

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Utility of 222Rn as a passive tracer of subglacial distributed system drainage

Citation for published version:

Linhoff, BS, Charette, MA, Nienow, PW, Wadham, JL, Tedstone, AJ & Cowton, T 2017, 'Utility of 222Rn as a passive tracer of subglacial distributed system drainage' Earth and Planetary Science Letters, vol. 462, pp. 180-188. DOI: 10.1016/j.epsl.2016.12.039

Digital Object Identifier (DOI):

10.1016/j.epsl.2016.12.039

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Earth and Planetary Science Letters

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Utility of ²²² Rn as a passive tracer of subglacial distributed system drainage
2	
3	Linhoff, Benjamin S. ¹ ; Charette, Matthew A. ¹ ; Nienow, Peter W. ² ; Wadham, Jemma L. ³ ;
4	Tedstone, Andrew J. ³ ; Cowton, Thomas ²
5	
6	1: Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution,
7	Woods Hole, Massachusetts, USA
8	2: School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
9	3: School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
10	
11	Corresponding author: Benjamin Linhoff (blinhoff@usgs.gov)
12	
13	Keywords: radon, Greenland, glacier, proglacial river, meltwater.
14	
15	Abstract
16	Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient
17	(distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery
18	to the bed via both moulins and surface lake drainage. This partitioning between channelized and
19	distributed drainage systems is difficult to quantify yet it plays an important role in bulk
20	meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is
21	continuously produced via the decay of ²²⁶ Ra, accumulates in meltwater that has interacted with
22	rock and sediment. Hence, elevated concentrations of ²²² Rn should be indicative of meltwater
23	that has flowed through a distributed drainage system network. In the spring and summer of 2011

and 2012, we made hourly ²²²Rn measurements in the proglacial river of a large outlet glacier of 24 25 the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L⁻¹), decreasing by a factor of 2-5 (3-5 dpm L⁻¹) following the onset of 26 widespread surface melt. Using a ²²²Rn mass balance model, we estimate that, on average. 27 28 greater than 90% of the river ²²²Rn was sourced from distributed system meltwater. The distributed system ²²²Rn flux varied on diurnal, weekly, and seasonal time scales with highest 29 30 fluxes generally occurring on the falling limb of the hydrograph and during expansion of the 31 channelized drainage system. Using laboratory based estimates of distributed system ²²²Rn, the 32 distributed system water flux generally ranged between 1-5% of the total proglacial river 33 discharge for both seasons. This study provides a promising new method for hydrograph 34 separation in glacial watersheds and for estimating the timing and magnitude of distributed 35 system fluxes expelled at ice sheet margins.

36

37 1 Introduction

38 Beneath the ablation zone of the Greenland Ice Sheet (GrIS), meltwater flow paths 39 influence glacier velocities and bulk meltwater chemistry (Bartholomew et al., 2011a; 40 Bartholomew et al., 2012; Tedstone et al., 2013; Hawkings et al., 2014). After the onset of spring 41 melt, the majority of surface derived meltwater travels to the glacier or ice sheet bed through 42 fractures, crevasses and moulins (Sharp et al., 1993; Das et al., 2008). During the summer, bulk 43 meltwater is largely composed of two components, channelized drainage and distributed 44 drainage, which are both derived from snow and ice melt (Tranter et al., 1993; Collins 1979; 45 Chandler et al., 2013; Cowton et al., 2013). On the time scale of an entire melt season, the major 46 component is channelized flow, which pertains to meltwater moving efficiently through large

47 basal channels (Röthlisberger, 1972; Nye, 1973). In contrast, distributed drainage refers to 48 meltwater in slow transit through either cavities that open behind bedrock bumps due to ice 49 sliding (linked-cavity system; Walder, 1986), a water sheet of near uniform thickness at the ice 50 bed (Creyts and Schoof, 2009), or water flow through permeable subglacial till (Boulton et al., 51 2009). Meltwater traveling through distributed systems influences subglacial hydraulic pressure 52 distribution, channel spacing, basal sliding and bed deformation (Boulton et al., 2009; Rempel, 53 2009). In general, meltwater in the distributed system tends to have elevated dissolved solid 54 concentrations, a feature exploited by early attempts at hydrograph separation in glacial 55 watersheds (Collins, 1979). However, rapid mineral weathering reactions may occur when 56 sediments traveling through closed, CO₂ limited, distributed systems mix with open-system, low 57 ionic strength channelized meltwater (Raiswell, 1984; Tranter et al., 1993; Sharp et al., 1993). 58 Consequently, solute concentrations, often inferred through electrical conductivity (EC) 59 measurements, cannot unequivocally be used as conservative tracers of distributed system 60 meltwaters.

61 Radon-222 has been used extensively to examine groundwater-surface water exchange processes in a wide range of freshwater and marine systems; this is because groundwater ²²²Rn 62 63 activities are typically highly enriched relative to surface waters due to radioactive decay of 64 ²²⁶Ra, naturally present in aguifer mineral surfaces (Burnett and Dulaiova, 2003; Cook 65 et al., 2003; Dulaiova et al., 2008; McCallum et al., 2012). As a relatively soluble, inert noble gas that does not participate in biogeochemical or weathering reactions once in solution, ²²²Rn 66 $(t_{1/2} = 3.82 \text{ days})$ can only be added to glacial meltwater in measurable quantities from extensive 67 68 water-rock interactions. Hence, by its nature, distributed system meltwater should acquire significantly higher ²²²Rn activities than meltwater that flows through open channels. 69

70	Discrete ²²² Rn measurements in small glacial watersheds have been used to infer the
71	transition from distributed to channelized drainage (Kies et al., 2010; Bhatia et al., 2011; Kies et
72	al., 2015). This paper expands upon these earlier studies by examining the utility of long term
73	continuous ²²² Rn measurements in the proglacial river of a large GrIS outlet glacier during the
74	spring and summer of 2011 and 2012. Using a detailed mass balance modeling approach, we
75	provide evidence that ²²² Rn is a passive tracer of subglacial hydrological routing that can be used
76	to infer the timing and magnitude of distributed system fluxes. To our knowledge this is the first
77	time that continuous, high-resolution ²²² Rn measurements have been reported from a proglacial
78	river over the course of a melt season.

- 79
- 80 2 Methods
- 81 2.1 Study Area

82 Fieldwork was conducted during the 2011 and 2012 melt seasons at Leverett Glacier, a 83 large land-terminating glacier on the western margin of the GrIS (67°03'57.81"N, 50°10'01.83"; Figure 1). Its hydrological catchment covers >600 km², reaches an elevation of 1500 m, and 84 85 ranges in width from 10-40 km (Bartholomew et al., 2011). Meltwater from the catchment is 86 channeled through a single large proglacial river (Leverett River); at peak discharge, typical flows from the river are in the range of 300-400 m³ s⁻¹ (Bartholomew et al., 2010; Cowton et al., 87 2012). During an exceptional melting period in 2012, the river reached $\sim 800 \text{ m}^3 \text{ s}^{-1}$ (Tedstone et 88 89 al., 2013). On the south side of Leverett Glacier's snout, the bedrock is a late Achaean (2.5 Ga) 90 granite (Escher, 1971; Nutman et al., 2010) while the Ikertog complex (1.85 Ga), composed of 91 basement gneisses and granites, borders the north side (Henriksen et al., 2000). The proglacial 92 valley is filled with quaternary sediments composed of weathered materials from afore

93 mentioned rock units (Hindshaw et al., 2014). This suggests that the subglacial lithology is
94 similar to the bedrock adjacent to the glacier's snout.

95

96 2.2 Discharge, conductivity, suspended sediment, and ²²⁶Ra measurements

97 Proglacial river discharge was measured using continuous water stage monitoring 98 through a stable bedrock section of the river (Sole et al., 2013; Tedstone et al., 2013). Stage was 99 converted to discharge using a continuous stage-discharge curve created from repeat Rhodamine 100 WT and Rhodamine B dye injections throughout both melt seasons; the normalized root mean 101 squared deviation of the discharge record has been estimated to be $\pm 10\%$ (Tedstone et al. 2013). 102 Concurrent measurements of EC and the suspended sediment concentration (SSC) are also 103 presented here and, for 2011 and 2012 data, in Butler (2014) and Hawkings et al. (2014) 104 respectively. EC was recorded every five minutes using a Campbell Scientific 247 combined 105 temperature-EC sensor, and logged using Campbell Scientific CR1000 and CR800 loggers. EC 106 was calibrated using a KCl solution of known concentration; errors on EC measurements were 107 $\pm 10\%$ (1-sigma). SSC was estimated from turbidity measurements made with a Partech IR 15C 108 turbidity probe. Calibration curves were created from discrete suspended sediment samples 109 collected from the river. Errors on SSC were $\pm 6\%$ (1-sigma). Dissolved ²²⁶Ra was measured 110 throughout the 2011 and 2012 field seasons using methods described by Charette et al. (2001). 111 Briefly, ~200 L river samples were filtered through a column packed with MnO₂ impregnated 112 fiber. The fiber was ashed, packed in a sealed plastic vial, and counted for 2-3 days on a welltype germanium gamma detector (Canberra) calibrated using a NIST ²²⁶Ra standard prepared in 113 114 the same manner as the samples.

116 2.3 Measuring radon in the proglacial river

117 Radon-222 was measured in the Leverett Glacier proglacial river during 2011 (May 8-118 August 5) and 2012 (May 12-July 28). Continuous (hourly) measurements were made using a 119 RAD7 (Durridge Inc.) radon-in-air monitor in series with a desiccant chamber and a RAD7 120 water probe, a submersible air-filled gas-permeable membrane coil made from Accruel® tubing (henceforth the term "water probe" will refer to the ²²²Rn extraction unit). River water ²²²Rn 121 122 equilibrates with air in the membrane coil through passive diffusion; the air is continuously 123 circulated in a closed loop through the RAD7 radon-in-air monitor system (Hofmann et al., 2011; 124 Schubert et al., 2012). Radon-in-air activities were then converted to radon-in-water activity via 125 the temperature dependent air-water partition coefficient as described by Schubert et al. (2012). 126 The water probe was deployed on the northern bank of the river as close to the glacier's terminus as possible (0-1 km) to minimize potential evasion of ²²²Rn from the river to the atmosphere 127 128 (Supplementary Material). Rising river stage required that we periodically moved the water 129 probe downstream to a more stable riverbank. There was no observed decrease in effectiveness 130 of the water probe during long term deployment (Supplementary Material). Typical 1-sigma counting errors for the water probe 222 Rn activities were \pm 5-20%. Discrete 222 Rn samples were 131 132 collected upstream of the water probe at the ice sheet terminus in 250 mL bottles and analyzed 133 using a RAD7 plus Rad-H₂O attachment on a regular basis (Figure S1: Supplementary Material). These discrete ²²²Rn samples agree within the counting errors of the corresponding continuous 134 ²²²Rn measurements (Figure S1; Supplementary Material). 135

Measurements of ²²²Rn via the water probe system may lag actual aqueous ²²²Rn due to
the time required to equilibrate ²²²Rn across the gas-permeable membrane (Schubert et al., 2012).
To assess the magnitude of this offset, we analyzed field equilibration times during instrument

139 startup and performed laboratory experiments to estimate the water probe's response time to

140 changes in ²²²Rn activity. Key factors that control the equilibration time include the air volume in

141 the system (RAD7 unit, tubing, desiccant and membrane coil), the membrane coil surface area,

142 and the ²²²Rn activity gradient across the membrane water/air interface (Schubert et al., 2012).

143 The equilibration time can be minimized when the air volume of the system is low (i.e. using less

tubing between RAD7 and membrane), the membrane interface area is maximized (i.e.

lengthening the membrane tubing), and the water/air ²²²Rn activity gradient across the membrane 145 coil is large. The ²²²Rn activity gradient at the membrane water/air interface has by far the largest 146 147 effect on the equilibration and response time of the water probe; in stagnant water the response 148 time is on the order of several hours (Hofmann et al., 2011; Schubert et al., 2012). In a flowing 149 river, the activity gradient at the water/air interface is close to 100% such that the response time 150 can be reduced to <1 hour, similar to results obtained using a spray chamber equilibrator such as 151 the RAD-Aqua (Durridge Inc.; Schubert et al., 2012). In our case, the equilibration time of the 152 water probe in the proglacial river was determined to be no greater than 2 hours based on 153 laboratory experiments and less than 1 hour in field observations. A detailed description of these 154 tests and associated results is presented in the Supplementary Material.

155

156 2.4 ²²²Rn in subglacial distributed systems and sediment properties

Because we were unable to obtain *in-situ* distributed system samples from beneath the ice sheet, we estimated ²²²Rn in this environment via laboratory-based equilibration experiments (Corbett et al., 1998; Dulaiova et al., 2008) using sediments discharged from the subglacial environment. For these tests, four separate aliquots of sediment (50 g) from the proglacial river were incubated with Ra-free water in a sealed 1 L high-density polyethylene bottle for greater

than five half-lives (>20 days). Samples were flushed into a cold trap and scintillation cells using
helium and analyzed in triplicate on alpha scintillation counters (Corbett et al., 1998). Wet
sediment ²²²Rn activities in dpm g⁻¹ were converted to pore water ²²²Rn activities (dpm L⁻¹) using
wet bulk densities and porosities (Supplementary Material).

166 Radon-222 diffusion from sediments in subglacial channels was another potential source of ²²²Rn beneath the GrIS. We employed a laboratory method described by Chanyotha et al. 167 168 (2014) to quantify the diffusive flux. Briefly, 100 g of wet subglacial sediment and 500 mL of 169 ²²²Rn-free water were sealed inside a gas tight reaction flask connected in a closed loop with a 170 RAD7. Air was pumped through a gas diffusion stone immersed in the water phase using the 171 built in RAD7 pump, then through the desiccant, and back to the radon analyzer where the 172 activity was measured and recorded. While gas leakage is not an issue for routine measurements, 173 a known small leak within the internal air pump of the RAD7 was corrected during the multi-day 174 experiment according to the approach described in Chanyotha et al. (2014). The diffusive flux was determined from the near-linear slope of ²²²Rn activity in the reaction flask versus time over 175 176 the first several hours of the experiment. Slope uncertainty was used to estimate the uncertainty of the diffusive flux. 177

Leakage is an issue for this approach, not necessarily from diffusion through the walls of the plastic bottle but from a known small leak in the internal air pump of the RAD7 as described in Chanyotha et al. (2014). This is not an issue for routine measurements with the RAD7, but needs to be corrected for in the multi-day sediment equilibration method. The data has been leak corrected according to the approach described in Chanyotha et al. (2014)

183

184 **3** Results

185 *3.1* Discharge

186 Warmer average air temperatures resulted in nearly twice as much annual discharge in 2012 as in 2011, corresponding to \sim 2.4 and 1.4 km³, respectively within the Leverett Glacier 187 188 catchment (Figure 2). Average flows of the proglacial river in the summer were $\sim 200 \text{ m}^3 \text{ s}^{-1}$ in 2011 (Sole et al., 2013) and ~400 m³ s⁻¹ in 2012 (Tedstone et al., 2013). In 2012, the largest 189 190 melting event since at least 1889, as indicated by ice cores at the Summit Station, occurred on July 12th (day 194) when over 98% of the surface of the GrIS experienced melting (Nghiem et 191 al., 2012). During this period, river discharge reached $\sim 800 \text{ m}^3 \text{ s}^{-1}$ (Tedstone et al., 2013), almost 192 193 three times larger than maximum discharge in 2011 (Figure 2; Sole et al., 2013). Furthermore, in 194 2011 the river was largely ice-covered until day 160, while in 2012 the river was ice free from 195 the start of sampling (day 133) onward.

196

197 *3.2 EC and SSC*

198 We used EC as a proxy for the concentration of dissolved solutes in the proglacial river. 199 During both 2011 and 2012, EC was elevated in the early season (60-100 µS cm⁻¹) and decreased to 10-20 µS cm⁻¹ with increasing river discharge (Figure 2; Butler, 2014; Hawkings et al., 2014). 200 201 These results are consistent with the EC range reported in 2009 (Bartholomew et al., 2011). 202 Butler (2014) and Hawkings et al. (2014) observed diurnal variations in EC through much of the 203 2011 and 2012 seasons, which in general were inverse to river discharge. During both seasons, 204 peaks in EC punctuated the record. The SSC varied between 1-7 g L^{-1} in 2011 (Butler, 2014) and 1-4 g L^{-1} in 2012 205

206 (Hawkings et al., 2014); these concentrations were similar to values reported for 2009 and 2010

(Cowton et al., 2012). Like EC, diurnal variations in SSC occurred throughout much of the 2011
and 2012 melt seasons, however, these diurnal variations in SSC generally increased with rising
river discharge. In 2012, peaks in SSC and EC generally occurred simultaneously (Figure 2,
dashed boxes) as noted by Hawkings et al. (2014) and in line with observations in 2009
(Bartholomew et al, 2009). In 2011, SSC and EC peaks were largely decoupled (Figure 2).

212

213 3.3 Radon-222 in the Proglacial River

In both 2011 and 2012, the highest ²²²Rn activities were observed in the early season and 214 generally decreased with increasing river discharge (Figure 2). In 2011, typical ²²²Rn activities in 215 216 the early season (days 132-160) were between 10-15 dpm L⁻¹. Following day 170, activities were generally between 2-5 dpm L⁻¹. In 2012, higher ²²²Rn activities were observed in the early 217 season, typically between 5-18 dpm L^{-1} , falling to between 2-10 dpm L^{-1} after day 150. In a small 218 219 proglacial river ~ 100 km north of our field site, Bhatia et al. (2011) reported significantly higher 222 Rn activities (25-76 dpm L⁻¹), though peak river discharge rates (~2 m³ s⁻¹) were orders of 220 221 magnitude lower than at Leverett Glacier. Regardless, activities measured in this study and in 222 Bhatia et al. (2011) are much higher than those generally observed in non-glaciated river 223 catchments. For example, both Cook et al. (2003) and McCallum et al. (2012) report maximum 222 Rn activities of ~1 dpm L⁻¹ in tropical and temperate rivers. 224 Significant peaks in ²²²Rn are highlighted in Figure 2 by grey shaded boxes. In 2011, 225 226 ²²²Rn peaked at ~75 dpm L^{-1} in the early season (days 148-150); during this time, the river was 227 ice covered and a small upwelling spring appeared at the glacier portal through which nearly all

- river discharge originated. A second large peak (days 190-200) was observed in ²²²Rn when
- activities climbed to ~15 dpm L^{-1} from a pre-peak baseline of 3 dpm L^{-1} over a ~5 day period

(Figure 2). In 2012, ²²²Rn peaks occurred regularly, approximately once every 8-10 days
throughout the season (Figure 2). Radon-222 peaks in 2012 generally increased on the falling
limb or inflection point of the hydrograph and decreased when river discharge rose (Figure 2).
This general relationship between discharge and ²²²Rn was not observed in 2011. In both field
seasons, ²²²Rn did not correlate with SSC or EC.

235

236 3.4 Radon activity in distributed system meltwater

Laboratory derived distributed system 222 Rn activities (Rn_{dis}) were estimated using the 237 ²²²Rn activity of porewater in sediments collected from the proglacial river (Section 2.4) and 238 239 sediment properties (Corbett et al., 1998) including bulk density (ρ_B) and porosity (ϕ ; Supplementary Material). Wet sediment ²²²Rn activities (Rn_{sed}) were 0.064-0.093 dpm g⁻¹ 240 (avg=0.076 dpm g⁻¹, n=4). ρ_B and ϕ were identical for the three glacial river sediment samples 241 analyzed and were 1.7 g cm⁻³ and 0.37 respectively. Our results are consistent with those of Dow 242 243 et al. (2013), who estimated subglacial sediment ϕ in the Leverett Glacier catchment between 244 0.3-0.4. Using Equation 1 and assuming that subglacial sediment ϕ varied between 0.3-0.4, that Rn_{sed} was between 0.064-0.093 dpm g⁻¹, and that $\rho_B = 1.7$ g cm⁻³, Rn_{dis} would be expected to span 245 from 270-530 dpm L⁻¹. 246

247

248
$$Rn_{dis} = \frac{Rn_{sed} \times \rho_B}{\phi} \times 1000(g \ L^{-1}) \tag{1}$$

These values are lower than laboratory derived pore water ²²²Rn activities in proglacial
sediments reported by Bhatia et al. (2011), which were between 1285-3045 dpm L⁻¹. A number
of factors could explain the difference between the two sites: including sediment grain size

(higher surface area/volume), degree of weathering (affects sediment ²²⁶Ra parent activities), or
 ²³⁸U content of the sediment (Dulaiova et al., 2008).

255

256 4 Discussion

257 4.1 Radon-222 sources and sinks

258 Radon-222 has been used as a tracer of sediment pore water-surface water exchange 259 processes in a diverse range of environmental systems including rivers (McCallum et al., 2012), 260 the coastal ocean (Burnett and Dulaiova, 2003; Dulaiova et al., 2008), and in small glacier 261 catchments (Kies et al., 2010; Bhatia et al., 2011; Kies et al., 2015). In the following discussion, we explore the utility of ²²²Rn in tracing and quantifying meltwater fluxes from the subglacial 262 263 distributed system at a large Greenland outlet glacier, Leverett Glacier. There are a number of sources and sinks capable of modulating ²²²Rn activities in a proglacial river. We use a mass 264 265 balance approach, similar to those employed in studies of submarine groundwater discharge to 266 the coastal ocean (Burnett and Dulaiova, 2003; Dulaiova et al., 2008), in order to quantify the 267 sources and sinks for ²²²Rn in the proglacial river (Figure 3):

- 268
- 269

$$J_{riv} = J_{dis} + J_{cha} + P_{SSL} + \lambda^{226} Ra - J_{atm} - \lambda^{222} Rn$$
(2)

270

Sources of ²²²Rn include production from ²²⁶Ra associated with suspended sediments (P_{SSL}), production of ²²²Rn through the decay of dissolved ²²⁶Ra ($\lambda^{226}Ra$ where λ is the decay constant for ²²²Rn), ²²²Rn diffusion through subglacial channel sediments (J_{cha}), and distributed system meltwater (J_{dis}). Radon-222 sinks include radioactive decay ($\lambda^{222}Rn$) and atmospheric evasion across the water/air interface (J_{atm}). Finally, J_{riv} is the ²²²Rn flux (dpm s⁻¹) exported to the

glacier's front via the proglacial river and is derived by combining our continuous ²²²Rn 276 277 measurements (dpm m⁻³) with the discharge record (m³ s⁻¹). All source/sink terms can be directly evaluated except for J_{dis} ; hence we use the "flux by difference" approach (Charette et al., 2008), 278 which assumes that the unaccounted for ²²²Rn in the mass balance model must be due to 279 280 distributed system meltwater (J_{dis}) . We discuss and evaluate each source and sink term for 281 Equation 2 in the following sections. To provide context for the various source and sink terms below, note that J_{riv} ranged from 3.4-4.2×10⁶ dpm s⁻¹ and 7.2×10³-3.4×10⁶ dpm s⁻¹, for 2011 and 282 283 2012, respectively.

- 284
- 285 4.1.1 Suspended sediment ²²⁶Ra (P_{SSL})

Suspended sediments are a potential source of ²²²Rn to the river through decay of 286 sediment bound ²²⁶Ra. From the laboratory equilibration experiments described above (Section 287 288 2.4) we determined that the surface-bound ²²²Rn activity of sediments at secular equilibrium is 0.076 dpm g⁻¹ (Section 3.4). To calculate P_{SSL} , we first assume that suspended sediments could 289 290 produce ²²²Rn for 1-18 hours, the range of transit times observed for surface meltwater traveling 291 through channelized drainage in the Leverett Glacier catchment (Chandler et al., 2013; Chandler 292 et al., submitted). Coupling this result with SSC measurements, and assuming that bedload 293 contributed an additional 30-60% of sediment (Cowton et al., 2012), we estimated the upper and 294 lower bounds of the contribution from P_{SSL} to J_{riv} . Over the course of each melt season, P_{SSL} supplied between ~100 and 2.1×10^4 dpm s⁻¹ ²²²Rn in 2012 and ~100 and 2.4×10^4 dpm s⁻¹ ²²²Rn 295 296 in 2011. On average, the upper limit of our P_{SSL} estimate contributed on average ~1% of J_{riv} in 297 2011 and 2012, respectively (Figure 4).

299 4.1.2 Dissolved ²²⁶Ra (λ^{226} Ra)

The proglacial river also carried dissolved ²²⁶Ra, which could have supported ²²²Rn via its decay. We observed ²²⁶Ra activities of 0.02-0.09 dpm L⁻¹ (avg 0.04 dpm L⁻¹, n=21) in the proglacial river, with higher values in the early season and lower values in the late season. To solve Equation 2 for J_{dis} , we used the average ²²⁶Ra activity measured in the proglacial river. Based on these results, ²²⁶Ra decay supplies ~400 dpm s⁻¹ when river discharge was 10 m³ s⁻¹ and up to 3.2×10^4 dpm s⁻¹ during the maximum river discharge observed in 2012. On average during the 2011 and 2012 field seasons, dissolved ²²⁶Ra supplies ~1% of J_{riv} (Figure 4).

308 4.1.3 Diffusive flux of 222 Rn in channels (J_{cha})

The diffusive flux of ²²²Rn from channel floor sediments (subglacial or proglacial) is a 309 potential source of ²²²Rn, particularly after the onset of widespread melting across the catchment 310 311 and development of a channelized system. Our laboratory sediment diffusion experiment yielded a diffusive flux of 0.006 ± 0.002 dpm m⁻² s⁻¹ ²²²Rn from glacial sediments. We use this result and 312 313 an estimate of channel floor area during peak river discharge to quantify the potential upper limit 314 of J_{cha} . To calculate channel floor area, we assume that all discharge moved through semi-315 circular channels, that channels extended to 41 km from the ice margin (Chandler et al., 2013), 316 that the average number of channels per km catchment width was four (Schoof, 2010; Werder et 317 al., 2013), and that channel density linearly tapered to zero between the ice sheet margin and 41 318 km. Furthermore, we assumed that catchment width averaged 40 km (Bartholomew et al., 2011) and that water moved through channels at 3 m s⁻¹ (Cowton et al., 2013). Using these constraints. 319 we calculated a channel floor area of 2.75 km² during peak river discharge in 2012 and 1.5 km² 320 321 during peak river discharge in 2011. This estimate amounts to 0.3-0.5% of the glacier's

322	catchment area, which is consistent with models of the channelized system (Schoof, 2010;				
323	Werder et al., 2013). Using these estimates of channel floor area, J_{cha} supplied ~6×10 ³ -1.2×10 ⁴				
324	dpm s ^{-1 222} Rn in 2011 and 1.1×10^4 - 2.2×10^4 dpm s ^{-1 222} Rn in 2012. Finally, we assume that J_{cha} is				
325	only important after river discharge surpasses 100 m ³ s ⁻¹ as before this time the channelized				
326	system is undeveloped (Cowton et al., 2013), and hence, ²²² Rn diffusion through channel floors				
327	is negligible. Based on these estimates, J_{cha} could account for no more than <1-10% of J_{riv} in				
328	2011 and 2012 (Figure 4).				
329					
330	4.1.4 Gas exchange (J _{atm})				
331	The degassing of ²²² Rn out of water is a function of molecular diffusion produced by the				
332	activity gradient at the water/air interface as well as turbulent transfer, which is governed by				
333	physical processes such as wind speed, current velocity, and topography. J_{atm} , which we define				
334	as the area-normalized flux of ²²² Rn across the river/air boundary, can be written as:				
335					
336	$J_{atm} = k(C_w - \alpha C_{atm}) \tag{3}$				
337					
338	where C_w is the ²²² Rn activity of water, C_{atm} is the ²²² Rn activity in air (assumed here to be				
339	negligible relative to the water activity), α is Ostwald's solubility constant and k is the gas				
340	transfer velocity. The gas transfer velocity is dependent on kinematic viscosity, molecular				
341	diffusion, and turbulence and is determined based on empirical relationships observed in				
342	different environments for different gases. Borges et al. (2004) suggested that the gas transfer				
343	velocity k should be in the range of 3-7 cm hr ⁻¹ while Dulaiova and Burnett (2006) calculated a				
344	gas transfer velocity for ²²² Rn up to 10 cm hr ⁻¹ in moving water and high winds.				

Because of occasional strong winds and a river current of \sim 1-3 m s⁻¹ (Cowton et al., 345 346 2013), we chose a constant, upper limit k of 12 cm hr⁻¹ for the duration of the time series. With these assumptions, J_{atm} varied between <0.01-0.7 dpm m⁻² s⁻¹ in 2011 and 0.03-0.6 dpm m⁻² s⁻¹ in 347 348 2012. Scaling these area normalized J_{atm} values to total J_{atm} requires an estimate of river surface 349 area (1100-6000 m²) between the ice terminus and the sampling site. From this surface area we determined that J_{atm} was in the range of 800-4,000 dpm s^{-1 222}Rn, which was <1% of J_{riv} on 350 351 average. The negligible effect of gas loss suggested by these calculations is supported by discrete 352 ²²²Rn samples collected at the glacier's terminus, which were within error of the continuous 353 measurements made 1 km downstream (Figure S1; Supplementary Material). These estimates do not account for any potential loss of ²²²Rn into the headspace of 354 subglacial air-filled cavities. However, if these environments are largely closed systems, ²²²Rn 355 build up in the headspace would reduce the water-air concentration gradient and therefore 356 minimize the ²²²Rn loss from the water phase. While there is evidence for open system channels 357 358 at the ice bed within several km from the ice margin (Chandler et al., 2013), subglacial gas loss 359 is likely much smaller than in the proglacial river. Air-filled subglacial channels far from the ice 360 sheet margin will only exist during the falling limb of the hydrograph following substantial 361 surface meltwater inputs and channel expansion. These cavities will close within hours to days of opening because of glacial creep (Meierbachtol et al., 2013). If large quantities of ²²²Rn were lost 362 to air-filled cavities, then ²²²Rn activities would decrease on the falling limb of the hydrograph 363 364 yet we generally observed the opposite trend in 2012 (Figures 2). Based on our calculations and 365 field measurements (Supplementary Material), we determined that J_{atm} was negligible in our 366 calculation of J_{dis} .

368 4.1.5 *Radon-222 decay* (λ^{222} *Rn*)

369 When distributed system meltwater discharges into the channelized system far from the 370 ice margin, some fraction of ²²²Rn will decay before reaching the ice terminus. For example, 371 during a typical 7 hour transit through the channelized system of Leverett Glacier in July (Cowton et al., 2013), ~5% of unsupported ²²²Rn will decay. During the early melt season, when 372 the snow line is at a low elevation and river discharge is $<10 \text{ m}^3 \text{ s}^{-1}$, meltwater transit times in 373 374 channelized drainage are likely no more than 3 hours as water takes a more direct route to the margin (Chandler et al., 2013; Cowton et al., 2013). In this case, 2% of the unsupported ²²²Rn 375 376 decays in the channelized system before reaching the ice margin. By the peak melt season, tracer 377 experiments indicate that transit times in the channelized drainage system are 10-24 hours 378 (Chandler et al., (submitted) since the catchment extends upwards of ~80 km from the margin 379 and subglacial flow paths are more convoluted. As the location of these experiments was likely 380 near the upper limit of channelized drainage in the catchment (Chandler et al., 2013), we assume 381 nearly all meltwater traveling via channelized drainage reaches the ice sheet margin in <24 382 hours. Hence for our model, we assume meltwater moving through the channelized system has a transit time between 1 and 24 hours representing a <1-17% loss of 222 Rn. 383

384

385 *4.2 Quantifying the distributed system flux*

After rearranging Equation 2, we solved for the upper and lower bounds of J_{dis} (Figure 5).

387

$$388 J_{dis} = J_{riv} - J_{cha} - P_{SSL} - \lambda^{226} Ra + \lambda^{222} Rn (4)$$

To calculate the likely range of J_{dis} , we propagated the uncertainty of each ²²²Rn source and sink. The largest source of uncertainty in J_{dis} came from the ²²²Rn and river discharge measurements used to calculate J_{riv} .

393 With the exception of days 200-202 in 2011 when J_{riv} dropped to near zero, non-394 distributed system ²²²Rn sources cannot account for the vast majority of J_{riv} (Figure 4), we 395 conclude that J_{dis} must contribute the bulk of the ²²²Rn flux in the proglacial river. Furthermore, ²²²Rn decay during subglacial transit through the channelized system ($\lambda^{222}Rn$) and gas loss to the 396 397 atmosphere (J_{atm}) , did not significantly impact the timing or flux of J_{riv} . Given that J_{dis} dominates the ²²²Rn mass balance for the Leverett Glacier proglacial river, we conclude that ²²²Rn can be 398 399 used as a passive tracer of distributed system flows to the ice margin at this field site. This 400 approach should be applicable to other settings, though an essential requirement is subglacial 401 hydrological systems that discharge into a single proglacial river, which permits the

402 quantification of J_{riv} , the main term in the model.

403 The distributed system meltwater flux (Q_{dis}) can be calculated if J_{dis} and the ²²²Rn activity 404 of distributed system meltwater (Rn_{dis}) are known:

- 405
- 406

 $Q_{dis} = J_{dis} / Rn_{dis} \tag{5}$

407

This approach assumes that distributed system meltwaters originate from material similar to the proglacial sediments we used to estimate Rn_{dis} (Sections 2.4 and 3.4), and that the transit time of distributed system meltwaters are >20 days (Niu et al., 2015). If the transit time is shorter, Rn_{dis} would decrease and the Q_{dis} fluxes below would increase proportionately.

412	If the ²²² Rn activities in distributed system sediments are 270-530 dpm L ⁻¹ (Sections 2.4
413	and 3.4), then Q_{dis} would vary between <0.1 to 17 m ³ s ⁻¹ and <0.1 to 14 m ³ s ⁻¹ over the course of
414	the 2011 and 2012 melt seasons, respectively. As a fraction of total river discharge in 2011, Q_{dis}
415	peaked at ~22% in the early season when river discharge was ~1 m ³ s ⁻¹ and reached a minimum
416	of <0.1% between days 202-204. In 2012, Q_{dis} was between 3-5% (0.1-0.5 m ³ s ⁻¹) of total river
417	flow in the early season (days 130-150) and 1-4% (0.1-33 m ³ s ⁻¹) following day 150. The
418	weighted mean of Q_{dis} relative to total river discharge was between 1-2.4% (0.35-8.5 m ³ s ⁻¹) in
419	2011 and 0.7-1.6% (<1-12.8 m ³ s ⁻¹) in 2012. However, since we were not able to obtain samples
420	of distributed system water directly via borehole sampling (Tranter et al., 1997; Andrews et al.,
421	2014), these estimates of Q_{dis} carry significant uncertainty; therefore, we will use J_{dis} for
422	determining the timing and relative magnitude of distributed system fluxes.
423	
424	4.3 Seasonal and interannual variability in the distributed system flux
425	Channels at the ice sheet bed are zones of low-pressure relative to the surrounding

426 distributed system (Röthlisberger, 1969) and generally act to scavenge distributed system 427 meltwater (Boulton et al., 2009). However, during large surface runoff events, such as 428 supraglacial lake drainages or periods of rapid warming, channels may be overwhelmed forcing 429 water into the distributed system (Bartholomew et al., 2012; Gulley et al., 2012). Once surface 430 meltwater runoff decreases, water pressure in channels falls and the flux of distributed system 431 drainage to the ice sheet margin surges (Hubbard et al., 1995; Boulton et al., 2009). This process 432 has been hypothesized to result in more connectivity between channelized and distributed 433 systems causing an overall increase in the spatial extent of subglacial drainage (Andrews et al., 434 2014). This in turn may lead to less water volume at the ice sheet bed and could explain observed

mid-late summer slowing of land-terminating sections of the GrIS (Sole et al., 2013). Hence, the
mechanisms that control the characteristics of distributed system drainage likely play a key roll
in modulating the speed of GrIS outlet glaciers, especially because distributed system networks
make up by far the largest portion of the ice sheet bed area.

439 In 2011, the largest multiday peak in J_{dis} (Figure 5) (days 190-200) occurred during the 440 onset of melting and ice acceleration (Sole et al., 2013) at high elevations (>1400 m) within the 441 catchment, and the expansion of the channelized system to at least 40 km from the ice sheet 442 margin (Chandler et al., 2013). During the 2012 time series, there were four major multiday 443 peaks in J_{dis} (Figure 5). The largest 2012 peak occurred on the falling limb of the hydrograph of 444 the widely publicized extreme melting event (Nghiem et al., 2012) during which river discharge reached $\sim 800 \text{ m}^3 \text{ s}^{-1}$ (day 196; Figure 5). These results provide direct evidence that drainage of 445 446 distributed regions follows periods of channelized system expansion due to rapid increases in 447 surface meltwater runoff. Following the largest peaks in J_{dis} in 2011 and 2012, significant diurnal 448 variations were observed in J_{dis} (days 205-210 in 2011 and days 199-205 in 2012; Figure 6). 449 These daily cycles in J_{dis} suggest a high degree of connectivity between the distributed and 450 channelized systems with increases in flux from the distributed on the falling limb of the 451 hydrograph when subglacial water pressure subsides (Figure 6).

Bartholomew et al. (2011) and Butler (2014) found evidence that SSC/EC peaks at Leverett Glacier are triggered by supraglacial lake drainage events. These events likely increase the connectivity of the channelized system (Bartholomew et al., 2011a), and may lead to the expulsion of distributed system meltwater. In general, peaks in J_{dis} were not correlated with SSC/EC peaks, nor did peaks in SSC/EC lead to enhanced ²²²Rn concentrations (Figure 2). Lake drainage events clearly increase the suspended sediment load which may lead to post mixing

458 solute acquisition reactions, causing meltwaters to rapidly acquire dissolved solutes (Raiswell,

459 1984; Tranter et al., 1993). Conversely, ²²²Rn equilibrium in the distributed system will likely be

460 reached long before subglacial meltwaters become saturated with respect to weathering minerals.

461 Hence, we would expect more variation in solute concentrations (EC) in the distributed system

than ²²²Rn activities. Consequently, lake drainage events could produce the observed SSC/EC

463 peaks without a corresponding J_{dis} peak if they act to flush small volumes of distributed system 464 meltwater with high solute concentrations to the ice sheet margin.

465

466 **5** Conclusions

467 Using a mass balance model for ²²²Rn in a large glacial catchment of the GrIS, we found that on average, >90% of the ²²²Rn in the proglacial river is sourced from the subglacial 468 distributed system. Hence, at Leverett Glacier, ²²²Rn acts as a conservative, passive tracer of 469 470 distributed system meltwater fluxes. These fluxes varied on diurnal, seasonal, and interannual time scales. Based on ²²²Rn measurements, large peaks in distributed system drainage appear to 471 472 be initiated by the expansion of the channelized system into presumably distributed regions of 473 the ice sheet bed and by rapid increases in supraglacial meltwater runoff. During a large multiday 474 J_{dis} peak in 2011 (days 190-200; Figure 5), SF₆ tracer experiments (Chandler et al., 2013) and ice 475 acceleration (Sole et al., 2013) suggested the channelized network expanded coincident with the 476 J_{dis} peak. In 2012, four major multiday J_{dis} peaks were observed (Figure 5), the biggest of which 477 occurred on the falling limb of the hydrograph during the largest surface meltwater runoff event 478 observed in Greenland since at least 1889 (days 196; Nghiem et al., 2012). These results imply 479 that rapid warming events, which initially cause short term glacial acceleration (Tedstone et al., 480 2013), may lead to enhanced distributed system drainage, a process which could lessen the total

481 water volume at the ice sheet bed and ultimately, explain the observed mid-summer ice sheet 482 slowing at Leverett Glacier (Sole et al., 2013; Tedstone et al., 2013). Following the largest peaks 483 in J_{dis} in 2011 and 2012, significant diurnal variations were observed in J_{dis} , indicative of a 484 highly connected distributed system whereby the distributed system water flux substantially 485 increases at night when channelized system water pressure subsides.

Based on our laboratory-based sediment equilibration measurements of ²²²Rn activities in 486 487 distributed system fluids, we estimate that distributed system meltwater fluxes vary seasonally 488 and are on the order of 1-5% of river discharge. The weighted mean Q_{dis} relative to total river 489 discharge was between 1-2.4% in 2011 and 0.7-1.6% in 2012. Future studies should endeavor to collect samples for ²²²Rn analysis directly from distributed and channelized systems so as to 490 better constrain Q_{dis}. Furthermore, utilizing continuous ²²²Rn measurements provides a practical 491 tool to capture hourly variations in ²²²Rn activity as well as episodic events that might otherwise 492 be missed if solely relying on discrete ²²²Rn measurements. Additionally, the detection limit and 493 494 measurement uncertainty using the water probe extraction method (Section 2.3) is much lower 495 than discrete sampling (Supplementary Material, Figure S1). Our results demonstrate that there is great potential for continuous ²²²Rn measurements in proglacial rivers to aid our understanding 496 497 of how distributed system fluxes impact glacial hydrology, ice-dynamics, and biogeochemical 498 fluxes.

499

500

501 Acknowledgements

We acknowledge and thank our funding sources: U.S. National Science Foundation Arctic
Natural Sciences Program (ANS-1256669); Woods Hole Oceanographic Institution Arctic

504	Research Initiative, Ocean Ventures Fund, and Ocean Climate Change Institute; United
505	Kingdom Natural Environment Research Council studentship (NE/152830X/1); the Carnegie
506	Trust, Edinburgh University Development Trust. We also thank the Leverett field camp members
507	who helped with data collection especially Catie Butler for collecting the 2011 electrical
508	conductivity data that appears in this work. Data presented in this study is archived at:
509	www.aoncadis.org/dataset/GrIS_RADON.html. Finally, we thank the Editor Derek Vance and
510	three anonymous reviewers whose suggestions significantly improved this manuscript.

Figure 1: Location of Leverett Glacier in west Greenland. The primary sampling location for continuous ²²²Rn measurements is indicated by the black circle though some early season deployments of the ²²²Rn sensor occurred much closer to the glacier terminus. Figure adapted from Hawkings et al. (2014).

Figure 2: Results from 2011 and 2012 field seasons. Top panels: radon-222 activity (dpm L⁻¹);
middle panels: EC and SSC (Hawkings et al., 2014); bottom panels: river discharge (Sole et al.,
2013; Tedstone et al., 2013). Shaded grey boxes represent ²²²Rn peaks while dashed grey boxes
are SSC/EC peaks, which likely correspond to supraglacial lake drainage events (discussed in
text).

Figure 3: Summary of ²²²Rn sources and sinks in the proglacial river. Sources of ²²²Rn include the distributed system flux (J_{dis}), ²²²Rn diffusion through sediments into channels and cavities (J_{cha}), ²²⁶Ra bound to the surface of the suspended sediment load (P_{SSL}), and the decay of dissolved ²²⁶Ra ($\lambda^{226}Ra$). The sinks of ²²²Rn include gas loss to the atmosphere (J_{atm}) and radioactive decay of ²²²Rn ($\lambda^{222}Rn$). The flux of ²²²Rn from the river (J_{riv}) is the summation of these variables.

- 537
- 538

Figure 4: Average contributions from 2011 and 2012 of ²²²Rn sources to J_{riv} in the early melt season (river discharge <100 m³ s⁻¹) and during the late melt season (river discharge >100 m³ s⁻¹). Our mass-balance model suggests that throughout the melt season, the bulk of ²²²Rn in the proglacial river is derived from the distributed system. Model calculations suggested that the ²²²Rn contribution from P_{SSL} , $\lambda^{226}Ra$, and J_{cha} were often <<1% of the total J_{riv} ; in these instances, for the purpose of clarity in this figure, they have been rounded to their upper limit estimates (1%).

Figure 5: The estimated subglacial distributed system flux (J_{dis}) from Leverett Glacier and discharge of the proglacial river in 2011 and 2012 (black line). The width of J_{dis} represents uncertainty in this parameter (see text).

Figure 6: Diurnal variations in J_{dis} occurred in both the 2011 and 2012 melt seasons. In general, J_{dis} peaks occurred on the falling limb of the hydrograph. We hypothesize that during this period,

- 557 distributed system meltwater was drawn into the channelized system as water pressure dropped
- 558 in subglacial channels.

559 Supplementary Material

560 S1 Water probe response time

561 During the 2011 and 2012 field seasons, several factors related to the water probe 562 setup may have influenced the response time of the water probe. First, in order to keep 563 the RAD7 a safe distance from the unstable riverbank, the length of tubing between the 564 detector and water probe had to be increased (from 8 to 12.5 m) effectively changing the system air volume from 1650 to 1750 cm³. Furthermore, the interface area of the 565 566 membrane coil changed as two Accruel® membrane coils of slightly different lengths (a 567 2.1 m coil and the 2.2 m coil within the Durridge Inc. 'water probe') were used 568 interchangeably across the two field seasons. The effect of these changes was quantified 569 using the empirical relationships developed by Shubert et al., (2012), which suggest that 570 our minor changes in air volume and membrane interface area likely only caused a 12-571 minute difference in equilibration time. This is a negligible difference when considering that the minimum time-scale over which significant changes in observed river ²²²Rn were 572 573 diurnal. Furthermore, a field test was conducted in which both membrane coils were 574 simultaneously deployed in the proglacial river for 12 hours. During this test, both 575 systems recorded ²²²Rn activities well within the statistical counting errors. 576 Consequently, the continuous ²²²Rn record reported here is a compilation of results 577 obtained using both water probes. During deployment, the membrane coil was checked 578 daily for wear and sediment buildup on its surface. Throughout either field seasons, no 579 algae or sediment buildup was observed. To test the effectiveness of long term 580 deployment of the membrane coil over the course of a melt season, two probes were 581 deployed simultaneously, one that had been in continual use for ~ 30 days and a second

unit with a new membrane coil. Following an initial equilibration period, both units
 measured identical ²²²Rn activities (within the method's uncertainty) for several days.

To assess the water probe's response to changes in ²²²Rn activity, we conducted 584 585 several laboratory experiments. First, the water probe was deployed simultaneously with 586 the more conventional air-water equilibrating spray chamber (Burnett and Dulaiova, 587 2003) in a 200 L tank of circulating 10°C seawater for 70 hours. Seawater was 588 continuously pumped into the tank from Vineyard Sound, ~50 m offshore of Woods Hole 589 (MA). The air-water equilibrator spray chamber provided a baseline from which to 590 compare the water probe, because with an optimum setup, its equilibration time is less 591 than 30 minutes (Schubert et al., 2012). The residence time of seawater in the tank was 592 <1 hour and water was kept in constant motion using six submersible bilge pumps, each capable of pumping ~30 L min⁻¹. Slow but significant changes in ²²²Rn were observed by 593 594 both the spay chamber and water probe likely caused by the changing tide and submarine 595 groundwater discharge (Burnett and Dulaiova, 2003). The equilibration time was defined as the length of time at which the recorded ²²²Rn activities reached an activity plateau 596 597 within the statistical counting errors. With this experimental setup, the water probe 598 required an initial six-hour equilibration time while the spray chamber reached equilibrium in <30 min. Subsequent changes in ²²²Rn activity measured by the water 599 600 probe lagged 1-2 hours behind the spray chamber. In a separate experiment, the water probe and spray chamber were allowed to equilibrate with ²²²Rn-free water before being 601 moved quickly into a tank containing ²²²Rn-enriched groundwater. In this case, both 602 603 water probe and spray chamber systems responded to the activity change in <30 minutes 604 though the water probe required much longer to reach the new equilibrium plateau.

605 To determine the equilibration time of the water probe system in the proglacial 606 river, we examined the first six hours of data recorded after the water probe was freshly 607 deployed (see Figure S2 for one example). Our analysis included 14 separate deployments in 2011 and 2012 in river flows ranging from 1 to 750 m³ s⁻¹. In each case, 608 609 an equilibration plateau was reached within two hours of deployment regardless of river 610 flow rate or system configuration (as described above). The equilibration time was 611 therefore three times faster than the laboratory experiments. This was likely because 612 water in the proglacial river was flowing much faster than in laboratory experiments keeping the ²²²Rn activity gradient at the water/air interface of the membrane coil closer 613 614 to 100%. These results support the findings of Hofmann et al. (2011) and Schubert et al. 615 (2012) showing that the water flow rate over the membrane coil is the most important factor for passive ²²²Rn extraction. Because of the much faster equilibration time in the 616 proglacial river, we expect the water probe's response time to changing ²²²Rn activities 617 618 was also faster in the field than the one to two hours suggested by laboratory 619 experiments.

In summary, when interpreting results from continuous ²²²Rn measurements, we assume changes in ²²²Rn activity recorded by our methods occurred within one hour of actual ²²²Rn activity changes in the proglacial river. Also, we have excluded ²²²Rn results from the first two hours from each fresh deployment while the water probe was equilibrating.

625 S2 Sediment Properties

The porosity and bulk density of glacial flour collected in the proglacial river was

627	determined using the moisture content and particle density measured in the laboratory.			
628	Moisture content (%M) was determined by weighing sediments before and after drying at			
629	100°C: using Equation S1:			
630				
	$\%M = \frac{wet \ wt dry \ wt.}{100}$			
631	wet wt. (S1)			
632				
633	Grain density (ρ_s) was determined using the oven dry weight and volume of sediment.			
634	The volume of sediment was determined by adding the sediments to a volumetric flask			
635	and measuring the weight of water displaced by the sediments.			
636				
	Bulk density (β_D) was calculated using Equation S2			
637	<i>B</i> – <u>1</u>			
	$ \mu_D = \frac{1}{\left(\left[\frac{1}{100 - \%M}\right] \times 100 + \frac{1}{\rho_z}\right) - 1} $ (S2)			
638				
	where ρ_s is the average sediment grain density of triplicate analysis. Finally, porosity (ϕ)			
639				
	was estimated from Equation S3.			
640				
641	$f = (r_s - b_D) / r_s $ (S3).			

Figure S1: Comparison of discrete ²²²Rn samples with comparable time-series
measurements using the water probe. Error bars represent 1-sigma counting errors on
each measurement. Many of these discrete ²²²Rn samples were taken at the ice terminus
while the water probe measured ²²²Rn downstream. This implies that gas loss in the
proglacial river between the ice terminus and the water probe was within the errors of our
measurements.

Figure S2: Equilibration time of the ²²²Rn water probe on 6/2/2011 (day 153) after being
deployed in the proglacial river. Throughout the 2011 and 2012 field seasons, the water
probed required 1-2 hours to reach an equilibrium plateau, the time at which the recorded
radon activities reach an equilibrium activity plateau within the statistical counting errors.

Table S1. Summary of 250 mL discrete ²²²Rn samples collected in the proglacial river in

658 2011.

Distance	Day	Date	²²² Rn	+/-	EC
			dpm L ⁻¹		μS cm ⁻¹
0.5	128.5	5/8/11	15.9	6.4	
0.5	129.6	5/9/11	3.2	2.1	
0.5	132.5	5/12/11	3.2	2.8	69
0.5	132.5	5/12/11	7.0	5.4	69
0.5	132.8	5/12/11	4.3	3.0	75
0.5	132.8	5/12/11	5.9	4.4	75
0.5	133.4	5/13/11	4.8	2.1	94
0.5	133.4	5/13/11	7.0	6.4	94
0.5	133.7	5/13/11	18.2	10.1	79
0.5	133.7	5/13/11	14.5	7.5	89
0	133.6	5/13/11	4.3	3.9	
0	133.6	5/13/11	13.4	2.1	
0.5	134.5	5/14/11	9.1	2.1	90
0.5	134.5	5/14/11	7.0	4.4	90
0.5	135.5	5/15/11	5.4	2.8	74
0.5	135.5	5/15/11	7.0	6.2	76
0.5	136.0	5/16/11	10.8	1.8	81
0.5	137.5	5/17/11	9.1	6.2	76
0.5	137.5	5/17/11	1.6	2.0	76
0.5	139.6	5/19/11	4.3	1.8	81
0.5	140.8	5/20/11	5.9	1.1	73
0.5	140.8	5/20/11	5.4	2.8	73
0.5	141.6	5/21/11	14.0	4.1	75
0.5	145.8	5/25/11	4.3	4.7	65
0.5	144.6	5/24/11	6.9	3.2	88
0	147.7	5/27/11	67.4	11.6	49
0	147.7	5/27/11	32.2	7.3	45
0.5	147.8	5/27/11	7.5	2.8	45
0.5	147.8	5/27/11	12.9	3.0	45
0	148.5	5/28/11	41.4	8.1	85
0	148.5	5/28/11	54.3	7.3	84
0.5	148.5	5/28/11	70.3	9.7	62
0.5	149.8	5/29/11	24.3	6.2	40
0	149.8	5/29/11	17.8	8.8	40
0	151.9	5/31/11	17.8	3.1	37
0	148.8	5/28/11	6.5	3.5	61
0	150.8	5/30/11	5.4	1.3	40
0.5	150.8	5/30/11	14.7	6.8	40

Distance	Day	Date	²²² Rn	+/-	EC
			dpm L ⁻¹		μS cm ⁻¹
0.5	153.7	6/2/11	22.6	9.5	36
0	153.7	6/2/11	3.2	2.8	36
0	152.7	6/1/11	24.1	7.0	36
0.5	156.6	6/5/11	5.4	3.7	14
0.5	156.6	6/5/11	4.1	4.8	15
0.5	156.7	6/5/11	17.1	3.0	12
0.5	156.7	6/5/11	17.2	5.3	12
0	157.7	6/6/11	4.3	3.0	44
0	157.7	6/6/11	6.5	5.3	45
0.5	158.3	6/7/11	4.8	3.1	21
0.5	159.2	6/8/11	3.8	2.1	37
0.5	159.3	6/8/11	9.7	5.4	36
0.5	153.7	6/2/11	8.2	5.7	42
0.5	153.7	6/2/11	20.5	5.5	50
0.5	162.7	6/11/11	1.6	1.1	16
0.5	162.7	6/11/11	3.3	1.2	16
0.5	165.0	6/14/11	4.9	6.9	35
0.5	165.5	6/14/11	5.4	2.1	27
0	166.7	6/15/11	3.2	2.1	23
0	166.7	6/15/11	10.7	5.8	23
0.5	167.5	6/16/11	2.7	1.1	18
1	167.6	6/16/11	2.7	3.2	18
1	170.0	6/19/11	3.8	1.1	12
1	170.0	6/19/11	4.3	1.8	12
0	172.7	6/21/11	2.7	2.7	14
0	172.7	6/21/11	4.8	4.7	14
0	184.6	7/3/11	2.1	0.9	
1	198.9	7/17/11	1.6	2.0	

References

663	Andrews, L.C., Catania, G.A., Hoffman, M.J., Gulley, J.D., Luthi, M.P., Ryser, C.,
664	Hawley, R.L., Neumann, T.A., 2014. Direct observations of evolving subglacial
665	drainage beneath the Greenland Ice Sheet. Nature 514, 80-83.
666	Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M.A., 2012. Short-
667	term variability in Greenland Ice Sheet motion forced by time-varying meltwater
668	drainage: Implications for the relationship between subglacial drainage system
669	behavior and ice velocity. J. Geophys. Res. Earth Surf. 117.
670	doi:10.1029/2011JF002220
671	Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., Palmer, S., Wadham, J.,
672	2011a. Supraglacial forcing of subglacial drainage in the ablation zone of the
673	Greenland ice sheet. Geophys. Res. Lett. 38. doi:10.1029/2011GL047063
674	Bartholomew, I.D., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M.A., Palmer, S.,
675	2011b. Seasonal variations in Greenland Ice Sheet motion: Inland extent and
676	behavior at higher elevations. Earth Planet. Sci. Lett. 307, 271-278.
677	Bhatia, M.P., Das, S.B., Kujawinski, E.B., Henderson, P., Burke, A., Charette, M.A.,
678	2011. Seasonal evolution of water contributions to discharge from a Greenland
679	outlet glacier: insight from a new isotope-mixing model. J. Glaciol. 57, 929–941.

680	Borges, A.V., Vanderborght, JP., Schiettecatte, LS., Gazeau, F., Ferrón-Smith, S.,
681	Delille, B., Frankignoulle, M., 2004. Variability of the gas transfer velocity of CO ₂
682	in a macrotidal estuary (the Scheldt). Estuaries 27, 593-603.
683	Boulton, G.S., Hagdorn, M., Maillot, P.B., Zatsepin, S., 2009. Drainage beneath ice
684	sheets: groundwater-channel coupling, and the origin of esker systems from former
685	ice sheets. Quat. Sci. Rev. 28, 621-638.
686	Burnett, W.C., Dulaiova, H., 2003. Estimating the dynamics of groundwater input into
687	the coastal zone via continuous radon-222 measurements. J. Environ. Radioact. 69,
688	21–35.
689	Chandler, D.M., Wadham, J.L., Lis, G.P., Cowton, T., Sole, A., Bartholomew, I., Telling,
690	J., Nienow, P., Bagshaw, E.B., Mair, D., 2013. Evolution of the subglacial drainage
691	system beneath the Greenland Ice Sheet revealed by tracers. Nat. Geosci. 6, 195-
692	198.

693 Chandler, D.M., Wadham, J.L., Nienow, P.W., Hawkings, J., Doyle, S.H., Telling, J.,

- 694 Tedstone, A., Hubbard, A., Rapid growth and persistence of efficient subglacial695 drainage under kilometre thick Greenland ice. Submitted.
- 696 Chanyotha, S., Kranrod, C., Burnett, W.C., 2014. Assessing diffusive fluxes and pore
- water radon activities via a single automated experiment. J. Radioanal. Nucl. Chem.1–8.

699	Charette, M.A., Buesseler, K.O., Andrews, J.E., 2001. Utility of radium isotopes for
700	evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod
701	estuary. Limnol. Oceanogr. 46, 465–470.
702	Charette, M.A., Moore, W.S., Burnett, W.C., 2008. Uranium-and thorium-series nuclides
703	as tracers of submarine groundwater discharge. U-Th Ser. nuclides Aquat. Syst.
704	Elsevier 155–191.
705	Collins, D.N., 1979. Hydrochemistry of meltwaters draining from an alpine glacier. Arct.
706	Alp. Res. 307–324.
707	Cook, P.G., Favreau, G., Dighton, J.C., Tickell, S., 2003. Determining natural
708	groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic
709	environmental tracers. J. Hydrol. 277, 74-88.
710	Corbett, D.R., Burnett, W.C., Cable, P.H., Clark, S.B., 1998. A multiple approach to the
711	determination of radon fluxes from sediments. J. Radioanal. Nucl. Chem. 236, 247-
712	253.
713	Cowton, T., Nienow, P., Bartholomew, I., Sole, A., Mair, D., 2012. Rapid erosion

- beneath the Greenland ice sheet. Geology 40, 343–346.
- 715 Cowton, T., Nienow, P., Sole, A., Wadham, J., Lis, G., Bartholomew, I., Mair, D.,
- 716 Chandler, D., 2013. Evolution of drainage system morphology at a land-terminating
- 717 Greenlandic outlet glacier. J. Geophys. Res. Earth Surf. 118, 29–41.

718	Creyts, T.T., Schoof, C.G., 2009. Drainage through subglacial water sheets. J. Ge	eophys.
719	Res. Earth Surf. 114.	

720	Das, S.B., Joughin, I., Behn, M.D., Howat, I.M., King, M. a, Lizarralde, D., Bhatia, M.P.,
721	2008. Fracture propagation to the base of the Greenland Ice Sheet during
722	supraglacial lake drainage. Science 320, 778-81. doi:10.1126/science.1153360
723	Dow, C.F., Hubbard, A., Booth, A.D., Doyle, S.H., Gusmeroli, A., Kulessa, B., 2013.
724	Seismic evidence of mechanically weak sediments underlying Russell Glacier, West
725	Greenland. Ann. Glaciol. 54, 135–141. doi:10.3189/2013AoG64A032
726	Dulaiova, H., Burnett, W.C., 2006. Radon loss across the water-air interface (Gulf of
727	Thailand) estimated experimentally from ²²² Rn- ²²⁴ Ra. Geophys. Res. Lett. 33.
728	doi:10.1029/2005GL025023
729	Dulaiova, H., Gonneea, M.E., Henderson, P.B., Charette, M.A., 2008. Geochemical and
730	physical sources of radon variation in a subterranean estuary-implications for
731	groundwater radon activities in submarine groundwater discharge studies. Mar.
732	Chem. 110, 120–127.
700	Connece M.E. Marris P.I. Dulciava II. Charatta M.A. 2008 New perspectives on
/33	Gonneea, M.E., Morris, F.J., Duraiova, H., Charette, M.A., 2008. New perspectives on
734	radium behavior within a subterranean estuary. Mar. Chem. 109, 250-267.
735	Gulley, J.D., Benn, D.I., Screaton, E., Martin, J., 2009. Mechanisms of englacial conduit
736	formation and their implications for subglacial recharge. Ouat. Sci. Rev. 28. 1984–
 727 728 729 730 731 732 733 734 735 736 	 Thailand) estimated experimentally from ²²²Rn-²²⁴Ra. Geophys. Res. Lett. 33. doi:10.1029/2005GL025023 Dulaiova, H., Gonneea, M.E., Henderson, P.B., Charette, M.A., 2008. Geochemical a physical sources of radon variation in a subterranean estuary—implications for groundwater radon activities in submarine groundwater discharge studies. Mar. Chem. 110, 120–127. Gonneea, M.E., Morris, P.J., Dulaiova, H., Charette, M.A., 2008. New perspectives or radium behavior within a subterranean estuary. Mar. Chem. 109, 250–267. Gulley, J.D., Benn, D.I., Screaton, E., Martin, J., 2009. Mechanisms of englacial conformation and their implications for subglacial recharge. Quat. Sci. Rev. 28, 198

737 1999.

738	Hawkings, J.R., Wadham, J.L., Tranter, M., Raiswell, R., Benning, L.G., Statham, P.J.,
739	Tedstone, A., Nienow, P., Lee, K., Telling, J., 2014. Ice sheets as a significant
740	source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5.
741	doi:10.1038/ncomms4929
742	Henriksen, N., Higgins, A.K., Kalsbeek, F., Pulvertaft, T.C.R., 2009. Greenland from
743	Archaean to Quaternary: descriptive text to the 1995 geological map of Greenland,
744	1: 2 500 000. Geological Survey of Denmark and Greenland.
745	Hindshaw, R.S., Rickli, J., Leuthold, J., Wadham, J., Bourdon, B., 2014. Identifying
746	weathering sources and processes in an outlet glacier of the Greenland Ice Sheet
747	using Ca and Sr isotope ratios. Geochim. Cosmochim. Acta 145, 50-71.
748	Hofmann, H., Gilfedder, B.S., Cartwright, I., 2011. A novel method using a silicone
749	diffusion membrane for continuous ²²² Rn measurements for the quantification of
750	groundwater discharge to streams and rivers. Environ. Sci. Technol. 45, 8915-8921.
751	Hubbard, B., Sharp, M., Nielsen, M., Willis, I.C., Smart, C.C., 1995. Borehole water-
752	level variations and the structure of the subglacial hydrological system of Haut
753	Glacier d' Rolla, Valais, Switzerland. J. Glaciol. 41, 572-583.
754	Kies, A., Nawrot, A., Tosheva, Z., Jania, J., 2011. Natural radioactive isotopes in glacier

meltwater studies. Geochem. J. 45, 423–429.

756	Kies, a., Hengesch, O., Tosheva, Z., Nawrot, a. P., Jania, J., 2015. Overview on radon
757	measurements in Arctic glacier waters. Cryosph. Discuss. 9, 2013–2052.
758	doi:10.5194/tcd-9-2013-2015
759	McCallum, J.L., Cook, P.G., Berhane, D., Rumpf, C., McMahon, G.A., 2012.
760	Quantifying groundwater flows to streams using differential flow gaugings and
761	water chemistry. J. Hydrol. 416, 118–132.
762	Meierbachtol, T., Harper, J., Humphrey, N., 2013. Basal drainage system response to
763	increasing surface melt on the Greenland Ice Sheet. Science 341, 777–779.
764	Nghiem, S. V, Hall, D.K., Mote, T.L., Tedesco, M., Albert, M.R., Keegan, K., Shuman,
765	C.A., DiGirolamo, N.E., Neumann, G., 2012. The extreme melt across the
766	Greenland ice sheet in 2012. Geophys. Res. Lett. 39.
767	Niu, Y., Clara Castro, M., Aciego, S.M., Hall, C.M., Stevenson, E.I., Arendt, C.A., Das,
768	S.B., 2015. Noble gas signatures in Greenland: Tracing glacial meltwater sources.
769	Geophys. Res. Lett. 42, 9311–9318. doi:10.1002/2015GL065778
770	Nye, J.F., 1973. Water at the bed of a glacier, in: International Association of Scientific
771	Hydrologists Publication, 95. pp. 189–194.
772	Raiswell, R., 1984. Chemical models of solute acquisition in glacial meltwaters. J.
773	Glaciol. 30, 49–57.

- Rempel, A.W., 2009. Transient effective stress variations forced by changes in conduit
- pressure beneath glaciers and ice sheets. Ann. Glaciol. 50, 61–66.

776	Röthlisberger, H., 1972. Water Pressure in Intra-and Subglacial Channels: Pres. at the
777	Symposium on the Hydrology of Glaciers, 7-13 September 1969, Cambridge.

- Schoof, C., 2010. Ice-sheet acceleration driven by melt supply variability. Nature 468,
 803–806.
- 780 Schubert, M., Paschke, A., Bednorz, D., Bürkin, W., Stieglitz, T., 2012. Kinetics of the

water/air phase transition of radon and its implication on detection of radon-in-water

782 concentrations: practical assessment of different on-site radon extraction methods.

783 Environ. Sci. Technol. 46, 8945–8951.

781

Sharp, M., Richards, K., Willis, I., Arnold, N., Nienow, P., Lawson, W., Tison, J., 1993.

Geometry, bed topography and drainage system structure of the Haut Glacier

d'Arolla, Switzerland. Earth Surf. Process. Landforms 18, 557–571.

- Sole, A., Nienow, P., Bartholomew, I., Mair, D., Cowton, T., Tedstone, A., King, M.A.,
- 2013. Winter motion mediates dynamic response of the Greenland ice sheet to
 warmer summers. Geophys. Res. Lett. 40, 3940–3944.
- 790 Tedstone, A.J., Nienow, P.W., Sole, A.J., Mair, D.W.F., Cowton, T.R., Bartholomew,
- 791 I.D., King, M.A., 2013. Greenland ice sheet motion insensitive to exceptional
- meltwater forcing. Proc. Natl. Acad. Sci. 110, 19719–19724.
- Tranter, M., 1993. A conceptual model of solute acquisition by Alpine glacialmeltwaters. J. Glaciol. 39.

795	Tranter, M., Sharp, M.J., Brown, G.H., Willis, I.C., Hubbard, B.P., Nielsen, M.K., Smart,
796	C.C., Gordon, S., Tulley, M., Lamb, H.R., 1997. Variability in the chemical
797	composition of in situ subglacial meltwaters. Hydrol. Process. 11, 59-77.
798	doi:10.1002/(SICI)1099-1085(199701)11:1<59::AID-HYP403>3.0.CO;2-S
799	Walder IS 1986 Hydraulics of subglacial cavities I Glaciol 32 439-445
,,,,	

- 800 Werder, M.A., Hewitt, I.J., Schoof, C.G., Flowers, G.E., 2013. Modeling channelized and
- distributed subglacial drainage in two dimensions. J. Geophys. Res. Earth Surf. 118,

802 2140–2158.