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Running Title 

Distinct morphologies of mesonephric renin cells 

 

Abstract 

Zebrafish provide an excellent model in which to assess the role of the renin-angiotensin system in 

renal development, injury and repair. In contrast to mammals, zebrafish kidney organogenesis 

terminates with the mesonephros. Despite this, the basic functional structure of the nephron is 

conserved across vertebrates. The relevance of teleosts for studies relating to the regulation of the 

renin-angiotensin system was established by assessing the phenotype and functional regulation of 

renin-expressing cells in zebrafish. 
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Transgenic fluorescent reporters for renin (ren), smooth muscle actin (acta2), and platelet derived 

growth factor receptor beta (pdgfrb) were studied to determine the phenotype and secretory 

ultrastructure of perivascular renin-expressing cells. Whole-kidney ren transcription responded to 

altered salinity, pharmacological renin-angiotensin system inhibition, and renal injury. 

Mesonephric ren-expressing cells occupied niches at the pre-glomerular arteries and afferent 

arterioles, forming intermittent epithelioid-like multi-cellular clusters exhibiting a granular secretory 

ultrastructure. In contrast, renin cells of the efferent arterioles were thin-bodied and lacked secretory 

granules. Renin cells expressed the perivascular cell markers acta2 and pdgfrb. Transcriptional 

responses of ren to physiological challenge support the presence of a functional renin-angiotensin 

system and are consistent with the production of active renin. 

The reparative capability of the zebrafish kidney was harnessed to demonstrate that ren transcription 

is a marker for renal injury and repair. Our studies demonstrate substantive conservation of renin 

regulation across vertebrates and ultrastructural studies of renin cells reveal at least two distinct 

morphologies of mesonephric perivascular ren-expressing cells.  

Key words 

Renin, perivascular, renin-angiotensin system, kidney injury, zebrafish. 

 

Introduction 

Renin-expressing cells are anatomically restricted to the juxtaglomerular apparatus (JGA) of the 

adult mammalian metanephros and secrete active renin, the initiating enzyme of the renin-

angiotensin system (RAS). The RAS principally functions to maintain cardiovascular homeostasis. In 

humans, over-stimulation of RAS is associated with clinical hypertension and an increased risk of 

chronic kidney disease (CKD) (76). Over-production of angiotensin II (ANG II), the effector of the RAS, 

may be pharmacologically targeted by angiotensin-converting enzyme (ACE) inhibitors or 
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angiotensin receptor blockers (ARBs) (78). Renin-expressing cells of the developing metanephros are 

widespread throughout the nascent renal vasculature, yet their role remains poorly understood (19, 

20, 62). In the embryo, renin cells may secrete active renin for RAS-mediated homeostasis or 

developmental pathways and (42), as activated pericytes, may be required for renal angiogenesis 

(56, 58, 77).  

The canonical RAS first appeared in teleosts and perivascular ren-expressing cells are conserved in 

larval zebrafish (14, 38). A complete understanding of their functional relationship across 

vertebrates is, however, lacking. The intracellular granules of renin cells, only partially characterised 

in teleosts (8, 32, 33, 50), are fundamental to the synthesis and release of active renin. Fully 

differentiated renin cells of the mammalian juxtaglomerular apparatus (JGA) contain a large number 

of acidic secretory granules that process prorenin into its active form for regulated secretion (71). 

Mammalian renin cells present during development (72), or those recruited in response to 

homeostatic challenge (66), exhibit an intermediate phenotype with smaller and sparser renin 

granules.  

The teleost kidney allows modelling of both nephron repair and regeneration post-injury (13, 43, 

86). The final-stage kidney of adult zebrafish, the mesonephros, retains a nephron progenitor 

population throughout life and continually undergoes de novo nephrogenesis (61, 86). Tubular injury 

is expected to activate the RAS as a result of impaired solute uptake or nephron filtration (31). Post 

renal injury, the RAS and renin pericytes may be activated for tubular repair and neo-nephrogenesis 

(21, 45, 65). Current evidence suggests that renin cells belong to a pericyte lineage, but their 

differentiation pathways remain to be fully elucidated (7, 70). In mammalian experimental disease 

models, cells of renin lineage (CoRL) are multipotent and capable of repopulating multiple 

glomerular cell niches, including pdgfrb expressing mesangial cells (54, 55, 68). 

The aims of the present study in adult zebrafish were to assess the functional and phenotypic 

conservation of renin-expressing cells in a lower vertebrate. We used transgenic reporter fish and 



4 
 

physiological challenges to address several questions. 1) Where are renin-expressing cells localised in 

adult zebrafish? 2) Do renin-expressing cells express markers of smooth muscle cells and pericytes? 3) 

Is their intracellular structure reminiscent of mammalian JGA cells that secrete active renin enzyme? 

4) Are the physiological roles of renin-expressing cells consistent with a functional RAS?  Our data 

establish the zebrafish model for studies of the RAS and its role in kidney injury and repair. 

Methods 

Fish lines and husbandry 

Experiments were approved by the local ethics committee and conducted in accordance with the 

Animals (Scientific Procedures) Act 1986 in a UK Home Office approved establishment. Zebrafish 

(Danio rerio) were maintained at 28.5 °C, as described by Westerfield (58, 80). Established lines used 

included WIK, casper (81), tg(ren:LifeAct-RFP) (58), tg(kdrl:EGFP) (11), tg(wt1b:EGFP) (52), and 

tg(acta2:EGFP) (82). Adult fish were anaesthetised with 40 μg ml−1 tricaine methanesulfonate (MS-

222). All fish used in this study were 10-12 months of age. For all experiments fish were individually 

housed in one litre tanks in solutions adjusted to pH 7.6. For experiments longer than 24 hours, fish 

were fed daily, otherwise feed was withheld.  

Generation of tg(pdgfrb:EGFP) fish 

A 7.16 kb region upstream of the pdgfrb translational initiation site was isolated from WIK genomic 

DNA using the following primer sequences with attB sites for gateway recombination into pDONR4-

PIR (Invitrogen); pdgfrb forward 5’-

GGGGACAACTTTGTATAGAAAAGTTGCTTCTCAGGCTCTATCAAGTTGGATGG; pdgfrb reverse 3’- 

GGGGACTGCTTTTTTGTACAAACTTGCTCAACACTGCAGACGGAGAGAAAAC. The DNA fragment was 

recombined upstream of EGFP and SV40 polyA sequences by three-way gateway cloning into 

pDestTol2CG2 (containing minimal tol2 ends and cardiac myosin light chain:EGFP) of the tol2 system 

(37). Plasmid DNA was co-injected with transposase mRNA transcribed in-house. Fish with visible 
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pdgfrb-EGFP fluorescence displayed similar expression patterns to those previously reported (3, 79, 

83).  

In situ hybridisation (ISH) 

Whole adult fish were fixed in 4% PFA and processed into paraffin embedded sagittal sections. ISH 

was conducted using standard protocols (58, 75). Briefly, a 500 bp digoxigenin (DIG)-labelled RNA 

probe was synthesised from ren cDNA. Embryos were rehydrated, permeablised, and incubated at 

65 °C for 16 hrs in hybridisation buffer. Following hybridisation, DIG-labelled RNA probes were 

detected with an alkaline phosphatase conjugated anti-DIG antibody (Roche) visualised by reaction 

with 5-bromo-4-chloro-3-indolyl phosphate and nitro blue tetrazolium (NBT). Sections were counter-

stained with methyl green. Ren mRNA was only detected in the renal tissue.      

Intracellular acidic granule staining 

Whole kidneys from tg(ren:LifeAct-RFP, casper) were excised into Dulbecco's Modified Eagle's 

medium (DMEM) with 5 µM Lysotracker® Green DND-26 (Molecular Probes™) for 1 hr at room 

temperature. Kidney tissue was then prepared by kidney squash for immediate confocal imaging of 

ren:LifeAct-RFP expressing cells. 

Electron microscopy and ren:LifeAct-RFP immunogold 

Prior to fixation, renal tissue was dissociated from haematopoietic cells by trituration in DMEM. 

Renal tissue was recovered with a 40 µm cell strainer. Samples were prepared for standard and 

ren:LifeAct-RFP immunogold electron microscopy (EM) by standard methods (1). Briefly, for 

immunogold EM, segments were stained with uranyl acetate (2% w/v in 0.1 M sodium acetate 

buffer), dehydrated through increasing concentrations of methanol (70-100%) at -20 °C and 

embedded in LR Gold (London Resin Company, Reading, UK). Ultrathin sections (50-80 nm) were 

prepared using a Reichert ultracut S microtome and mounted on 200 mesh nickel grids. Sections 

were incubated at room temperature for 2 hr with anti-RFP (Clontech, Mountain View, CA, USA 
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dilution 1:1000) and for 1 hr with anti-rabbit IgG-15 nm gold complex (dilution 1:50; BBI, Cardiff UK). 

All antisera were diluted in 0.1 M phosphate buffer containing 0.1% egg albumin. As a secondary 

antibody negative control the primary antibody was replaced by phosphate buffer/egg albumin and 

no labelling was observed. After immunolabelling, sections were lightly counterstained with lead 

citrate and uranyl acetate and examined with a JEOL transmission electron microscope (JEM-1010, 

JEOL, Peabody, MA, USA) fitted with an Orius digital camera (GATAN, CA, USA). 

Kidney tissue RNA analysis 

Kidney samples were excised either whole or with the head kidney separated from the trunk and tail 

regions (Fig 1A). Tissue was immediately frozen on dry ice and stored at -80 °C until analysis. Total 

RNA was extracted from kidney tissue in TRIzol® (Ambion) reagent using a Qiagen RNeasy kit 

(Qiagen) according to the manufacturer’s instructions. RNA samples were quantified using a 

NanoDrop (Thermo Scientific) and integrity analysed by gel electrophoresis. RNA (500 ng) was 

reverse transcribed using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems™) and 

real-time PCR performed with the Universal Probe Library (UPL) system from Roche Diagnostics Ltd., 

using a Roche Lightcycler 480 (Roche, West Sussex, UK). Primers were designed and utilised with the 

Roche Universal Probe Library (Table 1). Gene expression was normalized to the mean expression of 

ribosomal protein S18 (rps18) and elongation factor 1 alpha (eef1a1). 

Salinity challenge and captopril treatment 

Fish were exposed to various saline solutions for a 24 hour period (n = 8). As similarly described (25, 

59), 1x conditioned water (CW) contained 60 mg l-1 marine salts (Tropic Marin®), 1/10th CW 

contained 6 mg l-1 marine salts, and 10x Na & K contained 1x CW supplemented with 365 µM KCl and 

171 mM NaCl. 0.05 mM waterborne captopril (C4042, Sigma-Aldrich) was administered in 1x CW for 

four days (n=10).  

Kidney injury and regeneration with captopril treatment 
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For the induction of tubular injury, fish were intraperitoneally injected with either 65 mg/kg 

gentamicin or PBS for sham fish using a 10 µl NanoFil Syringe with a 35 gauge needle. Transcriptional 

responses to kidney injury were determined 48 hours post-injection. For the analysis of 

regeneration, fish were sampled eight days post injection. The effects of RAS inhibition on 

regeneration were determined with 0.05 mM waterborne captopril from 24 hours post gentamicin 

injection until sampling. Only fish that responded significantly to captopril treatment were included 

for further analysis, i.e. those with a mean relative ren expression at or above that of the control 

fish. For all other groups n = 8.   

Kidney regeneration and spatial analysis of kidney ren 

Fish were subjected to an intraperitoneal dose of either 75 mg/kg gentamicin or PBS for sham fish. 

Post-recovery, fish were individually housed in one litre tanks and fed daily. Head, or tail and trunk 

kidney regions were sampled for RNA analysis nine days post gentamicin injection. Fish not 

responding significantly to gentamicin, i.e. those with a mean relative wt1 expression at or below 

that of the mean of sham fish were excluded from further analysis.  Control group n = 7. 

Confocal imaging 

Kidney squashes were prepared using fresh tissue in DMEM or fixed tissue (4% PFA in PBS). For fixed 

tissue, 300 nM DAPI was diluted in PBS for nuclear staining. Confocal images were taken with a Leica 

SP5 using a 63x or 100x objective, 3x averaging, and a 0.5 µm z-step size for z-stacks. Optical thickness 

ranged between 0.5-1 µm. Maximal intensity projections were created with Fiji. Brightfield ISH images 

were taken using an Olympus Provis AX70 microscope. 

Statistical analysis 

Statistical analyses were performed with GraphPad Prism 6 (La Jolla, CA). Differences in means 

between two treatments were analysed by an independent samples t-test. Means between three or 

more groups were subject to a One-way ANOVA and where appropriate followed by a post-hoc 
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Bonferroni test for comparisons between predetermined treatments groups. Means are reported with 

a standard error of the mean and p values <0.05 were considered significant. 

 

Results 

Renin cell localisation and morphology 

Visualisation of ren:LifeAct-RFP and ren in situ hybridisation (ISH) confirmed the location of renin-

expressing cells in adult zebrafish. ISH showed ren mRNA is specifically associated with the 

mesonephric vasculature and not detectable in glomeruli, tubular epithelium, or haematopoietic cells 

(Fig. 1A-C), as characteristic of the developing mouse metanephros (26). The ren:LifeAct-RFP 

transgene is bona fide for endogenous ren in adults and larval fish (58). Despite an even distribution 

of nephrons across the mesonephros, ren:LifeAct-RFP (Fig. 1D) and ren mRNA transcripts are spatially 

varied across the kidney, being markedly reduced in the head kidney compared to the trunk and tail 

regions (Fig. 7). 

 

Crossing tg(ren:LifeAct-RFP) to tg(kdrl:EGFP), which have endothelial cells labelled with EGFP (11), 

confirmed the perivascular location of renin cells. Renin is not detectable in the endothelial cells, 

which is consistent with the distinct lineage of larval zebrafish renin cells to haemangiobalsts and 

endothelial cells (58). Renin is also not detectable in the endothelium of adult fish. ren:LifeAct-RFP 

was detected in 1) afferent arterioles, at or close to the vascular pole entering the glomerulus, termed 

the juxtaglomerular (JG) region 2) in the pre-glomerular arteries 3) in the efferent arterioles (Fig. 1E-

H). Branches of pre-glomerular arteries were present both with and without ren:LifeAct-RFP (Fig. 1F). 

As similarly reported in the developing mammalian metanephros (26, 62), renin reporter expression 

at the afferent arterioles and pre-glomerular arteries was circumferential and discontinuous (Fig. 1E, 

H, K). In contrast, expression at efferent arterioles was continuous (Fig. 1E, H, K). 
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The use of LifeAct to direct RFP to filamentous actin (F-actin) allowed for the visualisation of 

intracellular myofilaments (60), and increased RFP labelling in thin-bodied mural cells. Renin-

expressing cells of the pre-glomerular arteries and JG cells formed multicellular epithelioid-like cell 

clusters composed of tens of cuboidal shaped cells (Figs. 1I, K & 2K). Conversely, efferent ren:LifeAct-

RFP expressing cells, displayed flattened cell bodies thinly covering arterioles (Figs. 1J-K & 2J), as 

similarly observed in the pectoral arteries of larval fish (58). Regardless of morphology, as reported in 

other fish species, perivascular renin cells were always comprised of a single cell layer (Figs. 1I & 2K) 

(33).  

 

Smooth muscle and pericyte markers in renin cells. 

The relationship of renin-expressing cells to smooth muscle cells (SMC) expressing (acta2) and 

pericytes expressing (pdgfrb) was analysed using tg(ren:LifeAct-RFP, acta2:EGFP) and tg(ren:LifeAct-

RFP, pdgfrb:EGFP) fish, respectively. With an inverse relationship to smooth muscle actin (SMA), 

mammalian renin expression increases along metanephric afferent arterioles with decreasing distance 

from the glomerulus (35, 36, 48, 62). In zebrafish, all renin-expressing cells co-expressed acta2:EGFP 

(Fig. 2A-F) and no inverse relationship between acta2 and ren was evident. Occasional cell clusters at 

non-specific vascular locations expressed a lower acta2:EGFP (Fig. 2F), which may represent nascent 

renin cells acquiring a SMC phenotype during maturation (40). SMCs between renin cell clusters had 

thinner cell bodies than epithelioid ren-expressing cells (Fig. 2C-E). Expression of mammalian pericyte 

markers NG2 and CD146 precede αSMA during embryonic renin cell differentiation (69). The 

expression of pdgfrb:EGFP in epithelioid renin cells (Fig. 2G-I) suggests that as observed in mammals, 

zebrafish mesonephric renin cells maintain a functional relationship with pericytes (69). 

 

Renin cell intracellular structure 

The intracellular structure of ren:LifeAct-RFP -expressing cells was assessed by immunogold electron 

microscopy and lysotracker green. The acidic milieu of mammalian renin granules is thought to be 
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required for the activation of prorenin by cleavage of its pro segment to active renin (84). To test for 

the presence of acidic granules in fish, ren:LifeAct-RFP -expressing cells were stained with the 

acidotrophic dye lysotracker green, which stains lysosomes and other intracellular acidic organelles. 

Acidic granules were present in renin-cell clusters at both the afferent arterioles and pre-glomerular 

arteries (Fig. 3A-B). By comparison, very few acidic organelles were observed in the efferent arterioles 

(Fig. 3C). 

 

F-actin visualised in ren:LifeAct-RFP -expressing cells was most prominent at the luminal side of the 

cells, and to a lesser extent at renin-cell to renin-cell boundaries (Fig. 2B-E). Mammalian renin cells 

with an intermediate SMA and renin phenotype contain visible myofilaments, which are difficult to 

detect in fully differentiated cells of the JGA (22, 73). 

 

Immunogold stained ren:LifeAct-RFP cells contained either a highly vacuolated structure with small 

50-200 nm electron dense granules of various sizes, or a cytoplasm packed with numerous uniformly 

sized electron dense granules. As with mammalian renin cells, different intracellular structures suggest 

different stages of cell maturity. Renin cells (Fig. 4A-D) with a more vacuolated structure are believed 

to be representative of an immature endocrine structure. The partially filled protogranules (Fig. 4B) 

and paracrystaline granules (Fig. 4C) observed in zebrafish renin cells are also reported in immature 

mammalian counterparts (74). Cells with highly packed granules (Fig. 4E-H), ranging from 150-400 nm 

in size, are expected to represent a fully endocrine renin-secreting cell. Renin granules in zebrafish are 

similar to the mean 230 nm size of carp renin granules (32). No large mammalian-like granules 

(approximately 500 nm in size), are present in the zebrafish kidney (71). 

 

Physiological challenge and ren transcription  

In mammals, low sodium (23, 85), or RAS inhibition by ACE inhibitors (18, 36, 66), both increase renin 

transcription, plasma renin activity, and renin cell distribution down the afferent arteriole (17, 41). 
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RAS inhibition blocks the ANG II-mediated homeostatic negative feedback mechanism that supresses 

renin secretion (22). Consistent with a functional RAS, our data show that ren is upregulated by both 

captopril and decreasing salinity (Fig. 5), as reported in larval zebrafish (25, 58). This supports a RAS-

mediated sodium homeostasis in adult zebrafish. In mammalian whole kidney, upregulation of renin 

transcription results from renin cell recruitment, or upregulation within individual cells (66). 

 

Transcriptional ren responses to kidney injury 

The response of ren transcription to kidney injury was assessed by use of a well-characterised acute 

kidney injury (AKI) model. The aminoglycoside antibiotic gentamicin is toxic to proximal tubular cells 

(28, 43, 86). Post-injury, adult zebrafish undergo nephron repair followed by de novo nephrogenesis 

to fully restore kidney function by 21 days. The response of whole kidney renin transcription was 

tested during the injury phase, and during nephron repair and regeneration (43). Renal injury was 

confirmed two days post injection by a marked upregulation of kidney injury molecule 1 (kim1) and a 

concurrent decrease of the proximal tubular marker slc201a1, a sodium-dependent phosphate 

transporter (Fig. 6A-B). This was associated with a significant upregulation of ren transcription (Fig. 6I) 

implying RAS activation in response to renal injury.      

 

Early markers of nephron progenitors were upregulated during nephron repair and neo-

nephrogenesis. Upregulation of lhx1a (Fig. 6E) eight days post-injury confirmed a reparative response 

involving activation of renal progenitor cells. There was a trend towards increased transcription of 

both Wilm’s tumor (wt1) homologues, but these were not statistically significant (Fig. 6C-D). De novo 

nephrogenesis is in its early stages eight days post injury and was demonstrated in our study by a 

maintained low and high transcription of slc201a1 and kim1, respectively. During this early phase of 

kidney repair, ren transcripts returned to normal levels suggesting that the RAS may have a limited 

function during early kidney repair and neo-nephrogenesis. In the zebrafish mesonephros, renin cells 
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are not associated with individual new nephrons until the latter stages of neo-nephrogenesis (Fig. 2L-

M). 

 

 

 

The requirement for RAS in renal repair and regeneration was tested using pharmacological RAS 

inhibition during injury recovery. Expression of ren was significantly upregulated as expected with RAS 

blockade by captopril. Captopril treatment had no marked effect on the resolution of AKI, as 

determined by the lack of any change in expression of slc20a1a and kim1 transcripts eight days post 

injury (Fig. 6F). 

 

Spatial variation of ren expression 

Early nephron progenitor markers are ubiquitously expressed across the head, trunk, and tail regions 

of the kidney (13). Transcripts of ren and wt1 were determined in the head kidney and compared to 

the trunk and tail regions. No significant spatial differences were observed in either wt1 homologues, 

and both genes were similarly upregulated across the kidney during regeneration (Fig. 7A-B). 

Conversely, ren:LifeAct-RFP expression (Fig. 1D) and ren mRNA transcripts (Fig. 7C) were significantly 

higher in the tail and trunk regions than the head kidney. As previously observed (Fig. 6F), ren was not 

significantly upregulated during regeneration.  

 

Discussion 

This first study of renin expressing cells in the zebrafish mesonephros reveals two distinct 

morphologies of renin cell. Only epithelioid-like renin cells contained a secretory intracellular 

structure consistent with active renin secretion. The ren:LifeAct-RFP transgene faithfully recapitulates 

renin expression in both adult and larval zebrafish (58). As characteristic of the mammalian 
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mesonephros and developing metanephros (27), zebrafish ren is exclusively detected in perivascular 

cells (19). A low expression of renin mRNA is detectable in the mammalian metanephric proximal 

tubule (10, 64), but not in zebrafish. The localisation of intrarenal perivascular renin cells in zebrafish 

is similar to that observed in developing mammals (26, 62). In the human mesonephros (9), and 

initially the developing mammalian metanephros (9, 26, 62), renin expression is associated with pre-

glomerular arteries and arterioles prior to a postnatal restriction to the JGA (20, 22, 26, 47, 62, 73). In 

the mammalian, and piscine mesonephroi (12, 33), there is no association between renin cells and the 

distal tubules. Consequently, although present at the pole of the afferent arteriole, mesonephric JG 

renin cells are not part of a structured JGA. 

The lack of granulation in efferent renin cells suggests these post-glomerular perivascular cells differ 

in their function to their secretory counterparts. In mice, 20-40% of efferent arterioles are renin 

positive, of which a portion are granulated (73). By virtue of their low cell volume in comparison to 

the cuboidal secretory renin cells, acidic granules are sparse in their efferent counterparts. Without 

secretory granules, efferent renin cells are expected to have a limited capacity for the regulated 

excretion of active renin, but may constitutively secrete pro-renin.  

The mesenchymal precursor of the renin-expressing cell is postulated to belong to a pericyte lineage. 

Mammalian pericytes markers (Rgs 5, NG2 and CD 146) are detected in both adult and embryonic 

renin cells (4, 7, 67, 70). Pericytes and renin cells both derive from mesenchymal FoxD1 cells (16, 39, 

63, 65). Their relationship is evident in experimental renal injury where CoRL repopulate multiple 

glomerular cell niches, including the mesangium (2, 53-55, 68). The expression of individual pericyte 

markers in renin cells may be species-specific, since neither adult nor embryonic murine renin cells 

express Pdgfrb, nor do they rely on its expression for their differentiation (49). In larval fish, pdgfrb- 

and ren-expressing cells both require Notch signalling for their differentiation and both arise from the 

lateral mesoderm to occupy the same cell niche at the ventral dorsal aorta (3, 58). As for mammalian 
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renin cells (49), zebrafish pdgfrb-expressing cells do not rely on pdgfr signalling for their differentiation 

(3). 

Mammalian renin cells have a reversible phenotype switching from contractile smooth muscle cells to 

an endocrine renin phenotype during development or physiological challenge (7, 17, 40, 62, 66). In 

some instances, renin cells of the JGA loose detectable SMA (29, 49, 51). Zebrafish renin cells do not 

loose SMA expression towards the glomerulus and maintain expression of early pericyte markers. 

Although the differentiation and phenotypic switch of renin cells may differ across vertebrates, their 

physiological function appears to be conserved.  

Prior to their maturation into JG cells with a full endocrine phenotype (6, 15, 57), embryonic renin 

cells present at branch points may release paracrine tropic factors required for angiogenesis of 

nascent renal vessels (56, 58). Experimental ablation of renin cells or RAS during development results 

in renal vascular defects (21, 39, 77). In the renal vasculature of rats (56), and the anterior mesenteric 

artery of larval zebrafish (58), renin-expressing cells are associated with branch points. In mice, renin 

is not preferentially expressed at intrarenal vessel branch points (62). Despite the ubiquitous 

distribution of nephron progenitors expressing wt1 across the zebrafish kidney tissue (86), renin cells 

are lower in density in the head kidney. In our studies of the zebrafish mesonephros, which continually 

undergoes de novo nephrogenesis (86), no angiogenic sprout tips associated with renin cells were 

observed. In mammals, the RAS may be implicated in angiogenesis via the angiotensin 2 (AT2) 

receptor-mediated activation of Vegf, a potent stimulator of vasculogenesis and angiogenesis (30).   

The endocrine phenotype of mesonephric renin cells in zebrafish was confirmed by the presence of 

either an immature or fully granulated ultrastructure, as characteristic of mammalian renin cells. 

Embryonic or intermediate mammalian renin cells contain a variable number of small electron dense 

protogranules (74), as observed in adult zebrafish. Paracrystaline granules, which largely contain 

prorenin in mammals (72), were also present in the zebrafish renin cells. The numerous uniformly 

sized electron dense granules characteristic of mature renin cells are also reported in other fish species 
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(32), and are approximately half the size of mammalian granules. The activation of mammalian renin 

by the cleavage of pro-renin is proposed to occur due to the acidic milieu of secretory granules (84). 

The presence of acidic granules suggests that renin activation is likely to be conserved in the zebrafish.      

The response of mesonephric renin cells to salinity variation, pharmacological RAS inhibition, and 

renal injury is consistent with their endocrine function within a functional RAS. With the exception of 

the MAS receptor, zebrafish contain all components of the RAS including ACE 1 and 2, and both 

angiotensin (AT) receptors (14). Our data in adult zebrafish showing the modulation of renin mRNA 

with varying salinity is consistent with a role for the RAS in ion homeostasis, which is also evident in 

larval zebrafish (25, 34). The robust response of ren transcription to tubular injury may be due to 

tubular obstruction and a reduction in glomerular filtration, or the impaired tubular reabsorption of 

solutes stimulating tubuloglomerular feedback and associated renin secretion (5, 46). Indeed, the 

zebrafish gentamicin injury model is known to result in tubular obstruction due to the formation of 

epithelial casts (24, 44). Impaired solute transport is also expected with a significant decrease in 

slc20a1a-expressing proximal tubular cells. 

RAS activity is required for renal development (21, 58, 77), and may be activated during nephron repair 

and regeneration (78). Eight to nine days post-injury, both tubular repair and de novo nephrogenesis 

occur in the zebrafish (43). Aggregates of nephron progenitor cells expressing wt1 and lhx1a reach a 

peak by nine days post-injury (13, 86). In our study, upregulation of lhx1a confirms the activation of 

nephron progenitors during repair and regeneration, but this was not associated with an upregulation 

of ren. These data show that although the RAS is activated during renal injury, RAS activity is similar 

to baseline levels during the initial phase of renal repair.     

These data from zebrafish show that, whilst forming two distinct morphological populations, 

mesonephric renin cells share numerous similarities to their embryonic mammalian counterparts.  The 

characteristic granular and epithelioid renin cell phenotype is maintained in fish. Functionally, 

mesonephric renin cells respond to RAS-mediated challenges in a similar manner to mammals 
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demonstrating the conservation of the physiological actions of the RAS across vertebrates. Our studies 

demonstrate the relevance of adult zebrafish as an excellent model species for evaluating the 

mechanisms associated with the clinical improvement of renal function under RAS inhibition. 

 

Grants 

This work was financially supported by a British Heart Foundation Centre of Research Excellence award 

and Kidney Research UK. The authors also acknowledge financial support from the Wellcome Trust for 

the zebrafish facility.     

 

Acknowledgements 

The authors thank Prof. K. Kawakami, Prof. D. Lyons, and Dr. T. Czopka for Tol2 kit plasmids; Prof. 

Didier Stainier for the acta2:GFP line; Prof. B. Peault, Dr Charlotte Buckley and Dr. C. Tucker for helpful 

discussions; and facility staff for fish husbandry. 

 

Disclosures 

None 

 

References 

1. Abel MH, Charlton HM, Huhtaniemi I, Pakarinen P, Kumar TR, and Christian HC. An 
investigation into pituitary gonadotrophic hormone synthesis, secretion, subunit gene expression 
and cell structure in normal and mutant male mice. J Neuroendocrinol 25: 863-875, 2013. 
2. Altintas MM, and Reiser J. Bridges to cross, burn, and mend: cells of renin lineage as 
podocyte progenitors. In: American journal of physiology Renal physiology. United States: 2015, p. 
F499-500. 
3. Ando K, Fukuhara S, Izumi N, Nakajima H, Fukui H, Kelsh RN, and Mochizuki N. Clarification 
of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development 143: 
1328-1339, 2016. 



17 
 

4. Armulik A, Genove G, and Betsholtz C. Pericytes: developmental, physiological, and 
pathological perspectives, problems, and promises. Dev Cell 21: 193-215, 2011. 
5. Basile DP, Anderson MD, and Sutton TA. Pathophysiology of Acute Kidney Injury. 
Comprehensive Physiology 2: 1303-1353, 2012. 
6. Bergers G, and Song S. The role of pericytes in blood-vessel formation and maintenance. 
Neuro-oncology 7: 452-464, 2005. 
7. Brunskill EW, Sequeira-Lopez MLS, Pentz ES, Lin E, Yu J, Aronow BJ, Potter SS, and Gomez 
RA. Genes that Confer the Identity of the Renin Cell. Journal of the American Society of Nephrology 
22: 2213-2225, 2011. 
8. Capréol SV, and Sutherland LE. Comparative morphology of juxtaglomerular cells. I. 
Juxtaglomerular cells in fish. Canadian Journal of Zoology 46: 249-256, 1968. 
9. Celio MR, Groscurth P, and Inagami T. Ontogeny of renin immunoreactive cells in the 
human kidney. Anat Embryol (Berl) 173: 149-155, 1985. 
10. Chen M, Harris MP, Rose D, Smart A, He XR, Kretzler M, Briggs JP, and Schnermann J. Renin 
and renin mRNA in proximal tubules of the rat kidney. Journal of Clinical Investigation 94: 237-243, 
1994. 
11. Choi J, Dong L, Ahn J, Dao D, Hammerschmidt M, and Chen J-N. FoxH1 negatively 
modulates flk1 gene expression and vascular formation in zebrafish. Developmental Biology 304: 
735-744, 2007. 
12. de Martino C, and Zamboni L. A morphologic study of the mesonephros of the human 
embryo. Journal of ultrastructure research 16: 399-427, 1966. 
13. Diep CQ, Ma D, Deo RC, Holm TM, Naylor RW, Arora N, Wingert RA, Bollig F, Djordjevic G, 
Lichman B, Zhu H, Ikenaga T, Ono F, Englert C, Cowan CA, Hukriede NA, Handin RI, and Davidson 
AJ. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 
470: 95-100, 2011. 
14. Fournier D, Luft FC, Bader M, Ganten D, and Andrade-Navarro MA. Emergence and 
evolution of the renin-angiotensin-aldosterone system. Journal of Molecular Medicine-Jmm 90: 495-
508, 2012. 
15. Gaengel K, Genove G, Armulik A, and Betsholtz C. Endothelial-mural cell signaling in 
vascular development and angiogenesis. Arteriosclerosis, thrombosis, and vascular biology 29: 630-
638, 2009. 
16. Gomez IG, and Duffield JS. The FOXD1 lineage of kidney perivascular cells and 
myofibroblasts: functions and responses to injury. Kidney international supplements 4: 26-33, 2014. 
17. Gomez RA, Belyea B, Medrano S, Pentz ES, and Sequeira-Lopez MLS. Fate and plasticity of 
renin precursors in development and disease. Pediatric Nephrology 29: 721-726, 2014. 
18. Gomez RA, Lynch KR, Chevalier RL, Everett AD, Johns DW, Wilfong N, Peach MJ, and Carey 
RM. Renin and angiotensinogen gene expression and intrarenal renin distribution during ACE 
inhibition. Am J Physiol 254: F900-906, 1988. 
19. Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, and Peach MJ. 
Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257: F850-858, 
1989. 
20. Gomez RA, Pupilli C, and Everett AD. Molecular and cellular aspects of renin during kidney 
ontogeny. Pediatric Nephrology 5: 80-87, 1991. 
21. Guron G, and Friberg P. An intact renin-angiotensin system is a prerequisite for normal renal 
development. Journal of hypertension 18: 123-137, 2000. 
22. Hackenthal E, Paul M, Ganten D, and Taugner R. Morphology, physiology, and molecular-
biology of renin secretion. Physiological Reviews 70: 1067-1116, 1990. 
23. Harding P, Sigmon DH, Alfie ME, Huang PL, Fishman MC, Beierwaltes WH, and Carretero 
OA. Cyclooxygenase-2 mediates increased renal renin content induced by low-sodium diet. 
Hypertension 29: 297-302, 1997. 



18 
 

24. Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I, and Bonventre JV. Acute renal 
failure in zebrafish: a novel system to study a complex disease. American journal of physiology Renal 
physiology 288: F923-929, 2005. 
25. Hoshijima K, and Hirose S. Expression of endocrine genes in zebrafish larvae in response to 
environmental salinity. Journal of Endocrinology 193: 481-491, 2007. 
26. Jones CA, Hurley MI, Black TA, Kane CM, Pan L, Pruitt SC, and Gross KW. Expression of a 
renin/GFP transgene in mouse embryonic, extra-embryonic, and adult tissues. Physiological 
Genomics 4: 75-81, 2000. 
27. Jones CA, Sigmund CD, McGowan RA, Kanehaas CM, and Gross KW. Expression of murine 
renin genes during fetal development. Molecular Endocrinology 4: 375-383, 1990. 
28. Kamei CN, Liu Y, and Drummond IA. Kidney Regeneration in Adult Zebrafish by Gentamicin 
Induced Injury. Journal of visualized experiments : JoVE e51912, 2015. 
29. Karger C, Kurtz F, Steppan D, Schwarzensteiner I, Machura K, Angel P, Banas B, Risteli J, 
and Kurtz A. Procollagen I-expressing renin cell precursors. American journal of physiology Renal 
physiology 305: F355-361, 2013. 
30. Khakoo AY, Sidman RL, Pasqualini R, and Arap W. Does the renin-angiotensin system 
participate in regulation of human vasculogenesis and angiogenesis? Cancer research 68: 9112-9115, 
2008. 
31. Kobori H, Nangaku M, Navar LG, and Nishiyama A. The intrarenal renin-angiotensin system: 
from physiology to the pathobiology of hypertension and kidney disease. Pharmacological reviews 
59: 251-287, 2007. 
32. Kon Y, Hashimoto Y, Kitagawa H, and Kudo N. Morphological and immunohistochemical 
studies of juxtaglomerular cells in the carp, Cyprinus carpio. Nihon juigaku zasshi The Japanese 
journal of veterinary science 49: 323-331, 1987. 
33. Krishnamurthy VG, and Bern HA. Correlative histologic study of the corpuscles of Stannius 
and the juxtaglomerular cells of teleost fishes. General and Comparative Endocrinology 13: 313-335, 
1969. 
34. Kumai Y, Bernier NJ, and Perry SF. Angiotensin-II promotes Na+ uptake in larval zebrafish, 
Danio rerio, in acidic and ion-poor water. Journal of Endocrinology 220: 195-205, 2014. 
35. Kurt B, and Kurtz A. Plasticity of renal endocrine function. American journal of physiology 
Regulatory, integrative and comparative physiology 308: R455-466, 2015. 
36. Kurtz A. Renin Release: Sites, Mechanisms, and Control. Annual Review of Physiology, Vol 73 
73: 377-399, 2011. 
37. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost 
HJ, Kanki JP, and Chien C-B. The Tol2kit: A multisite Gateway-based construction kit for Tol2 
transposon transgenesis constructs. Developmental Dynamics 236: 3088-3099, 2007. 
38. Liang P, Jones CA, Bisgrove BW, Song L, Glenn ST, Yost HJ, and Gross KW. Genomic 
characterization and expression analysis of the first nonmammalian renin genes from zebrafish and 
pufferfish. Physiological Genomics 16: 314-322, 2004. 
39. Lin EE, Sequeira-Lopez MLS, and Gomez RA. RBP-J in FOXD1+renal stromal progenitors is 
crucial for the proper development and assembly of the kidney vasculature and glomerular 
mesangial cells. American Journal of Physiology-Renal Physiology 306: F249-F258, 2014. 
40. Lopez M, Pentz ES, Robert B, Abrahamson DR, and Gomez RA. Embryonic origin and lineage 
of juxtaglomerular cells. American Journal of Physiology-Renal Physiology 281: F345-F356, 2001. 
41. Lopez ML, and Gomez RA. The renin phenotype: roles and regulation in the kidney. Current 
opinion in nephrology and hypertension 19: 366-371, 2010. 
42. Lumbers ER. Functions of the renin-angiotensin system during development. Clin Exp 
Pharmacol Physiol 22: 499-505, 1995. 
43. McCampbell KK, Springer KN, and Wingert RA. Atlas of Cellular Dynamics during Zebrafish 
Adult Kidney Regeneration. Stem Cells Int 2015: 547636, 2015. 



19 
 

44. McKee RA, and Wingert RA. Zebrafish Renal Pathology: Emerging Models of Acute Kidney 
Injury. Current Pathobiology Reports 3: 171-181, 2015. 
45. Methot D, and Reudelhuber TL. Knockout of renin-angiotensin system genes: effects on 
vascular development. Current hypertension reports 3: 68-73, 2001. 
46. Metzger R, Bohle RM, Pauls K, Eichner G, Alhenc-Gelas F, Danilov SM, and Franke FE. 
Angiotensin-converting enzyme in non-neoplastic kidney diseases. Kidney Int 56: 1442-1454, 1999. 
47. Minuth M, Hackenthal E, Poulsen K, Rix E, and Taugner R. Renin immunocytochemistry of 
the differentiating juxtaglomerular apparatus. Anatomy and Embryology 162: 173-181, 1981. 
48. Neubauer B, Machura K, Chen M, Weinstein LS, Oppermann M, Sequeira-Lopez ML, Gomez 
RA, Schnermann J, Castrop H, Kurtz A, and Wagner C. Development of vascular renin expression in 
the kidney critically depends on the cyclic AMP pathway. American journal of physiology Renal 
physiology 296: F1006-1012, 2009. 
49. Neubauer B, Machura K, Rupp V, Tallquist MD, Betsholtz C, Sequeira-Lopez ML, Ariel 
Gomez R, and Wagner C. Development of renal renin-expressing cells does not involve PDGF-B-
PDGFR-beta signaling. Physiological reports 1: e00132, 2013. 
50. Nishimura H, and Ogawa M. The Renin-Angiotensin System in Fishes. American Zoologist 13: 
823-838, 1973. 
51. Park S, and Harrison-Bernard LM. Augmented Renal Vascular nNOS and Renin Protein 
Expression in Angiotensin Type 1 Receptor Null Mice. Journal of Histochemistry and Cytochemistry 
56: 401-414, 2008. 
52. Perner B, Englert C, and Bollig F. The Wilms tumor genes wt1a and wt1b control different 
steps during formation of the zebrafish pronephros. Developmental Biology 309: 87-96, 2007. 
53. Pippin JW, Glenn ST, Krofft RD, Rusiniak ME, Alpers CE, Hudkins K, Duffield JS, Gross KW, 
and Shankland SJ. Cells of renin lineage take on a podocyte phenotype in aging nephropathy. 
American journal of physiology Renal physiology 306: F1198-1209, 2014. 
54. Pippin JW, Kaverina NV, Eng DG, Krofft RD, Glenn ST, Duffield JS, Gross KW, and Shankland 
SJ. Cells of renin lineage are adult pluripotent progenitors in experimental glomerular disease. Am J 
Physiol Renal Physiol 309: F341-358, 2015. 
55. Pippin JW, Sparks MA, Glenn ST, Buitrago S, Coffman TM, Duffield JS, Gross KW, and 
Shankland SJ. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in 
experimental glomerular disease. The American journal of pathology 183: 542-557, 2013. 
56. Reddi V, Zaglul A, Pentz ES, and Gomez RA. Renin-expressing cells are associated with 
branching of the developing kidney vasculature. Journal of the American Society of Nephrology 9: 63-
71, 1998. 
57. Ribatti D, Nico B, and Crivellato E. The role of pericytes in angiogenesis. The International 
journal of developmental biology 55: 261-268, 2011. 
58. Rider SA, Mullins LJ, Verdon RF, MacRae CA, and Mullins JJ. Renin expression in developing 
zebrafish is associated with angiogenesis and requires the Notch pathway and endothelium. 
American journal of physiology Renal physiology ajprenal.00247.02015, 2015. 
59. Rider SA, Tucker CS, del-Pozo J, Rose KN, MacRae CA, Bailey MA, and Mullins JJ. 
Techniques for the in vivo assessment of cardio-renal function in zebrafish (Danio rerio) larvae. 
Journal of Physiology-London 590: 1803-1809, 2012. 
60. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, 
Holak TA, Werb Z, Sixt M, and Wedlich-Soldner R. Lifeact: a versatile marker to visualize F-actin. 
Nature methods 5: 605-607, 2008. 
61. Romagnani P, Lasagni L, and Remuzzi G. Renal progenitors: an evolutionary conserved 
strategy for kidney regeneration. Nature reviews Nephrology 9: 137-146, 2013. 
62. Sauter A, Machura K, Neubauer B, Kurtz A, and Wagner C. Development of renin expression 
in the mouse kidney. Kidney International 73: 43-51, 2008. 



20 
 

63. Sequeira-Lopez ML, Lin EE, Li M, Hu Y, Sigmund CD, and Gomez RA. The earliest 
metanephric arteriolar progenitors and their role in kidney vascular development. American journal 
of physiology Regulatory, integrative and comparative physiology 308: R138-149, 2015. 
64. Sequeira-Lopez ML, Nagalakshmi VK, Li M, Sigmund CD, and Gomez RA. Vascular versus 
tubular renin: role in kidney development. American journal of physiology Regulatory, integrative 
and comparative physiology ajpregu.00313.02015, 2015. 
65. Sequeira Lopez ML, and Gomez RA. Development of the renal arterioles. J Am Soc Nephrol 
22: 2156-2165, 2011. 
66. Sequeira Lopez MLS, Pentz ES, Nomasa T, Smithies O, and Gomez RA. Renin cells are 
precursors for multiple cell types that switch to the renin phenotype when homeostasis is 
threatened. Developmental cell 6: 719-728, 2004. 
67. Smith SW, Chand S, and Savage CO. Biology of the renal pericyte. In: Nephrology, dialysis, 
transplantation : official publication of the European Dialysis and Transplant Association - European 
Renal Association. England: 2012, p. 2149-2155. 
68. Starke C, Betz H, Hickmann L, Lachmann P, Neubauer B, Kopp JB, Sequeira-Lopez ML, 
Gomez RA, Hohenstein B, Todorov VT, and Hugo CP. Renin lineage cells repopulate the glomerular 
mesangium after injury. J Am Soc Nephrol 26: 48-54, 2015. 
69. Stefanska A, Kenyon C, Christian HC, Buckley C, Shaw I, Mullins JJ, and Peault B. Human 
kidney pericytes produce renin. Kidney Int In Press: 2016. 
70. Stefanska A, Peault B, and Mullins JJ. Renal pericytes: multifunctional cells of the kidneys. 
Pflugers Archiv : European journal of physiology 465: 767-773, 2013. 
71. Steppan D, Zügner A, Rachel R, and Kurtz A. Structural analysis suggests that renin is 
released by compound exocytosis. Kidney Int 83: 233-241, 2013. 
72. Tangner R, Murakami K, and Kim SJ. Renin activation in juvenile secretory granules? 
Histochemistry 85: 107-109, 1986. 
73. Taugner R, and Hackenthal E. Morphology of the Juxtaglomerular Apparatus. In: The 
Juxtaglomerular Apparatus: Structure and Function, edited by Taugner R, and Hackenthal E. Berlin, 
Heidelberg: Springer Berlin Heidelberg, 1989, p. 5-43. 
74. Taugner R, and Hackenthal E. Synthesis and Traffic of Renin in Epithelioid Cells. In: The 
Juxtaglomerular Apparatus: Structure and Function, edited by Taugner R, and Hackenthal E. Berlin, 
Heidelberg: Springer Berlin Heidelberg, 1989, p. 103-126. 
75. Thisse C, and Thisse B. High-resolution in situ hybridization to whole-mount zebrafish 
embryos. In: Nat Protoc. England: 2008, p. 59-69. 
76. Tikellis C, Bernardi S, and Burns WC. Angiotensin-converting enzyme 2 is a key modulator of 
the renin-angiotensin system in cardiovascular and renal disease. Current opinion in nephrology and 
hypertension 20: 62-68, 2011. 
77. Tufro-McReddie A, Romano LM, Harris JM, Ferder L, and Gomez RA. Angiotensin II 
regulates nephrogenesis and renal vascular development. Am J Physiol 269: F110-115, 1995. 
78. van der Meer IM, Cravedi P, and Remuzzi G. The role of renin angiotensin system inhibition 
in kidney repair. Fibrogenesis & tissue repair 3: 7, 2010. 
79. Wang Y, Pan L, Moens CB, and Appel B. Notch3 establishes brain vascular integrity by 
regulating pericyte number. Development 141: 307-317, 2014. 
80. Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish 
(Brachydanio rerio) Eugene, OR. : University of Oregon Press, 1995. 
81. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling 
W, Burns CE, and Zon LI. Transparent adult zebrafish as a tool for in vivo transplantation analysis. 
Cell Stem Cell 2: 183-189, 2008. 
82. Whitesell TR, Kennedy RM, Carter AD, Rollins E-L, Georgijevic S, Santoro MM, and Childs 
SJ. An alpha-Smooth Muscle Actin (acta2/alpha sma) Zebrafish Transgenic Line Marking Vascular 
Mural Cells and Visceral Smooth Muscle Cells. Plos One 9: 2014. 



21 
 

83. Wiens KM, Lee HL, Shimada H, Metcalf AE, Chao MY, and Lien CL. Platelet-derived growth 
factor receptor beta is critical for zebrafish intersegmental vessel formation. PLoS One 5: e11324, 
2010. 
84. Xa LK, Lacombe MJ, Mercure C, Lazure C, and Reudelhuber TL. General lysosomal hydrolysis 
can process prorenin accurately. American journal of physiology Regulatory, integrative and 
comparative physiology 307: R505-513, 2014. 
85. Yang TX, Endo Y, Huang YG, Smart A, Briggs JP, and Schnermann J. Renin expression in COX-
2-knockout mice on normal or low-salt diets. American Journal of Physiology-Renal Physiology 279: 
F819-F825, 2000. 
86. Zhou W, Boucher RC, Bollig F, Englert C, and Hildebrandt F. Characterization of 
mesonephric development and regeneration using transgenic zebrafish. American journal of 
physiology Renal physiology 299: F1040-1047, 2010. 

 

Figure Legends 

Figure 1. Distribution and morphology of mesonephric renin cells. A: The location and morphology 

of mesonephric renin cells was assessed across the whole kidney by in situ hybridisation and 

tg(ren:LifeAct-RFP, kdrl:EGFP). A-C: In situ hybridisations with background structures stained by 

methyl green and ren mRNA detected by NBT (blue). Perivascular ren is associated with intrarenal 

vessels (A-B) and not detected in proximal (†) or distal tubules (*), nor inside glomeruli (dashed 

outline). Scale bars 20 µm. GFP and RFP fluorescently label endothelial and renin cells, respectively. 

D: Ventral view of the whole adult kidney in tg(ren:LifeAct-RFP) showing prominent and sparse 

expression of ren:LifeAct-RFP in the trunk and tail regions compared to the head kidney, 

respectively. E-G: Maximum intensity projections of tg(ren:LifeAct-RFP, kdrl:EGFP). E: Group of 

glomeruli and associated vasculature showing ren:LifeAct-RFP at the afferent arterioles (white ovals) 

and weaker ren:LifeAct-RFP at the efferent arterioles (white arrows). A larger pre-glomerular artery 

is indicated by the yellow arrow. Scale bar 50 µm. F: Expression of ren:LifeAct-RFP at pre-glomerular 

arteries. The white arrow shows a branch to an efferent arteriole with ren:LifeAct-RFP and the 

asterisk shows a branch without ren:LifeAct-RFP. G: Juxtaglomerular (JG) ren:LifeAct-RFP at the 

afferent arteriole. Scale bars 25 µm. H: Schematic showing localization of renin cells (red) in the 

renal vasculature (green); renal artery (RA), pre-glomerular artery (PGA), afferent arteriole (AA), 

efferent arteriole (EA). I-J: Single 1 µm optical sections of tg(ren:LifeAct-RFP, kdrl:EGFP). I: Cross 
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section of multi-cell epithelioid renin cluster at a pre-glomerular artery. Boundaries of cuboidal 

shaped renin cells are demarcated by ren:LifeAct-RFP. J: Cross section of an efferent arteriole 

showing the thin and small cell body (arrow) of an efferent perivascular renin-expressing cell. Scale 

bars 10 µm. K: Schematic showing the cross sections of (1) JG and pre-glomerular renin cell clusters 

(red arrows) with intermediate smooth muscle cells (green arrow), and (2) efferent arteriolar renin 

cells. JG and pre-glomerular renin cells are present as multicellular clusters. Efferent renin cells 

surround the endothelium with thin-bodied cells that have a low cytoplasmic volume.  

Figure 2. Expression of smooth muscle and pericyte markers in mesonephric renin cells. To 

determine the relationship of renin-expressing cells with smooth muscle cells and pericytes, 

ren:LifeAct-RFP fish were crossed to transgenic lines for established mural cell markers. In mammals 

and fish, Pdgfrβ is an early marker of pericytes and smooth muscle actin (Acta2) is a marker of 

mature pericytes and smooth muscle cells. Expression of perivascular cell markers was assessed in 

JG, pre-glomerular and efferent ren:LifeAct-RFP expressing cells. A: Maximum intensity projection of 

tg(ren:LifeAct-RFP, acta2:EGFP) shows co-expression of acta2-EGFP and ren:LifeAct-RFP in the 

juxtaglomerular (JG) afferent and efferent cells (glomerulus white outline, efferent arteriole white 

arrow, afferent arteriole yellow arrow). Scale bar 50 µm. B-E: Single 0.5 µm optical sections of 

tg(ren:LifeAct-RFP, acta2:EGFP). B: Shows JG renin cell clusters strongly express acta2. Circular 

filamentous actin are highest in density at the luminal region of renin expressing cells. Scale bar 50 

µm. C: Both acta2-EGFP and ren:LifeAct-RFP are also co-expressed in pre-glomerular arteriolar renin 

clusters (white arrows) in tg(ren:LifeAct-RFP, acta2:EGFP). Scale bar 25 µm. D: Clusters of 

ren:LifeAct-RFP express acta2-EGFP at a pre-glomerular branch point in tg(ren:LifeAct-RFP, 

acta2:EGFP). Scale bar 25 µm. E: Detail of pre-glomerular arteriolar cells from plate D showing renin 

cells have a cuboidal shape in contrast to neighbouring and thinner-bodied smooth muscle cells 

(white arrow). Scale bar 10 µm. F: Expression of acta2:EGFP is always present but variable as shown 

by the projection of weaker expression in some pre-glomerular renin cell clusters. Scale bar 25 µm. 

G-H: 0.5 µm optical sections of tg(ren:LifeAct-RFP, pdgfrβ:EGFP) showing detail of pdgfrβ-EGFP 
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expression at both a pre-glomerular artery (G), and in JG cells (H). Scale bars 10 µm. I: A single 0.5 

µm optical section of tg(ren:LifeAct-RFP, pdgfrβ:EGFP) showing co-expression of ren:LifeAct-RFP and 

pdgfrβ-EGFP in the afferent JG cells (yellow arrow). The efferent arteriole (white arrow) also 

expresses pdgfrβ-EGFP; glomerulus white outline. Scale bar 25 µm. J-K: Confocal projections of 

nuclei stained with DAPI (grey) inside ren:LifeAct-RFP -expressing cells (yellow outlines) confirm the 

multi-cellular structure of renin cell clusters (J). In renin cells of the efferent arterioles, nuclei are 

flattened occupying a thin-bodied cell (K). Nuclei not outlined within ren:LifeAct-RFP regions are 

endothelial. Scale bars 10 µm. L-M: Tg (ren:LifeAct-RFP, wt1b:GFP) showing early- (L) and late-

stage(M) nascent nephron clusters expressing Wilm’s tumor (wt1b:GFP).  Expression of ren:LifeAct-

RFP is only detected in the latter stages of nephron development and is associated with the 

juxtaglomerular cells of the afferent arteriole. Glomeruli (*). Scale bars 25µm.   

Figure 3. Presence of acidic intracellular vesicles in renin cells. To test for the presence of acidic 

granules in individual cells across the mesonephric kidney, whole kidney squashes of tg(ren:LifeAct-

RFP) were stained with lysotracker green. Single 0.5 µm optical sections were taken by confocal 

microscopy to assess staining in ren:LifeAct-RFP expressing cells. A: A juxtaglomerular ren-RFP cell 

cluster with regions of punctate intracellular lysotracker staining (white arrows). B: Pre-glomerular 

arteriolar renin cell cluster also with regions of punctate lysotracker staining (white arrows). C: 

Efferent arteriole showing very occasional lysotracker stained vesicles (arrows). All Scale bars 10 µm.  

Figure 4. Intracellular ultrastructure of mesonephric renin cells. The intracellular structure of renin 

expressing cells was determined by electron microscopy. Renin expressing cells in tg(ren:LifeAct-RFP) 

were identified using 15 nm immunogold labelling against ren:LifeAct-RFP. Example immunogold 

particles are highlighted with black arrows and mitochondria with ‘M’. Immunogold staining is 

specific, only being present in the cytoplasm and not nuclei. A: Gold-labelled ren:LifeAct-RFP cell 

with a highly vacuolated intracellular structure and several mitochondria. The rectangle outline is of 

plate B. Scale bar 2 µm. B: A higher magnification of plate A shows detail of clear vesicles, some of 
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which are partially filled with electron dense material (white arrows). Scale bar 400 nm. C & D: 

Immunogold labelled cells with a vacuolated intracellular structure and occasional 50-200 nm 

electron dense granules with paracrystaline content (white arrows). Insert in C shows detail of 

highlighted (white arrow) paracrystaline granules in C. Scale bars (C) 200 and (D) 500 nm. E: Standard 

EM showing renin and endothelial cells, the latter recognisable by elongated nuclei. The vessel 

lumen is visible (L). Rectangle outline is of plate G. Scale bar 2µm. F & G: Higher magnification of E 

showing numerous 150-400 nm electron dense granules. Scale bars (F & G) 1 µm. H: Intracellular 

structure of immunogold labelled cell showing electron dense granules of similar size (150-350 nm). 

Scale bar 1 µm.  

Figure 5. Transcriptional response of whole kidney ren to salinity and captopril. To determine if 

variation in salinity initiated a homeostatic response, adult fish were exposed to varying ambient 

salinities. A: The 24 hr exposure to varied salinity decreased ren expression with increasing salinity 

and vice versa. B: The upregulation of ren due the lack of a negative feedback on transcription 

associated with RAS inhibition was determined in fish treated with 0.5 mM waterborne captopril for 

four days. This resulted in a significant upregulation of renin mRNA. 

Figure 6. Effect of renal damage on renin expression and effect of RAS inhibition on kidney 

regeneration. To test responses of ren transcription to renal injury and regeneration, mRNA 

expression was tested in whole kidney. The role for RAS during regeneration was tested using 

captopril RAS inhibition from 24 hrs post injection. Renal damage was induced by 65 mg kg-1 I.P. 

gentamicin injection and analysed at two days post injection (dpi). Whole kidneys were analysed 

both with and without 0.5 mM waterborne captopril during kidney regeneration at eight dpi. A: The 

decrease of the proximal tubular marker, solute carrier slc20a1a, confirms damage of the proximal 

tubule at both two and eight dpi. B: Kidney damage is also confirmed by the upregulation of kidney 

injury molecule (kim1) at two and eight dpi. C & D: The slight increase of both Wilm’s tumor 

homologues is not significant at 8 dpi. Wilm’s tumor 1b is upregulated in regenerating kidneys 
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subject to captopril treatment. E: The nephron progenitor marker LIM homeobox 1a (lhx1a) is 

upregulated eight days post injection confirming a regenerative response. Expression of lhx1a is not 

affected by captopril treatment. F: Renin mRNA is upregulated with the renal injury at two dpi. 

Expression of ren subsequently decreases to control levels after the renal tissue progresses from an 

injury phase to regeneration at eight dpi. As occurs under normal conditions, renin expression is 

increased by captopril in regenerating kidneys. 

Figure 7. Effect of kidney regeneration on ren expression in head kidney versus tail and trunk 

regions. To determine any involvement of renin in kidney regeneration, ren mRNA was assessed in 

separate regions of the regenerating kidney. Differences in mRNA transcripts were tested between 

the head kidney and trunk and tail region. Regenerating kidneys were selected based on the up 

regulation of the nephron progenitor marker, Wilm’s tumor. Renal damage and the subsequent 

regenerative response was induced by 75 mg kg-1 I.P. injected gentamicin. Expression of mRNA was 

analysed at nine days post injection (dpi). A-B: Both homologues of the Wilm’s tumor, are increased 

at nine dpi but differences between regions are not significant. C: The tail and trunk kidney region 

has significantly more ren mRNA than the head kidney. Slight increases in ren mRNA with 

regeneration were not significant at nine dpi. 

 

Table 

Gene Forward Reverse UPL probe 

rps18 GATGGGAAATACAGCCAGGTC CCAGAAGTGACGGAGACCAC 41 

eef1a1l1 (ef1a) CCTTCGTCCCAATTTCAGG CCTTGAACCAGCCCATGTT 67 

ren AGGCAAGTGGGAGGTCATC CCATCCTTGCAAAACAGGAT 43 

wt1a TTACCTGTCCAACTGCATGG GCGTGTGGCCATAGTTTGA 1 

wt1b GGCCTGGAATCCTGTTAGC CAGAGGAGGTGCTCCTGAAG 107 

slc201a1 GACTCCCAGTCAGCACTACTCA CGGAAAAGATGCCAATCG 36 
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havcr1 (kim1) AAACCAGAGCCTCGCTAGAA CCACAGCCATCTCTCTGTTGT 74 

lhx1a AGTCCGAGAAGAATGCGAAC GGCCGTAGTACTCGCTTTGA 80 

Table 1. Primer sequences and Roche UPL probe number for q-PCR analysis.  
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