this overlaps with the carbon isotope values of C4 119 

consumers, the two dietary components can often be distinguished by δ15N analysis. 120 

It is widely accepted that nitrogen stable isotopes are enriched with each trophic level by c. 3–121 

5‰ (Bocherens and Drucker 2003) and potentially by up to 6‰ (O’Connell et al. 2012; 122 

Iacumin et al. 2014). Human consumers of terrestrial resources will typically have δ15N values 123 

c. 6–10‰, but results can be variable due to differing environmental conditions and 124 

anthropogenic activities such as manuring (Tykot 2004; Lee-Thorp 2008; Fraser et al. 2011; 125 

Bogaard et al. 2013). Marine/freshwater food-chains are generally longer than terrestrial food-126 

chains so consumers of aquatic resources tend to have higher δ15N values than consumers of 127 
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terrestrial resources (although see Hedges and Reynard [2007] for discussion of uncertainties 128 

in the δ15N trophic shift). This δ15N difference between terrestrial and aquatic food-chains 129 

generally allows diets based on marine resources to be distinguished from those derived from 130 

the C4 food web. 131 

Thus, co-analysis of δ13C and δ15N isotope values can potentially distinguish between diets 132 

based on terrestrial C3 and C4 plant food web, freshwater and marine resources, and identify 133 

the trophic level of the consumer (e.g. Chisholm et al. 1982; Schoeninger and DeNiro 1984; 134 

Schwarcz and Schoeninger 2011). However, caution must be exercised in the interpretation of 135 

stable isotope results. A range of non-dietary factors can affect an individual’s stable isotope 136 

values, such as pregnancy and disease (Fuller et al. 2005; Olsen et al. 2014). Furthermore, 137 

determining the relative contribution of plant vs animal protein in diet is complicated by 138 

uncertainties in the human-diet δ15N trophic shift (Hedges and Reynard 2007). 139 

CAN FONOLL – ARCHAEOLOGICAL BACKGROUND 140 

The cemetery at Can Fonoll, near the area of Molí de Can Fonoll in the southwest of Ibiza, was 141 

discovered during motorway construction (Castro 2009). Rescue excavations were undertaken 142 

between October 2006 and February 2008. Remains of 154 individuals were recovered from 143 

167 burials at Can Fonoll, a large Islamic necropolis (c. 1220 sq. m) or maqbara at the site 144 

(Castro 2009; Kyriakou et al. 2012). The burials all follow typical Islamic funerary tradition: 145 

graves were oriented SW-NE, individuals laid on their right side and facing SE toward Mecca, 146 

and there was a lack of surviving grave goods and headstones (Castro 2009). The cemetery was 147 

dated to c. 10th to 13th centuries AD on the basis of the burial practices, and the well-established 148 

historical evidence relating to the occupation of Ibiza by Islamic populations (Castro 2009). 149 

The human remains generally displayed poor preservation, with a significant degree of surface 150 

erosion and bones were highly fragmented (Kyriakou et al. 2012). 151 

The human remains were analysed in 2010 by a team from the University of Edinburgh, UK 152 

(Kyriakou et al. 2012). Bioarchaeological data, including demographic information, were 153 

collected following the recommendations of Brickley and McKinley (2004) and Buikstra and 154 

Ubelaker (1994), and were the focus of a separate publication (Kyriakou et al. 2012). Of the 155 

154 individuals, 112 were adults, 21 were juveniles and 21 had an unknown age at death. 156 

Amongst the adults, 23 were females or possibly female and 35 were males or possibly male 157 

(Kyriakou et al. 2012).  158 
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 159 

MATERIALS AND METHOD 160 

 161 

Materials 162 

Bone samples (ribs and long bones) for stable isotope analysis were obtained from 143 of the 163 

154 individuals, but only 112 of these yielded well-preserved collagen –  these 112 samples 164 

are the focus of the current paper. They comprise 85 adults, 13 juveniles and 14 of unknown 165 

age (see also Table S1). Amongst the juveniles, one (7.6%) was in the age range 1–5 years, 166 

two (15.3%) in the 5–10 year age range, eight (61.5%) between 10 and 15 years and two 167 

(15.3%) in the 15–18 year age range. 168 

 169 

To investigate diet, human δ13C and δ15N values need to be considered alongside the isotope 170 

values of potential foods. Ideally, comparisons should be made with animal and plant remains 171 

found in association with the human remains. However, no animal or plant remains were 172 

recovered from the Can Fonoll necropolis. Comparisons are therefore drawn from the nearby, 173 

contemporaneous site of Es Soto, located 4 km away from Can Fonoll, for which δ13C and δ15N 174 

values have been published (Fuller et al. 2010; the average values of the animal remains 175 

sampled are presented in Table 1 and plotted in Figure 3). 176 

 177 

Table 1. Mean±sd(1σ) δ13C and δ15N values of animal remains from Ibiza, taken from Fuller 178 

et al. (2010). [about here] 179 

Figure 3. Mean±sd(1σ) δ13C and δ15N values for the Can Fonoll humans. [about here] 180 

 181 

Method 182 

Bone collagen was extracted at the Department of Human Evolution, Max Planck Institute for 183 

Evolutionary Anthropology (Leipzig, Germany) following the procedure described in Richards 184 

and Hedges (1999) with the additional step of ultrafiltration by Brown et al. (1988). Each bone 185 

sample (~500 mg) was cleaned by air abrasion and placed in a 0.5 M HCl solution at 4 ºC for 186 

~2 weeks, with acid changes every 2 days. Demineralized samples were gelatinized at 70 ºC in 187 

a pH=3 solution for 48 hours. After purification with a 5µm EZEE© filter, the solution was 188 

concentrated by Amicon© ultrafilters (<30 kDa), and then was frozen and freeze dried for 2 189 

days. Approximately 0.5 mg of extracted collagen was weighted for carbon and nitrogen 190 
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analysis, using a Flash EA 2112 coupled to a Delta XP mass spectrometer (Thermo-Finnigan, 191 

Bremen, Germany). The results are reported in ‘per mil’ (‰) relative to the standards VPDB 192 

for 13C and AIR for 15N. The analytical precision is ± 0.2‰ for both 13C and 15N. Although 193 

the collagen yields are low, ranging from 0.1% to 3.0% (cf. van Klinken 1999), ultrafiltration 194 

isolation of well-preserved collagen is indicated by the atomic C:N ratio (Richards et al. 2008). 195 

A total of 112 (i.e. 79%) of the 143 individuals produced collagen with acceptable atomic C:N 196 

between 2.9–3.6 (DeNiro 1985), and five samples outside this range are omitted from the 197 

discussion below (see Table S1).      198 

RESULTS AND DISCUSSION 199 

Diet at Can Fonoll 200 

Carbon and nitrogen stable isotope values for the Can Fonoll population are presented in Table 201 

S1 and plotted in Figure 3. The mean±sd(1σ) δ13C and δ15N values of the Can Fonoll population 202 

(δ13C = –19.0±1.3‰; δ15N = 10.3±0.8‰, n=112) are consistent with a diet based primarily on 203 

resources from the terrestrial C3 food web.  204 

The Can Fonoll human isotope values differ from the mediaeval Ibizan domestic herbivore 205 

values (mean±sd(1σ) δ13C = –19.9±0.7‰; δ15N = 6.9±2.1‰, n=18) published in Fuller et al. 206 

(2010). The difference in δ13C is c. 1‰ and that in δ15N is 3.4‰. These values suggest that 207 

cattle and caprines, and secondary products from these animals, were important components of 208 

diet, but that other resources such as plant foods were dietary staples. Dental caries rates of the 209 

Can Fonoll population (Kyriakou et al. 2012) supports the consumption of some carbohydrates; 210 

caries prevalence is similar to that of other mediaeval sites in the Iberian Peninsula (see 211 

Lalueza-Fox and González-Martín 1999) and slightly lower than that of earlier populations in 212 

Ibiza (see Márquez-Grant 2006).  213 

Despite the island setting of the Can Fonoll cemetery, marine resources do not appear to have 214 

contributed significantly to the diet (suggested by the relatively low mean δ15N value).  215 

This interpretation is offered cautiously as in the Mediterranean region, identifying the 216 

consumption of marine foods is non-trivial (e.g. Prowse et al. 2004; Keenleyside et al. 2006; 217 

Craig et al. 2009). The δ13C and δ15N values of modern fish caught in the Mediterranean Sea 218 

have been observed to vary widely and often have values similar to those of terrestrial foods 219 

(see Pinnegar and Polunin 2000, Garvie-Lok 2001; Polunin et al. 2001 and Badalamenti et al. 220 

2002). For example, the mean δ13C and δ15N values of fish captured off the southeast coast of 221 
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Ibiza were -17.8‰ and 11.3‰ respectively (Polunin et al. 2001). Furthermore, in individuals 222 

with relatively low protein diets, nutrient scrambling (Prowse et al. 2004; Craig et al. 2013) 223 

may result in carbon and nitrogen being drawn from different dietary constituents – carbon is 224 

assimilated from dietary carbohydrates and/or lipids in protein inadequate diets (Hedges 2004). 225 

These factors invalidate the notional linear correlation of δ13C and δ15N in establishing the 226 

consumption of marine resources (see Schoeninger et al. 1990).  227 

Table S1. Demographic information and δ13C and δ15N values of the Can Fonoll population. 228 

[about here] 229 

 230 

Differences in individual diet  231 

The δ13C and δ15N values of the Can Fonoll necropolis population exhibit wide ranges, which 232 

hint at intra-population differences in dietary intake (cf. DeNiro and Epstein 1978; DeNiro and 233 

Schoeninger 1983). Spanning approximately one trophic level, the range of δ15N values (from 234 

7.0‰ to 12.1‰) of the Can Fonoll population is large and is consistent with differences in 235 

individual diets. Two suspected statistical outliers (SPSS boxplot), individuals T-12 and T-122, 236 

have relatively low δ15N values, 8.2‰ and 7.0‰, respectively, compared to the population 237 

mean of 10.3‰. Both individuals are adult males. Their δ13C values, -19.2‰ and -20.0‰, 238 

respectively are consistent with a diet based on C3 resources. These values possibly suggest 239 

that there were socio-economic or socio-religious restrictions to the consumption of animal 240 

products among the Can Fonoll population. Those individuals with lower δ15N values likely 241 

consumed a greater proportion of plant foods than those with higher values. However, the 242 

consumption of legumes, which fix atmospheric N2 and therefore have low δ15N values (Szpak 243 

et al. 2014), may mask animal protein intake. It is also important to note that non-dietary causes 244 

of δ15N variability cannot be excluded (e.g. Reitsema 2013; Olsen et al. 2014). 245 

The spread of δ13C values is exceptionally large ranging from –20.6‰ to –8.6‰. Five of the 246 

individuals analysed are statistical outliers, with a further three individuals suspected statistical 247 

outliers. Four of these individuals (T1, T20, T121 and T122, see Table S1) have δ13C values 248 

that are typical of diets based on C3 resources. The other four (T-2, T-14, T-99 and T-155, see 249 

Table S1) have distinctive δ13C values, higher than those generally observed for individuals 250 

subsisting exclusively on C3 terrestrial resources. Three of these individuals are firmly 251 

identified as males and one, T-155, is tentatively identified as male. 252 



9 
 

The δ13C values of T-2, T-14, T-99 and T-155 (–14.2‰, –14.9‰, –15.6‰ and –8.6‰ 253 

respectively) indicate that their diets were distinctive from the other individuals interred at Can 254 

Fonoll. Notably, the δ15N values of these individuals (10.3‰, 11.0‰, 10.8‰ and 10.6‰, 255 

respectively) are similar to the population mean (i.e. δ15N = 10.3‰). The parsimonious 256 

explanation for the variation in the δ13C values of these four individuals, with no associated 257 

variation in δ15N values, is the consumption of varying proportions of C4 resources (cf. Müldner 258 

et al. 2011; and see Figure 3).  259 

One explanation for these values potentially reflecting C4 resources is the consumption of 260 

millet. Millet, indigenous to Africa and Asia, was an important C4 crop cultivated in mediaeval 261 

Europe. The reported δ13C values for modern millet plants range from –10‰ to –12‰ 262 

(McGovern et al. 2004; Pechenkina et al. 2005; An et al. 2015). Archaeobotanical remains 263 

indicate the presence of broomcorn millet (Panicum miliaceum) in Europe from at least the 264 

later part of the 4th millennium BC (Lightfoot et al. 2013; Motuzaite-Matuzeviciute et al. 2013), 265 

and consumption of millet is evident in the isotope values of later prehistoric and Roman 266 

populations throughout Europe (Murray and Schoeninger 1988; Bonsall et al. 2004; Le Huray 267 

and Schutkowski 2005; Le Huray and Schutkowski 2005). However, it is generally thought 268 

that millet was viewed as a poor quality cereal (e.g. Iacumin et al. 2014), not used in the 269 

kitchens of the elite, and often grown as animal fodder (Adamson 2004).  270 

Sugarcane (Saccharum), was also cultivated in mediaeval Europe (Galloway 2005). Sugarcane 271 

has a low crude protein content (Pate et al. 2002), and is therefore unlikely to have contributed 272 

directly to human bone collagen δ13C in a protein adequate diet (cf. Hedges 2004). Elevated 273 

δ13C values may result indirectly from the consumption of domesticates fed on sugarcane crops 274 

or stubble (Alexander et al. 2015). Animal collagen from the Islamic period of Ibiza, analysed 275 

by Fuller et al. (2010), show δ13C values no higher than expected for a diet based on C3 plants 276 

in the Mediterranean region with δ13C < –18‰. Araus et al. (1997) demonstrated that 277 

archaeological C3 cereal grains from Middle Neolithic to Iron Age sites in northeastern and 278 

southeastern Spain had δ13C values ranging from –24.5‰ to –20.3‰ (with average δ13C = –279 

22.7‰) – thus, there is no evidence for supplementation of domesticate diet in the Islamic 280 

period on Ibiza with C4 crops (i.e. neither with sugarcane nor millet).  281 

There are no published reports of individuals from European sites with δ13C values as high as 282 

the Can Fonoll individual T-155 with δ13C = –8.6‰ (cf. Lightfoot et al. 2013). Although it is 283 

possible that individual T-155 was local to Ibiza and consumed a distinctive diet for reasons 284 
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relating to health, social status or cultural preference, an alternative and more likely scenario is 285 

that individual T-155 spent much of his life elsewhere, in a region where C4 resources were a 286 

dietary staple. Although millet was used widely across Europe in the mediaeval period (e.g. 287 

Rösch et al. 1992; Dembińska 1999), it does not appear to have been a significant component 288 

of the human diet in many areas. One exception to this was central Europe: documentary 289 

sources indicate that millet was one of the most commonly consumed grains in Poland from 290 

the early mediaeval period up to the 17th century AD (Dembińska 1999). It is also possible, and 291 

more probable given the historical context of Ibiza, that individual T-155 (and arguably all four 292 

of the individuals at Can Fonolls with atypical δ13C values) had migrated to Ibiza from northern 293 

or sub-Saharan Africa (cf Márquez-Grant 2005) shortly before death. Determining how 294 

recently before death these individuals migrated to Ibiza is complex for two reasons. First, the 295 

lack of knowledge of provenance and consequently the baseline isotope values of foods 296 

consumed prior to moving to Ibiza: second, the variation in bone collagen turnover rate, which 297 

depends on developmental stage (e.g. Tsutaya and Yoneda 2013), sex (e.g. Garnero et al. 1996), 298 

parturition (e.g. Naylor et al. 2000), skeletal element sampled (e.g. Manolagas and Jilka 1995), 299 

as well as behaviour (e.g. Thorsen et al. 1997).     300 

Few stable isotope studies of northern African groups subsisting largely on C4 resources have 301 

been undertaken – see Loftus et al. (2016) for a review. Analyses of historic farming 302 

populations from Kenya, known to have predominantly consumed a mix of C4 and C3 cereals 303 

in varying proportions, had δ13C values ranging from –18.0‰ to –7.3‰, while two individuals 304 

from west Kenya, who subsisted exclusively on C4 resources, had δ13C values of -6.7‰ and -305 

6.3‰ (Ambrose and DeNiro 1986). The remains of many prehistoric agriculturalists from 306 

Africa, inferred to have subsisted on C4-based food webs, have produced high δ13C values of 307 

up to –4.5‰ (see table 2 in Ambrose and DeNiro 1986 and table 4 in Murphy 2011). The 308 

differences in diet evident within the Can Fonoll population may reflect the status or the 309 

occupations of these individuals, or more likely, indicates residential mobility, which was 310 

commonplace in mediaeval Europe (O’Connor 2003). 311 

Age/Sex related differences in diet 312 

The individual variations in diet are not correlated to age nor to sex. A large proportion of 313 

younger to middle age adults (18–35 years) were represented; no older adults (i.e. 45+ years) 314 

or infants (i.e. < 1 year) were identified amongst the remains (Kyriakou et al. 2012). The 315 

average isotope values of the various age categories represented at Can Fonoll were found to 316 
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be remarkably similar. Adults in the 18–25 years category (n=61) had mean±sd(1σ) δ13C = –317 

19.0±1.5‰ and δ15N = 10.3±0.9‰; while those aged 25–35 years (n=23) had mean±sd(1σ) 318 

δ13C = –18.7±1.2‰ and δ15N = 10.3±0.9‰. Adults aged 35–45 years (n=2) formed too small 319 

a sub-set to provide meaningful comparison; however, their values were in keeping with the 320 

younger age groups. Thirteen non-adults (≤18 years) were sampled. The distribution of the 321 

dataset was determined to be non-normal (Shapiro-Wilk test, p = 0.000 and p = 0.001 for δ13C 322 

and δ15N respectively) so the null hypothesis, that the adults vs non-adults had the same δ13C 323 

and δ15N values was evaluated using the non-parametric Mann Whitney U-test. Average non-324 

adult δ13C = –19.3±0.3‰ and δ15N = 10.3±0.6‰ values are not statistically different (Mann 325 

Whitney U-test, p = 0.159 and p = 0.743 for δ13C and δ15N, respectively) from the values 326 

obtained for the adult (18+ years) population at Can Fonoll.  327 

The dataset of the males and females is not normally distributed (Shapiro-Wilk test, p=0.000, 328 

p=0.032 for δ13C and δ15N, respectively). The mean±sd(1σ) δ13C and δ15N values of the males 329 

(δ13C = –18.4±2.3‰; δ15N = 10.4±0.8‰, n=31) and females (δ13C = –19.1±0.4‰; δ15N = 330 

10.4±0.8‰, n=20) at Can Fonoll are not statistically different (Mann Whitney U-test, p = 0.361 331 

and p = 0.953 for δ13C and δ15N, respectively) indicating that the diets of males and females 332 

are broadly similar at the population level.  333 

Comparison to other mediaeval western Mediterranean populations 334 

The data from Can Fonoll add to the growing evidence for heterogeneity in diet between 335 

mediaeval populations in the western Iberian Peninsula and the Balearic Islands. The Can 336 

Fonoll population have lower mean δ13C and δ15N values than the Islamic population from Es 337 

Soto (Shapiro Wilk test indicates non-normally distributed data, p = 0.000 and p = 0.002 for 338 

δ13C and δ15N values respectively; Mann-Whitney U test, p = 0.000 and p = 0.008 for δ13C and 339 

δ15N values, respectively; see Figure 4 and Table 2). Although possible, it is unlikely that 340 

environmental factors account for the distinct δ13C values given the proximity and 341 

contemporaneity of the two sites. This small but significant difference in dietary patterns likely 342 

reflects the respective locations of the two sites.  343 

Individuals interred at Es Soto, which is located in Ibiza town, an important urban centre of 344 

trade in the mediaeval period, potentially had greater access to imported foodstuffs, as well as 345 

marine resources, than their rural counterparts at Can Fonoll. Mean δ13C values of the farming 346 

community at Can Fonoll (as well as the δ13C values of the herbivores from Es Soto, all of 347 
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which have δ13C > –18‰) argues against the local cultivation of C4 cereals. It is also possible 348 

that the difference between the two sites relates to the large number of recent migrants to Ibiza 349 

at Es Soto with ‘remnant’ isotope signatures. Nehlich et al. (2012) established that 18 of 20 350 

individuals sampled had δ34S values outside the local range indicating that they were not native 351 

to Ibiza.  352 

The δ34S analysis of the Can Fonoll population would help to determine whether the differences 353 

in isotope signatures of the two populations might be due to differences in the diets of those 354 

native to Ibiza or whether these differences reflect the non-local origin of some of those 355 

individuals interred at Can Fonoll. A further consideration is temporal variation in dietary 356 

patterns. Although the cemeteries at Can Fonoll and Es Soto are roughly contemporaneous, 357 

both sites were in use for several hundred years. In the absence of absolute dates for the 358 

individuals sampled for stable isotope analysis, it is not possible to determine to what extent 359 

the differences in isotope values between the two sites relates to chronological variations in 360 

diet.  361 

Table 2. Mean±sd(1σ) bone collagen δ13C and δ15N values of human remains from Ibiza and 362 

mediaeval populations from the Mediterranean region. 363 

Figure 4. Scatterplot of stable isotope values of key Ibizan and Valencian Spanish mediaeval 364 

sites discussed. 365 

. [about here] 366 

As at Can Fonoll, the wide spread of δ13C (from –19.4‰ to –13.1‰) values evident in the Es 367 

Soto population suggested variation in individual diet (Fuller et al. 2010). Nehlich et al. (2012) 368 

established, through the co-analysis of bone collagen δ13C, δ15N and δ34S values, that the Es 369 

Soto population was not consuming marine foods. The mean±sd(1σ) δ34S value of this group 370 

is 9.1±2.7‰ (n=20); consumers of marine resources generally have more elevated δ34S values 371 

reflecting that of marine sulphate c. +21‰ (Rees et al. 1978; Richards et al. 2001). Thus, 372 

variation of δ13C values in the Es Soto group likely reflects differential consumption of C4 373 

foods (Fuller et al. 2010; Nehlich et al. 2012). Individual ES-T18-2 (with δ13C = –13.1‰, δ15N 374 

= 12.5‰ and δ34S = 10.2‰) was interpreted as having consumed a significant proportion of 375 

C4 resources (Fuller et al. 2010). In addition, this individual has a δ34S value that lies outside 376 

the local range indicating that ES-T18-2 had migrated to Ibiza (Nehlich et al. 2012). The δ13C 377 

and δ15N values of this individual are typical of the values of African groups subsisting 378 
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predominantly by pastoralism with C4 cereals as well as wild C3 plants (cf. Ambrose and 379 

DeNiro 1986). However, similar carbon and nitrogen isotope values are also evident in later 380 

mediaeval populations on mainland Spain at Gandía, Valencia (Alexander et al. 2015). 381 

In general, the diet of early mediaeval Islamic Ibizan populations is dominated by terrestrial C3 382 

resources. Mediaeval populations from the Basque region as well as in Aragon in northern 383 

Spain also had diets of mainly C3 foods (Mundee 2009; Lubritto et al. 2013; Quirós Castillo 384 

2013). However, within this general pattern there is some variation, which has often been 385 

linked to status. At Jaca in Aragon, a small number of individuals (4 of 27 sampled) with 386 

atypical δ13C values likely consumed greater quantities of C4 foods and may have been non-387 

local (Mundee 2009). High status populations interred at Saint Tirso monastery, Zaballa, and 388 

at Treviño Castle have mean δ13C values consistent with an exclusively C3 diet. Mean δ15N 389 

values similar to that of carnivores were interpreted as evidence for the importance of animal 390 

resources to diet (Lubritto et al. 2013; Quirós Castillo 2013). Lower mean δ15N and a wider 391 

range of δ13C values, particularly among the middle mediaeval inhabitants at Aistra, indicated 392 

that plant foods and to some extent C4 plant foods likely comprised a higher proportion of diet. 393 

The consumption of C4 cereals was attributed to the lower status of individuals at this rural site 394 

(Quirós Castillo 2013). Slightly elevated mean δ13C at the Santa Maria church cemetery at 395 

Zornoztegi suggests that C4 resources were consumed, probably indirectly, reflecting the use 396 

of C4 grains as feed for domestic fowl (Quirós Castillo 2013).  397 

Among the later mediaeval populations from Gandía and El Raval in Valencia, C4 resources 398 

comprise a more substantial part of diet (cf. Salazar-García et al. 2014, Alexander et al. 2015). 399 

While there are slight differences in the diets of Muslims and Christians at two later mediaeval 400 

necropoli at Gandía (i.e. Benipeixcar vs Colegiata de Santa Maria), the isotope values of both 401 

groups reflect the importance of C4 plants or C4-plant consumers to the diet (Alexander et al. 402 

2015). Similarly, at El Raval, a late mediaeval necropolis with a largely Islamic population and 403 

a number of moriscos (i.e. converts to Christianity), located less than 100 km to the south of 404 

Gandía, a mixed terrestrial C3/C4 diet is indicated (Salazar-García et al. 2014). Higher mean 405 

δ15N values at El Raval in comparison to those of the Gandía sites points to the greater 406 

consumption of fish (Shapiro Wilk test indicated normality, p = 0.568, p = 0.0.649 and p = 407 

0.568 for Benepeixcar, Colegiata de Santa Maria and El Raval, respectively: Levene’s unequal 408 

variance, p = 0.042: Kruskal Wallis test demonstrated statistically significant differences in 409 

mean δ15N values, p = 0.001). However, as Alexander and colleagues (2015) point out, wide 410 
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variation in the δ15N values of archaeological domesticates and fish from the region 411 

complicates δ15N interpretation. 412 

The emphasis on C4 foods in Valencia reflects the ready adoption of new crops in Spain under 413 

Moorish influence (Galloway 2005). Cultivation of sugarcane, which was evident in southern 414 

Spain from at least the early 10th century AD, grew in economic importance from 1300-1500 415 

AD. Valencia was one of the most northerly outposts of sugarcane cultivation in Europe, 416 

although the crop does not appear to have been cultivated on Ibiza (cf. Galloway 2005).  417 

Elsewhere in the western Mediterranean region there is similar variation in stable isotope 418 

signatures, and by inference, diet. At early to middle mediaeval sites in Fruili-Venezia, Guilia, 419 

in northeastern Italy, considerable variation in diet is evident with C4 cereals comprising from 420 

0% up to 29% of dietary protein (Iacumin et al. 2014). The consumption of millets was 421 

attributed by Iacumin et al. (2014) to the economic and social upheaval following the demise 422 

of the Roman Empire along with climatic deterioration resulting in reduced wheat production 423 

and reduced access to higher quality cereals among lower status individuals. By contrast, at 424 

Trino Vercellese in northwestern Italy, a necropolis which was in use between the 8th and the 425 

12th centuries AD, diet was dominated by terrestrial C3 resources with potentially a small 426 

proportion of C4 cereals. In the eastern Mediterranean there is little evidence in isotope 427 

signatures for the use of C4 resources in the Byzantine period: diets were dominated by C3 428 

resources with varying proportions of marine foods constituting an important but secondary 429 

source of protein (Bourbou et al. 2011). 430 

The consumption of small quantities of fish is often cited as a possible explanation for the wide 431 

spread of δ15N values among mediaeval populations (e.g. Mundee 2009; Reitsema and 432 

Vercellotti 2012; Quirós Castillo 2013; Iacumin et al. 2014; Alexander et al. 2015). Although 433 

faith-based differences in the consumption of marine resources might be anticipated there is 434 

little evidence to support this view. Fish did not contribute significantly to population level diet 435 

in the western Mediterranean despite the widely held view that fish would have been consumed 436 

by Christians on fast days. This may relate to the high cost of fish and the limited impact of 437 

meat abstinence on other than the highest status households (Dyer 1983; Adamson 2004). On 438 

Ibiza, from Punic times and throughout the Roman and Early Byzantine periods, there is a little 439 

to no input of marine resources evident in diet (e.g. Fuller et al. 2010; Salazar-García 2011): 440 

this neglect of the sea foods continued into the medieval period.  441 
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Consumption of fish with scales is permissible under Islamic dietary law (Regenstein et al. 442 

2003) and fish may have been important to the Islamic population at Tauste, Zaragoza, which 443 

is located in the interior of north-east Spain on the banks of the River Arba. Adult δ13C values 444 

range from –19.5‰ to –18.4‰ and δ15N values from 9.5‰ to 17.0‰ (Guede et al. 2015). 445 

Guede et al. (2015) interpreted these values as indicative of a terrestrial C3 diet, explaining the 446 

unusually elevated δ15N values as the result of aridity and/or salinity rather than the 447 

consumption of marine resources owing to the inland location of the site. However, 15N 448 

enrichment is not evident in the contemporary population from the nearby site at Zaragoza 449 

(Mundee 2009; Quirós Castillo 2013). An alternative interpretation for δ13C values in the 450 

terrestrial C3 range along with very elevated δ15N values is the consumption of freshwater fish 451 

(e.g. Bonsall et al. 1997; Fuller et al. 2012b), and an indicator of high status in mediaeval Spain 452 

(García-Sánchez 2002).  453 

Previous studies have identified sex-based differences in isotope values in mediaeval 454 

populations that indicate differential access to resources (e.g. Reitsema and Vercellotti 2012; 455 

Quirós Castillo 2013). Quirós Castillo (2013) argued that food was used as one expression of 456 

the inequality of men and women in mediaeval Spain. However, this discrimination is not 457 

universally manifest and is not evident at Can Fonoll nor at Colegiata de Santa Maria 458 

(Alexander et al. 2015). 459 

Diets of later mediaeval groups at Gandía (Benipeixcar versus Colegiata de Santa Maria) are 460 

distinctive and, potentially, reflect religious practices (Alexander et al. 2015). Religious 461 

affiliation was communicated through differences in diet, although Constable (2013) argued 462 

that prior to the later mediaeval period the foodways of Christian, Jews and Muslims in Spain 463 

were largely shared. On a wider geographic scale (i.e. above the level of individual 464 

communities) differences in diet in Spain and elsewhere in the western Mediterranean in the 465 

mediaeval period appear to be largely related to regional socioeconomic and environmental 466 

considerations. It could be argued that this supports Constable’s (2013) assertion that in the 467 

earlier mediaeval period foodways were shared across faiths. However, identification of faith-468 

based differences in diet may be obscured by the relatively small number and restricted 469 

geographic range of populations that have been analysed to date. Another confounding factor 470 

is the difficulty of identifying faith from burial practice (e.g. Rutgers 1992). Further research 471 

into the dietary patterns of different faith groups are warranted both on mainland Spain and in 472 

particular on Ibiza (where Islamic populations have been the focus of published studies) to 473 

investigate the extent and cause(s) of dietary variability in mediaeval populations. 474 
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CONCLUSION 475 

The data presented add to our understanding of variation in diet in mediaeval Spain. Stable 476 

carbon and nitrogen isotope ratio analysis of the Islamic population interred at Can Fonoll on 477 

the island of Ibiza indicates, for most individuals, a diet based on C3 terrestrial resources, with 478 

meat or dairy produce likely important, reflecting the agricultural economy of this community. 479 

The wide range of stable isotope values points to differences in individual diet: a small number 480 

of those interred at Can Fonoll consumed a significant proportion of C4 resources in addition 481 

to C3 foods, while one individual has a carbon isotope value suggesting dependence on C4 482 

resources. These individuals likely migrated to Ibiza from areas with distinct resources, and 483 

one possible place of origin is Africa. Similarly, differences in individual diet at other sites on 484 

Ibiza and on mainland Spain, for example at Es Soto and Jaca, may also attest to residential 485 

mobility, although differential access to resources relating to sex, status and labour cannot be 486 

entirely discounted.  487 

Further exploration of diet in mediaeval populations is required to fully appreciate the regional 488 

variability of diet and to assess the effects of the religious, social and economic changes brought 489 

in the first instance by the Moorish conquest in the 8th century AD to the complete control of 490 

Christians in Spain by the 15th century.  491 
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Figure 1. Location of Can Fonoll, Ibiza, Spain. 815 
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Figure 2. Photograph of excavated graves at Can Fonoll necropolis (© Jonathan Castro 819 

Orellana and Joan Roig). 820 
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Figure 3. Scatterplot of mean±sd(1σ) δ13C and δ15N values for the Can Fonoll humans. 823 
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Figure 4. Scatterplot of stable isotope values of key Ibizan and Valencian Spanish mediaeval 825 

sites discussed. 826 
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Table 1. Mean±sd(1σ) δ13C and δ15N values of animal remains from Ibiza, taken from Fuller 830 

et al. (2010). 831 

Species δ13C (‰) δ15N (‰) n 

Cat -19.0±0.1 9.4±0.4 7 

Bird -19.0±0.6 8.0±0.4 5 

Dog -18.8±0.3 10.3±0.6 23 

Cow -20.3±0.1 8.1±0.3 4 

Sheep/goat -19.8±0.7 6.5±2.3 14 

Pig -19.7 5.1 1 
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Table 2. Mean±sd(1σ) bone collagen δ13C and δ15N values of human remains from Ibiza and 833 

mediaeval populations from the Mediterranean region. 834 

Site Period Affiliation δ13C (‰) δ15N (‰) n Reference 

Ca na Costa, Ibiza c. 2100 BC Chalcolithic -18.9±0.2 12.7±1.7 8 Fuller et al. 

2010 

Ses Païsses de Cala 

d’Hort, Ibiza 

5th-2nd/1st C BC Punic (rural) -18.7±0.3 12.5±0.5 38 Fuller et al. 

2010 

Puig des Molins, 

Ibiza 

5th-2nd/1st C BC Punic (urban) -18.8±0.3 11.3±0.7 8 Fuller et al. 

2010 

S’Hort des 

Llimoners, Ibiza 

4th-6th C AD Late Antiquity- 

Early Byzantine 

-19.0±0.4 11.1±1.1 60 Fuller et al. 

2010 

Can Marines, Ibiza 5th-4th C BC Punic -18.5±0.3 11.5±0.4 27 Salazar-

García 2011 

Es Soto, Ibiza 10th-13th C AD Mediaeval 

(Islamic) 

-18.1±1.3 10.9±1.0 21 Fuller et al. 

2010 

Can Fonoll, Ibiza 10th-13th C AD Mediaeval 

(Islamic) 

-19.0±1.3 10.3±0.8 112 This study 

El Raval, Valencia 14th-16th C AD Mediaeval 

(Islamic) 

-16.4±0.6 12.1±0.3 35 Salazar-

García et al. 

2014 

Gandia 

(Benipeixcar),     

Valencia 

13th-16th C AD Mediaeval 

(Islamic)  

-16.4±0.9 10.7±0.6 20 Alexander et 

al. 2015 

Gandia (Colegiata de 

Santa Maria), 

Valencia 

13th-16th C AD Mediaeval 

(Christian) 

-17.2±1.0 10.2±0.8 24 Alexander et 

al. 2015 

Tauste, Zaragoza* 8th-12th C AD Mediaeval 

(Islamic) 

Range -19.9 

to -16.9  

Range 9.5 

to 17.5 

30 Guede et al. 

2015 

Trino Vercellese, 

Northern Italy 

8th-13th C AD Early-Middle 

Mediaeval 

(Christian) 

-19.1±0.7 9.2±0.8 28 Reitsema & 

Vercellotti 

2012 

Mainizza, Northern 

Italy 

10th-11th C AD Middle Mediaeval 

(Christian/pagan?) 

-15.9±1.4 7.7±1.0 16 Iacumin et 

al. 2014 

Fruili-Venezia Giulia, 

Northern Italy 

6th-7th C AD Early Mediaeval -16.6±0.9 8.4±0.8 66 Iacumin et 

al. 2014 

Saint Tirso, Zaballa, 

Spain 

10th-13th C AD Middle Mediaeval -19.8±0.7** 9.0±0.8** 14 Lubritto et 

al. 2013 

Treviño, Spain 12th-15th C AD Mediaeval -19.6±0.7 9.6±1.2 15 Quirós 

Castillo 2013 

Zornoztegi, Spain 12th-14th C AD Mediaeval -18±1.1 8.3±0.6 7 Quirós 

Castillo 2013 

Aistra, Spain 8th-13th C AD Mediaeval -19.0±1.0 7.9±1.1 35 Quirós 

Castillo 2013 

*- full data set was not published by Guede et al. (2015). 835 

**- infants excluded. 836 
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Table S1: Supplementary Information 839 

Sample 

number  

Site sector and 

tomb number Age Sex 

Collagen 

yield 

(%) 

d13C 

(‰) 

d15N 

(‰) (%)C (%)N 

Atomic 

C:N 

S-EVA-18759 Sector I T-1 25-35 M 0.2 -20.6 10.4 22.7 7.8 3.4 

S-EVA-18760 Sector I T-2 18-25 M 0.1 -14.2 10.3 24.9 8.8 3.3 

S-EVA-18762 Sector I T-4 ? ? 0.1 -19.7 11.6 14.9 5.1 3.4 

S-EVA-18763 Sector I T-5 25-35 ? 0.6 -19.3 10.8 29.8 10.5 3.3 

S-EVA-18764 Sector I T-6 ? ? 0.8 -19.5 11.4 23.9 8.3 3.4 

S-EVA-18765 Sector I T-7 18-25 F? 0.3 -19.4 10.8 20.4 7.0 3.4 

S-EVA-18766 Sector I T-9 25-35 M 0.1 -19.1 10.8 19.9 6.9 3.3 

S-EVA-18767 Sector I T-10 25-35 ? 0.6 -19.1 10.3 33.9 12.0 3.3 

S-EVA-18768 Sector II T-40 18-25 ? 0.7 -19.1 10.9 33.1 11.8 3.3 

S-EVA-18769 Sector II T-41 18-25 ? 0.3 -19.2 11.0 26.5 9.3 3.3 

S-EVA-18770 Sector II T-43 18-25 F 0.5 -19.7 9.8 19.1 6.6 3.4 

S-EVA-18771 Sector II T-44 18-25 M? 0.7 -19.2 10.3 37.9 13.3 3.3 

S-EVA-18775 Sector II T-48 18-25 M 0.9 -19.1 11.4 28.0 9.8 3.3 

S-EVA-18776 Sector II T-49 25-35 ? 0.5 -18.5 10.8 35.4 12.6 3.3 

S-EVA-18779 Sector II T-52 18-25 ? 0.6 -19.6 12.1 31.5 11.0 3.3 

S-EVA-18781 Sector II T-54 18-25 M 0.2 -19.1 11.3 28.2 9.8 3.4 

S-EVA-18782 Sector II T-55 18-25 ? 0.2 -19.3 10.0 20.0 6.9 3.4 

S-EVA-18786 Sector II T-61 10-15 ? 0.2 -19.8 10.8 12.5 4.0 3.6 

S-EVA-18787 Sector II T-62 18-25 M? 0.9 -19.4 11.0 25.2 9.4 3.3 

S-EVA-18788 Sector II T-63 ? F 0.2 -19.3 10.6 15.0 3.6 3.6 

S-EVA-18790 Sector II T-65 18-25 ? 0.5 -19.7 10.3 18.5 6.3 3.4 

S-EVA-18791 Sector II T-66 18-25 M 1.2 -19.5 10.6 18.2 6.5 3.3 

S-EVA-18793 Sector II T-68 25-35 ? 0.2 -19.3 11.0 15.3 5.1 3.5 

S-EVA-18794 Sector II T-69 18-25 M 2.3 -18.7 8.4 15.7 5.3 3.4 

S-EVA-18796 Sector II T-71 18-25 F 0.1 -19.4 10.1 14.6 4.7 3.6 

S-EVA-18797 Sector II T-72 ? ? 0.6 -19.1 9.9 25.2 9.0 3.3 

S-EVA-18799 Sector II T-74 18-25 ? 0.4 -18.7 11.0 27.6 10.0 3.2 

S-EVA-18800 Sector II T-75 25-35 M 1.8 -18.8 10.5 28.1 10.2 3.2 

S-EVA-18801 Sector II T-76 25-35 ? 0.6 -18.8 10.2 35.5 13.0 3.2 

S-EVA-18802 Sector II T-77 18-25 F 2.4 -18.9 11.2 48.9 19.2 3.0 

S-EVA-18803 Sector II T-78 ? ? 0.4 -18.9 11.3 29.7 10.5 3.3 

S-EVA-18804 Sector III T-11 25-35 F 0.4 -19.3 8.8 14.1 4.8 3.4 

S-EVA-18805 Sector III T-12 25-35 M 1.5 -19.2 8.2 16.6 5.6 3.3 

S-EVA-18806 Sector III T-13 ? ? 2.0 -19.0 11.3 12.4 4.1 3.5 

S-EVA-18807 Sector III T-14 25-35 M 0.3 -14.9 11.0 29.6 10.6 3.2 

S-EVA-18809 Sector III T-16 18-25 ? 0.4 -19.3 10.2 33.3 12.3 3.2 

S-EVA-18810 Sector III T-17 18-25 M 0.3 -18.5 10.7 22.6 8.2 3.2 

S-EVA-18812 Sector III T-19 ? ? 0.2 -19.3 9.7 26.9 9.4 3.3 

S-EVA-18813 Sector III T-20 25-35 ? 0.6 -18.3 9.2 31.3 11.5 3.2 

S-EVA-18814 Sector III T-21 18-25 M 0.7 -19.3 10.9 31.9 12.0 3.1 

S-EVA-18816 Sector III T-24 18-25 M 0.3 -19.4 10.2 36.3 13.4 3.2 

S-EVA-18817 Sector III T-27 10-15 ? 1.5 -19.4 10.5 47.1 18.6 3.0 

S-EVA-18818 Sector III T-31 25-35 ? 1.8 -19.2 9.2 12.8 4.4 3.4 
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S-EVA-18819 Sector III T-33 18-25 ? 0.7 -19.3 9.7 27.2 9.9 3.2 

S-EVA-18820 Sector III T-35 25-35 ? 1.5 -19.1 8.3 18.1 6.6 3.2 

S-EVA-18821 Sector III T-36 18-25 M 1.1 -19.7 9.8 10.9 3.8 3.4 

S-EVA-18823 Sector III T-38 ? M 0.3 -19.1 9.9 26.3 9.5 3.3 

S-EVA-18826 Sector IV T-80 35-45 M 0.2 -19.2 10.3 12.6 4.8 3.1 

S-EVA-18828 Sector IV T-84 18-25 ? 1.4 -18.6 9.8 10.4 3.9 3.2 

S-EVA-18829 Sector IV T-86 18-25 M 0.5 -19.5 9.1 14.7 5.5 3.1 

S-EVA-18830 Sector IV T-87 ? ? 0.3 -18.8 11.0 24.4 8.9 3.2 

S-EVA-18831 Sector IV T-88 18-25 M 1.0 -19.5 9.8 27.3 9.9 3.2 

S-EVA-18832 Sector IV T-89 18-25 M 1.4 -19.3 9.9 13.8 5.1 3.2 

S-EVA-18833 Sector IV T-90 10-15 ? 1.3 -19.2 9.9 33.1 12.0 3.2 

S-EVA-18835 Sector IV T-92 18-25 ? 1.0 -19.1 11.1 35.8 13.0 3.2 

S-EVA-18836 Sector IV T-93 25-35 M 3.0 -19.0 10.3 35.9 13.2 3.2 

S-EVA-18837 Sector IV T-94 18-25 ? 0.8 -18.8 10.7 34.3 12.4 3.2 

S-EVA-18838 Sector IV T-95 18-25 F 1.3 -19.5 9.8 11.8 4.2 3.3 

S-EVA-18839 Sector IV T-96 18-25 M 0.5 -19.4 9.6 19.6 6.8 3.4 

S-EVA-18841 Sector IV T-99 25-35 M 0.3 -15.6 10.8 23.8 8.8 3.2 

S-EVA-18842 Sector IV T-101 25-35 ? 1.1 -19.4 9.9 12.1 4.5 3.1 

S-EVA-18843 Sector IV T-103 18-25 F 2.7 -19.4 10.3 26.5 9.8 3.2 

S-EVA-18844 Sector IV T-105 ? ? 0.9 -19.7 9.3 11.6 4.3 3.2 

S-EVA-18846 Sector IV T-108 18-25 ? 0.7 -18.8 9.6 32.1 11.4 3.3 

S-EVA-18847 Sector IV T-109 18-25 M 0.6 -19.1 10.3 17.7 6.3 3.3 

S-EVA-18848 Sector IV T-100 ? ? 0.4 -19.5 9.5 14.1 4.9 3.3 

S-EVA-18849 Sector IV T-110 10-15 ? 1.1 -19.3 10.2 29.1 10.5 3.2 

S-EVA-18850 Sector IV T-111 18-25 ? 1.2 -19.3 10.1 12.9 4.6 3.3 

S-EVA-18851 Sector IV T-113 18-25 F 0.8 -19.0 11.7 40.2 14.3 3.3 

S-EVA-18852 Sector IV T-114 25-35 F 1.6 -19.1 11.0 42.2 15.7 3.1 

S-EVA-18853 Sector IV T-115 18-25 ? 0.2 -19.5 10.4 10.6 3.4 3.6 

S-EVA-18854 Sector IV T-117 18-25 ? 1.3 -19.3 9.7 18.3 6.6 3.3 

S-EVA-18855 Sector IV T-118 18-25 ? 0.2 -19.5 10.8 17.7 6.0 3.4 

S-EVA-18856 Sector IV T-119 18-25 F 0.2 -19.7 8.6 7.9 2.8 3.3 

S-EVA-18857 Sector IV T-120 18-25 ? 2.1 -19.0 9.8 47.2 17.5 3.2 

S-EVA-18858 Sector IV T-121 25-35 F 0.3 -17.9 10.4 31.0 11.2 3.2 

S-EVA-18859 Sector IV T-122 18-25 ? 0.2 -20.0 7.0 3.1 1.2 3.2 

S-EVA-18860 Sector IV T-123 1-5 ? 0.2 -19.2 9.7 28.3 9.8 3.4 

S-EVA-18861 Sector IV T-124 18-25 ? 1.4 -18.8 10.2 40.6 15.1 3.1 

S-EVA-18862 Sector IV T-125 15-18 ? 0.1 -19.6 10.3 23.7 8.0 3.5 

S-EVA-18863 Sector IV T-126 25-35 M 0.6 -18.9 12.0 8.8 3.1 3.3 

S-EVA-18864 Sector IV T-127 18-25 F 0.4 -19.1 10.5 30.6 10.5 3.4 

S-EVA-18865 Sector IV T-128 15-18 F 1.1 -19.3 9.8 39.0 14.2 3.2 

S-EVA-18866 Sector IV T-129 18-25 F 0.3 -19.1 10.8 32.7 11.3 3.4 

S-EVA-18867 Sector IV T-130 18-25 F? 0.1 -19.1 12.0 11.7 4.1 3.3 

S-EVA-18868 Sector IV T-131 5-10 ? 0.3 -19.5 9.8 11.1 3.7 3.5 

S-EVA-18869 Sector IV T-132 25-35 F 1.4 -19.3 10.9 38.2 13.5 3.3 

S-EVA-18870 Sector IV T-134 18-25 M 1.1 -18.6 10.9 26.2 9.4 3.2 

S-EVA-18872 Sector IV T-136 18-25 ? 1.5 -19.8 8.7 3.0 1.2 3.0 

S-EVA-18873 Sector IV T-137 18-25 ? 0.2 -19.5 9.3 26.3 8.9 3.4 

S-EVA-18875 Sector IV T-140 25-35 F 0.3 -18.5 10.3 28.9 10.1 3.4 
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S-EVA-18876 Sector IV T-141 18-25 F 0.5 -19.1 10.1 32.9 11.2 3.4 

S-EVA-18877 Sector IV T-142 18-25 ? 0.4 -19.0 10.8 28.6 9.9 3.4 

S-EVA-18878 Sector IV T-143 ? ? 0.3 -19.3 10.5 36.6 12.2 3.5 

S-EVA-18879 Sector IV T-144 10-15 ? 1.2 -19.0 9.9 40.5 14.1 3.4 

S-EVA-18880 Sector IV T-145 18-25 F? 1.0 -18.9 10.3 36.0 12.9 3.3 

S-EVA-18881 Sector IV T-146 10-15 ? 0.2 -19.3 10.3 25.6 8.7 3.4 

S-EVA-18882 Sector IV T-147 10-15 ? 1.5 -18.5 11.7 38.6 13.6 3.3 

S-EVA-18883 Sector IV T-148 18-25 ? 1.5 -18.9 10.3 35.5 12.6 3.3 

S-EVA-18884 Sector IV T-149 18-25 ? 0.4 -19.0 10.9 37.0 12.6 3.4 

S-EVA-18885 Sector IV T-150 25-35 M 0.2 -19.0 10.8 23.1 8.0 3.4 

S-EVA-18886 Sector IV T-151 5-10 ? 0.3 -19.1 11.2 33.2 11.8 3.3 

S-EVA-18887 Sector IV T-152 18-25 ? 0.8 -18.8 10.8 30.4 10.8 3.3 

S-EVA-18888 Sector IV T-153 ? ? 0.9 -19.2 10.9 23.6 8.4 3.3 

S-EVA-18889 Sector IV T-154 18-25 M 0.3 -19.0 11.1 38.5 13.5 3.3 

S-EVA-18890 Sector IV T-155 18-25 M? 0.7 -8.6 10.2 33.3 12.1 3.3 

S-EVA-18893 Sector IV T-158 18-25 F 0.5 -19.1 10.8 32.7 12.0 3.3 

S-EVA-18894 Sector IV T-159 35-45 M 0.4 -19.0 10.2 30.1 10.7 3.4 

S-EVA-18895 Sector IV T-239 ? ? 0.3 -19.5 9.0 14.7 5.2 3.4 

S-EVA-18898 Sector IV T-164 18-25 ? 0.4 -19.0 10.6 35.8 13.5 3.4 

S-EVA-18899 Sector IV T-165 10-15 ? 0.4 -19.5 10.4 28.2 10.4 3.4 

S-EVA-18900 Sector IV T-166 18-25 ? 0.3 -19.7 11.0 31.1 11.1 3.5 

S-EVA-18785 Sector II T-60 18-25 ? 1.3 - - 5.9 1.7 4.0 

S-EVA-18824 Sector IV T-78 ? ? 0.3 - - 2.7 0.9 3.7 

S-EVA-18871 Sector IV T-135 18-25 ? 0.4 - - 3.9 1.2 3.8 

S-EVA-18896 Sector IV T-160 18-25 M? 0.1 - - 11.0 2.4 5.4 

S-EVA-18897 Sector IV T-163 18-25 F 1.6 - - 40.5 11.4 4.3 

S-EVA-18761 Sector I T-3 ? ? - - - - - - 

S-EVA-18772 Sector II T-45 25-35 ? - - - - - - 

S-EVA-18773 Sector II T-46 15-18 ? - - - - - - 

S-EVA-18774 Sector II T-47 ? ? - - - - - - 

S-EVA-18777 Sector II T-50 ? ? - - - - - - 

S-EVA-18778 Sector II T-51 18-25 M? - - - - - - 

S-EVA-18780 Sector II T-53 18-25 ? - - - - - - 

S-EVA-18783 Sector II T-57 18-25 ? - - - - - - 

S-EVA-18784 Sector II T-59 ? ? - - - - - - 

S-EVA-18785 Sector II T-60 18-25 ? - - - - - - 

S-EVA-18789 Sector II T-64 25-35 ? - - - - - - 

S-EVA-18792 Sector II T-67 18-25 F? - - - - - - 

S-EVA-18795 Sector II T-70 10-15 ? - - - - - - 

S-EVA-18798 Sector II T-73 18-25 ? - - - - - - 

S-EVA-18808 Sector III T-15 25-35 ? - - - - - - 

S-EVA-18811 Sector III T-18 18-25 M? - - - - - - 

S-EVA-18815 Sector III T-22 18-25 ? - - - - - - 

S-EVA-18822 Sector III T-37 ? ? - - - - - - 

S-EVA-18825 Sector IV T-79 18-25 ? - - - - - - 

S-EVA-18827 Sector IV T-81 25-35 ? - - - - - - 

S-EVA-18834 Sector IV T-91 25-35 ? - - - - - - 

S-EVA-18840 Sector IV T-98 18-25 F - - - - - - 
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S-EVA-18845 Sector IV T-107 18-25 ? - - - - - - 

S-EVA-18874 Sector IV T-138 18-25 ? - - - - - - 

S-EVA-18891 Sector IV T-156 18-25 F? - - - - - - 

S-EVA-18892 Sector IV T-157 ? ? - - - - - - 
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