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Abstract 

Little is known about the degradation and environmental impacts of carbon (C) amendments such 

as hydrochar and biochar in soil under the influence of disturbance events such as wetting, 

freeze-thaw cycles, manual stirring, and glucose additions. Thus, we assessed the degradation and 

greenhouse gas (GHG) emissions of Miscanthus x giganteus biochar (from pyrolysis), hydrochar 

(from steam and water hydrothermal carbonization, HTCs and HTCw), the uncarbonized 

feedstock material in a sandy and a loamy soil, compared to a control, with four replicates per 

treatment. The C amendments were mixed with soil at a rate of ~20 t/ha wt% and incubated at 

30°C over the period of 441 days. Over the whole incubation period, the soil mixtures were 

exposed consecutively to different disturbance events, with the intention to simulate a worst-case 

scenario for C degradation and GHG emissions. The degradation kinetics were quantified by 

source partitioning of the headspace 13C-CO2 and the application of an isotope two-component 

mixing model. Additionally, microbial biomass and composition were quantified and 

characterized at the end of the experimental period by chloroform fumigation extraction and 

phospholipid fatty acid analysis. The molecular composition and structural properties of the C 

amendments obtained by elemental analysis and NMR spectroscopy proved to be suitable 

indicators for the CO2 emissions which followed the sequence feedstock > HTCs > HTCw > 

biochar over the experimental duration. The addition of glucose triggered a short-lived, 

temporary co-mineralization of the otherwise recalcitrant materials HTCw and biochar. Among 

all C amendments, biochar proved most recalcitrant against decomposition and disturbance in 

both soils with a calculated recovery rate of 95-99% of the initially added biochar-C. 

Additionally, biochar amendment led to a decreased decomposition of soil organic C, especially 

in sandy soil.  
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1 Introduction  

A range of biomass carbonization techniques have been developed over the last few decades to 

cater for different feedstock qualities and end-use applications (Meyer et al., 2011). Water 

hydrothermal carbonization (HTCw) for example is well suited to process wet feedstock material, 

being energy sufficient, and yielding a material similar to brown coal or peat, i.e. a possible peat 

substitute (Mumme et al., 2011; Cao et al., 2013). Another HTC production process, which is 

even more energy conserving, is when water vapor is used instead of liquid water and is labeled 

as vapo-thermal or steam carbonization (HTCs) (Funke et al., 2013a). Pyrolysis is better-suited 

for drier feedstocks. Pyrolysis for energy and charcoal generation has been likely practiced for 

thousands of years (Antal and Grønli, 2003). Inspired by the discovery of anthropogenic dark 

earths, as well as natural black soils, the charcoal-like remains of pyrolysis are tested for their 

suitability for soil C sequestration and soil improvement (biochar) (Chang, 1996; Reina et al., 

1998; Ponomarenko and Anderson, 2001; Nurul Islam et al., 2005; Marris, 2006).  

The carbonization of plant material increases the half-life when incubated with soil to about 1.6 - 

3.4 years on average for hydrochar (Steinbeiss et al., 2009), 6.75 years (Qayyum et al., 2012), 

24.6-34.2 (Bai et al., 2013) and 60 years (Budai et al., 2016) for biochar, compared to the 

respective uncarbonized reference material. As a consequence, the different carbonization 

processes, especially hydrothermal carbonization and pyrolysis processes, may be suitable 

indicators for the properties and recalcitrance of C amendments against degradation (Lehmann et 

al., 2009; Spokas, 2010; Schimmelpfennig and Glaser, 2012; Singh et al., 2012).  
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The measurement of CO2 emissions from soil is a well-established method to quantify the 

degradation of soil carbon. Many studies report CO2 emission peaks after biochar and 

particularly hydrochar application to soil, which has been related to a labile C pool, e.g. volatile 

compounds or carbonates, functional groups or a biochar/hydrochar induced pH shift, providing 

suitable conditions for microorganisms (Zimmerman, 2010; Jones et al., 2011; Keith et al., 2011; 

Wang et al., 2011; Eibisch et al., 2013; Farrell et al., 2013; Malghani et al., 2013). Subsequent 

biochar mineralization, without any disturbance events, levels out to very low rates, indicating 

that biochar is a rather recalcitrant, stable C-pool (Kuzyakov et al., 2014). However, biochars´ 

recalcitrant behavior may be reduced by the addition of labile C substrates, such as glucose or 

straw, indicating its susceptibility to co-metabolization (Hamer et al., 2004; Kuzyakov et al., 

2009). Hydrochar typically continues to mineralize after the initial degradation period following 

soil addition (Kammann et al., 2012; Malghani et al., 2013; Bamminger et al., 2014). 

Additionally, hydrochar mostly induced positive priming effects on SOC (Steinbeiss et al., 2009; 

Bamminger et al., 2014), though also a negative priming on SOC, after an initial period of 

positive priming of three months, has been reported (Malghani et al., 2015). Biochar was found to 

both increase and decrease SOC mineralization (positive and negative priming of SOC), 

depending on soil properties such as texture and SOC content, SOC structure, and microbial 

community composition or the biochar feedstock (Zimmerman, 2010; Keith et al., 2011; 

Dempster et al., 2012; Cely et al., 2014).  

Concerning non-CO2 GHG emissions, it has been shown that HTCw and HTCs, as well as 

uncarbonized feedstock, can lead to both higher and lower soil N2O emissions compared to 

unamended controls in incubations and field studies (Kammann et al., 2012; Schimmelpfennig et 

al., 2014; Malghani et al., 2013). Both feedstock and HTCs increased the methane oxidation 

potential of the soil. However, if the soil was flooded or fertilized, the methane sink temporarily 



5 
 

turned into a source (Kammann et al., 2012; Schimmelpfennig et al., 2014). Biochar reduced 

N2O emissions on average by 54 % (Cayuela et al., 2014) and decreased methane emissions from 

soils (Dong et al., 2013, Shen et al., 2014, Van Zwieten et al., 2009, Feng et al., 2012, Barbosa de 

Sousa et al., 2014). Conversely, in connection with urea fertilization, biochar can also lead to 

increased soil CH4 emissions (Zhang et al., 2010). Thus, the mechanisms and processes of the 

involvement of C-amendments in GHG emissions from soil are considerably influenced by soil 

properties (SOC-content, texture, pH and nutrient status), management (fertilization) and the type 

of C amendment (feedstock and production process conditions, C/N ratio etc.).  

Despite quite complex models on the stability of C amendments in soil found in literature, the 

influence of disturbance/extreme weather events on the stability of C-amendments and associated 

GHG fluxes is still barely investigated. Events such as high temperatures and heavy precipitation 

as well as more pronounced freeze-thaw events due to a reduced snow cover are likely to increase 

in the future (Field, 2012; Reichstein, 2012).  

To the authors´ awareness, the present study is the first to investigate the effects of a sequence of 

various physicochemical disturbance events and glucose addition on the degradation of the soil 

and C amendments, associated greenhouse gas emissions, and priming effects. The overall aim of 

the study was to create a “worst-case scenario” for the recalcitrance of the C-amendments. This 

worst-case scenario included a wetting event (simulating heavy precipitation), frost-thaw cycles, 

disruption of soil by stirring and glucose addition. Additionally, to stimulate microbial activity, 

the incubation temperature was set to 30°C.  

All disturbance events were applied in sequence, since the repeated application of single extreme 

events can lead to an intensification of single effects, as has been shown for frequent frost-thaw 

cycles (Larsen et al., 2002, Chen et al., 1995). The experiment was completed by the examination 

of the response of soil microorganisms to the different C amendments. 
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2 Material and methods 

2.1 Material 

Topsoil samples (0-10 cm) were taken from two contrasting temperate soils; a grassland soil 

(Haplic Stagnosol, WRB 2007) with a texture of 25% sand, 47% silt and 28% clay, TOC of 

2.23%, 0.2% nitrogen (N), a pH of 6.88±0.02, a bulk density of 1 g cm-3, a δ13C value of -

26.5 ‰, and an agricultural Cambisol (HLUG, 2014), with a texture of 85% sand, 10% silt and 

5% clay, TOC of 0.63%, 0.04% N, a pH of 5.52±0.05, a bulk density of 1.6 g cm-3, and a δ13C 

value of -27 ‰. The field collected soils were sieved through a 10 mm sieve to remove large 

roots, rhizomes and stones.  

All C amendments (also referred to as “Miscanthus-C”) were produced from chopped Miscanthus 

× giganteus chaff, including untreated (= feedstock, δ13C -12.38 ‰), hydrothermally steam or 

water treated chaff (designated as hydrochar steam = HTCs, δ13C -12.41 ‰, and hydrochar water 

= HTCw, δ13C -14.32 ‰, respectively), or pyrolyzed chaff (biochar, δ13C -14.51 ‰). The field 

grown, senescent Miscanthus was harvested in winter 2009 when all aboveground plant material 

had died off. Hydrothermal carbonization (steam) was carried out by keeping the feedstock in a 

water vapor atmosphere for 2 hours at a temperature of 200±3 °C under a pressure of 1.6 MPa 

(Revatec, Geeste, Germany, at that time Hydrocarb GmbH, Ohmes, Germany). For water-based 

HTC, the Miscanthus straw was processed at 240 °C and 3.1-3.8 MPa for 8 h in distilled water 

using an 18.75 liter Parr series 4555 pressure reactor (Parr Instruments, Moline, IL, USA). The 

reactor contents were heated by an external heater operated by a Parr controller. The heating rate 

was set to 2 K min-1. The reactor content was not stirred. After the process, the heater was 

switched off and the reactor was cooled overnight to about 50°C. Subsequently, the HTC slurry 
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was removed from the reactor, filtered by a wired mesh and the resulting solids were dried for 48 

h at 60 °C. 

Biochar was produced using a pyrolysis unit with a continuous flow reactor at 550-600 °C and a 

mean residence time of the material in the reactor of 15 min (Pyreg GmbH, Bingen, Germany). 

All C amendments were ground to < 10 mm before the experimental setup (SM 300, Retsch 

GmbH, Haan, Germany), to allow for the comparison of GHG emissions with an appending field 

experiment (Schimmelpfennig et al., 2015). 

2.2 Methods 

2.2.1 Experimental setup 

The experiment was set up at the end of May 2012 and kept until mid-August 2013 (441 days). 

Seven grams of the C amendments were mixed with 350 g sandy/loamy soil at the rate of 1.96 

wt% (equivalent to 29.2 or 19.6 t amendment per hectare as calculated for an application depth of 

10 cm for sandy or loamy soil, respectively), placed into glass incubation jars (1100 ml, Weck®, 

Germany) and kept, with the lid ajar to allow air exchange, inside a drying closet at 30°C to 

stimulate microbial activity (n = 7 replicates per treatment). Four replicates were used for weekly 

measurements of the GHG fluxes of CO2, N2O and CH4. The other three replicates were used to 

perform elemental analysis, to measure pH values at the beginning and the end of the experiment, 

and for substrate-induced respiration (SIR) measurement after eight months. The water content of 

the samples was set to 60% of the maximum water holding capacity (WHC) and adjusted weekly. 

The WHC of each mixture was previously determined as described by Schimmelpfennig et al. 

(2014).  
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The soil mixtures were fertilized with dissolved NH4NO3 five times during the experimental 

period, equivalent to 50 µg nitrogen (N) per g soil mix applied each time, to stimulate microbial 

activity and trigger N2O emissions.  

We forced the degradation of the C amendments by several disturbances throughout the 

experiment, which are termed “sections” in the following. The first four months (days 0-131) of 

the incubation are considered a period of labile Miscanthus-C degradation; with a constant WHC 

of 60% and no further disturbances (Section 1). On day 132, we increased the water content of 

the soil mixtures to 100% WHC, with a subsequent drying phase decreasing the WHC to 50% 

(Section 2, days 132-232). From day 233 onward, four freeze/thaw cycles were performed, where 

the jars were repeatedly put to -20° C overnight and taken out to thaw and to perform gas flux 

measurements (Section 3, days 232-302). On day 303, a plowing event was simulated, by stirring 

the soil mixtures with a plastic spoon (Section 4, days 303-353). After 12 months of incubation, a 

priming experiment was carried out to test the effects of a labile C source (glucose) on the 

mineralization of the C amendments. 80 mg glucose powder g-1 soil mix was added as a labile C 

source to each jar (Section 5, days 354-399). 

From a wetting event, simulating heavy precipitation, we expected high N2O emission outbursts 

due to increased N-losses via nitrification and denitrification and a short flush of CO2 (Borken 

and Matzner, 2009). Likewise, we expected that frost-thaw events lead to an increase in N2O and 

CO2 emissions with decreasing soil temperature (Koponen and Martikainen, 2004; Goldberg et 

al., 2010). By the disruption of soil, we aimed at simulating more frequent soil cultivation due to 

a longer vegetation period in the future, leading to a substantial increase in CO2 emissions 

(Willems et al., 2011). By applying an incubation temperature of 30°C, we aimed at intensifying 

microbial activity, leading to an increase in soil and Miscanthus-C degradation as well as higher 
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N2O emissions (Li et al., 2015). Other than for CO2 and N2O, we expected rather small effects of 

the disturbance events on methane emissions (Priemé and Christensen, 2001). 

2.2.2 Analytical procedures 

Soil pH (H2O) was measured using a pH meter (ratio 2.5:1 soil/water) (InoLab; WTW, 

Weilheim, Germany). Elemental analyses including C, N, S and H of the raw materials and the 

soil mixtures were conducted using an elemental analyzer (CHNS Macro/VarioMax Elemental 

Analyzer, Elementar Analysensysteme GmbH, Hanau, Germany). The oxygen content (in %) was 

determined as difference between 100 and the sum of the other measured elements plus ash, see 

Table 1.  

 

Table 1 

 

Structural analysis of all C amendments was carried out by high-resolution 13C solid-state NMR 

spectroscopy (cross polarization-magic angle spinning) on a Unity INOVA 400 spectrometer 

(Varian Inc. USA). The spectra were Fourier transformed and base lines were corrected and 

integrated with the spectrometer's software package VNMRJ 2.2D. For quantification of selected 

structural elements, all spectra were divided in four sections and their signal intensities were 

normalized to a total intensity of 100. Section boundaries were 0-50 ppm (aliphatic C), 50-60 

ppm (-O-CH3 = lignin), 60-110 ppm (cellulose), 110-220 ppm (aromatic C).  

GHG fluxes were determined on a weekly basis following the method described by Hutchinson 

and Livingston (1993) adapted to jar measurements (Kammann et al., 2008; Kammann et al., 

2009). Briefly, after jar closure, 50 ml gas samples were taken with syringes three times in equal 

time steps over 0.5 – 2 hours (depending on the incubation temperature). Gas samples were 
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analyzed within 24 hours on a gas chromatograph equipped with a flame ionization detector (for 

CH4) and an electron capture detector (for N2O and CO2; set-up according to Loftfield et al., 

1997). The GHG fluxes were calculated by linear regression, considering the ideal gas law as 

well as average air pressure and temperature during the sampling period (Kammann et al., 2009).  

The overall GHG budget of the C amendment effects was expressed as CO2 equivalents (CO2eq), 

calculated from the CO2, N2O and CH4 fluxes using the respective 100-year global warming 

potentials (GWPs) as given in the IPCC 4AR (GWP N2O = 298 and GWP CH4 = 25) (IPCC, 

2007).  

At the end of Section 1 (day 115) and subsequent glucose addition (day 368, in Section 5), gas 

samples were taken with syringes and transferred into evacuated 12 ml vials (Labco, UK) and 

measured against the IAEA standards CH6, 305 and 310, Vienna, Austria to analyze the isotopic 

composition of CO2 (Microgas IRMS, Isoprime Ltd., Wytenshaw, UK). 

The 13C/12C ratios of the soil and the C amendments were determined using an elemental analyzer 

coupled to an isotope ratio mass spectrometer (EA-IRMS, Eurovector, Thermo Fisher Delta V 

Advantage, Thermo Fisher Scientific GmbH, Dreieich, Germany).  

2.2.3 TOC change and isotope mass balance calculation 

The TOC contents of the soil mixtures during the first 365 of the experiment as compared to day 

368 after glucose addition were determined by subtracting the cumulated CO2-C losses from the 

initial C-amounts within the soil mixtures. The relative C losses of the soil mixtures and their 

respective shares (SOC or Miscanthus-C) were calculated by using the isotopic signature of the 

headspace CO2, sampled at day 115 for the period prior to the priming experiment, and the 

signature of the gas sampled after glucose addition (day 368) for the period during the priming 

experiment, compared to a control (Hamer et al., 2004), and source partitioning by Keeling plots 
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(Pataki et al., 2003). The loss of Miscanthus-C was estimated by determining the relative C-share 

in CO2 using equation 1:  

13CO2(%) = (𝛅𝐦𝐢𝐱−𝛅𝐬𝐨𝐢𝐥)
(𝛅𝐌𝐢𝐬𝐜𝐚𝐧𝐭𝐡𝐮𝐬−𝛅𝐬𝐨𝐢𝐥)

∗ 𝟏𝟎𝟎       (1) 

where 13CO2 is the percentage of Miscanthus-C in the respired CO2, δmix is the isotopic ratio of 

the soil mix (soil+Miscanthus (+glucose)), δsoil is the isotopic ratio of the pure soil (+glucose) 

and δMiscanthus the isotopic ratio of the specific Miscanthus, (charred or uncharred), naturally 

enriched in 13C (Amelung et al., 2008; Luo et al., 2011). The calculations are based on the 

following assumptions: (1) The integrated 13C signature for the soil-plus-glucose CO2 would be 

identical for the control and the Miscanthus-amended soils. Additional glucose mineralization, 

possibly induced by the presence of C-amendments was not taken into consideration. (2) The 

respective signatures of CO2-C originating from the amendment or soil are similar to that of their 

sources. (3) The calculated ratio of the measurement on day 115 can be extrapolated to all CO2 

measurement time points in the period before glucose addition, and that the ratio in the beginning 

of the priming experiment applies to all subsequent measurements of the priming section. From 

the calculated cumulative Miscanthus-C loss, the daily Miscanthus-C loss was determined 

according to the five Sections, and the influence of glucose addition on Miscanthus-C 

mineralization was quantified.  

The mean residence time MRT = (k*365)-1 and half-life = MRT*ln(2) of the C-amendments were 

estimated using a single first-order exponential decay model (Lehmann et al., 2009), since our 

data did not comply with the requirements for a double exponential model such as found for 

constant experimental conditions and an experimental duration of several years (Kuzyakov et al., 

2009).  
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2.2.4 Extractable organic C, microbial biomass and community composition 

At the end of the experiment (day 441), the soil mixtures were analyzed for their extractable 

organic C (EOC) and soil microbial biomass C (Cmic) by the chloroform-fumigation-extraction 

(CFE) method (Vance et al., 1987). In brief, 10 g of the chloroform fumigated soil subsample (24 

h at 22°C) were extracted with 40 ml 0.5 M K2SO4 on a horizontal shaker for 30 min at 250 rpm 

and centrifuged for 30 min at 4400 g. Another 10 g subsample remained non-fumigated but was 

extracted similar to the fumigated sample. C and N in supernatants of fumigated and non-

fumigated samples were measured on a Multi N/C 2100S TOC/TN-analyzer (Analytik Jena, Jena, 

Germany). Cmic was calculated by subtracting the extractable C values of the non-fumigated from 

that of the fumigated samples. For calculation of Cmic, the conversion factor kEC 0.45 

(Joergensen, 1996) was used. EOC was calculated from C concentration in supernatants of the 

non-fumigated samples. 

Phospholipid fatty acids (PLFA) of the soil mixtures were extracted following the method of 

Frostegård et al. (1993). A Bligh and Dyer solution (chloroform, methanol, citrate buffer, pH=4, 

1:2:0.8;v/v/v) was used to extract glycol-, neutral- and phospholipid fatty acids and the fractions 

were separated by silica acid columns (0.5 g silicic acid, 3 ml: Varian Medical Systems, Palo 

Alto, California). PLFAs were classified according to Frostegård & Bååth (1996), Zelles (1999) 

and Kaiser et al. (2010), whereby the branched fatty acids i15:0, a15:0, i16:0 and i17:0 were 

summed as from Gram-positive bacteria, the cy17:0 and cy19:0 as from Gram-negative bacteria, 

the biomarker 16:1ω7 served as additional fatty acid for identification of total bacteria and 

18:2ω6,9c for total fungal PLFA. Total PLFA (PLFAmic) is the sum of bacterial and fungal 

PLFA. To exclude CO2 flux data from the proliferation period following glucose addition, only 

the extrapolated and cumulated fluxes from day 400 onward were chosen for the correlation with 

the microbial activity and the microbial parameters.  
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2.3 Statistics and calculations 

Statistics were carried out using SigmaPlot 11.0 (Systat Software Inc., San José, California, 

USA), IBM SPSS Statistics Version 20 (IBM Corporation, Armonk, New York, USA) and Xact 

8.03 (SciLab, Saint Yrieix, France). The cumulated CO2, N2O, CH4 and CO2eq fluxes were 

integrated over the experiment duration using linear interpolation between measurement dates. 

Differences in CO2eq over the incubation period were determined by a repeated measurement 

ANOVA and post-hoc tests (Tukey HSD) and factoring in the different time intervals between 

the gas measurements. Overall treatment effects, Miscanthus-C losses in g per day within the five 

time sections, and differences between the single sections within one treatment were tested by 

one-way ANOVAs followed by LSD or Holm-Sidak post-hoc tests, or by ANOVA on Ranks 

followed by SNK or Tukey HSD post-hoc tests. Differences in the Miscanthus-C degradation 

rates as affected by soil type or treatments were determined by one-way ANOVAs on ranks 

followed by Tukey HSD post-hoc tests. 

CO2 and N2O flux sums, percent SOC, Miscanthus-C and TOC (SOC+Miscanthus-C, excluding 

glucose-C) losses, Cmic, EOC, pH, WHC and MRT were tested for significant effects of the soil 

type or treatment by two-way ANOVAs, followed by Holm-Sidak post-hoc tests (CI=95%). CH4 

flux sums were tested by a two-way ANOVA on ranks, due to lack of normal distribution or 

heterogeneity of variances, followed by a Tukey HSD post-hoc test (CI=95%; Table S.1). 

Correlations of the cumulated CO2 and N2O-N fluxes were tested by Spearman Rank Order 

Correlation, since the data were not normally distributed. Correlations between microbial 

parameters and pH and CO2 fluxes of the end period of the experiment (days 400-440) were 

performed using Pearson Correlation. Correlations of the ratio of initial TOC [g] / remaining 

TOC [g] (g Cin/g Crem) and the characterization parameters H/C-O/C ratio, cellulose and 

aromatics content of the Miscanthus samples were calculated using Michaelis-Menten equations. 
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3 Results 

3.1 pH and WHC 

Feedstock initially increased the pH value of sandy soil (pH 5.52) by half a unit, as did biochar, 

in both the sandy and loamy soil (Table S.2). At the end of the experiment, pH values had 

decreased significantly compared to initial pH values, especially in the loamy soil (on average 

from 5.33 to 4.62). While the pH values of the sandy control soil remained similar to initial 

values, all C amended soils exhibited a pH drop of 0.5 units. Initial treatment differences in 

loamy soil disappeared during the experimental period. 

The WHCmax was increased by all C amendments by 20% compared to the control in both soils, 

with the exception of biochar in the loamy soil (Figure S.1). 

3.2 CO2, N2O and CH4 fluxes  

The cumulated CO2 emissions during the five sections (days 0-399) ranged from 3.7 to 32.8 g 

CO2 kg-1 soil mix (Figure 1 a-c). Emissions from the feedstock treatment were higher in the 

sandy soil (32.8 g CO2 kg-1 soil mix), compared to the loamy soil (25.5 g CO2 kg-1 soil mix, p < 

0.001) (Figure 1 a-c). CO2 emissions from the control/HTCs/HTCw treatments were not different 

between the two soil types. Emissions from the biochar treatments were 3.7 and 6.5 g kg-1 soil 

and lower in sandy compared to loamy soil, respectively (p < 0.05). The cumulative degradation 

pattern was similar in both soils and followed the carbonization degree of the material (feedstock 

> HTCs > HTCw > biochar). Cumulative N2O emissions during the five sections (days 0-399) 

ranged between 0.95-14.6 mg N2O-N kg-1 soil mix. Emissions from the feedstock treatment were 

higher from loamy compared to sandy soil (p < 0.05), whereas no soil-treatment interactions were 

found for the other treatments. Nitrous oxide fluxes from feedstock/HTCs/HTCw treatments were 

higher than those from the control and biochar treatments in both soils (p < 0.001), with highest 
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fluxes from feedstock amended loamy soil (Figure 1 d-f). Emissions from the biochar treatments 

were not different compared to emissions from the control in both soils. 

Cumulated methane fluxes during the five sections (days 0-399) from the sandy soil were 

negligible and emissions ranged from -0.02 to +72.1 CH4 µg kg-1 soil mix. Methane fluxes in the 

loamy soil were dominated by methane oxidation ranging from -72 to -303 µg CH4 kg-1. Here, 

soil methane oxidation capacity was improved by all C amendments, inversely to their 

carbonization degree, with highest methane oxidation rates in feedstock-amended soil (Figure 1 

g-i).  

 

Figure 1 

 

The cumulated N2O emissions correlated significantly with the cumulated CO2 emissions in both 

soils (r = 0.832 in sandy soil, r = 0.901 in loamy soil, p<0.01) (Figure S.2).  

3.3 Shares of the single GHGs in total CO2-equivalent emissions  

Carbon dioxide made up for 85.6% and 87.6% and N2O for 14.4% and 12.5% of the total CO2eq 

in the sandy and loamy soil, respectively, with large treatment differences. Methane fluxes 

corresponded to 0.02% (sandy soil) and -0.14% (loamy soil) of total CO2eq, with only the 

feedstock treatment in loamy soil leading to a higher share in CO2eq compared to the control 

(p < 0.05, Table S.3, Figure S.3).  

The N2O emissions during the disturbance events were very variable. In particular, water logging 

in Section 2 led to N2O emission peaks, which strongly contributed to the CO2eq sum during the 

wetting-drying cycle. As a consequence, the CO2eq fluxes rather than the sole CO2 fluxes during 
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the single Sections were used for an overall evaluation of the effects of the C amendments under 

the influence of disturbance events on the GHG budget of the soils.  

3.4 GHG (CO2eq) emissions during disturbance and priming events 

Most of the CO2eq (mean 58.4% in sandy soil and 54.3% in loamy soil) were lost during the 

period of labile C degradation (Section 1) in the first four months, enhanced by two fertilization 

events (Figures 2 A and B). The WHC increase to 100% (Start of Section 2) led to a renewed 

emission outburst in both soils, amounting to 20.4 and 19.1% of the total cumulated CO2eq 

emissions. Thereafter, neither the third, fourth and fifth fertilization event, nor the freeze-thaw 

cycles (Section 3) led to larger GHG emission outbursts, contributing only 2.4 and 3.8% to the 

total cumulated CO2eq emissions in sandy and loamy soil, respectively. Plowing (Section 4) and 

glucose addition (priming, Section 5) stimulated emissions from all treatments in both soils, 

contributing 10.4/11.9% (Section 4) and 8.6/11.0% (Section 5) to total CO2eq emissions in the 

sandy/loamy soils, respectively. 

Total CO2eq emissions from both control soils were similar in Sections 1, 2 and 4 (labile C 

degradation, wet-dry and plowing). During Section 3 (freeze-thaw), the loamy control soil 

showed larger emissions than the sandy soil, while it was vice versa during Section 5 (priming) 

(Figures 2 A and B; Table 2). The non- or low-carbonized C amendments led to significantly 

higher GHG emission sums in most of the Sections (1, 2 and 4: feedstock > HTCs > HTCw), 

compared to the control and biochar treatments. During Section 3 (freeze-thaw), the sandy 

control soil emitted the lowest CO2eq sum, followed by biochar/HTCs/HTCw while feedstock 

treatments exhibited the highest emissions. In the loamy soil, during freeze-thaw events, 

emissions from the HTCw treatment were as low as from the control, followed by biochar < 

HTCs/feedstock treatments. Subsequent to glucose addition (Section 5, priming), in sandy soil, 
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the control and HTCw treatments showed the highest CO2eq emissions, followed by the 

feedstock and HTCs/biochar treatments. In loamy soil, the CO2eq emissions in Section 5 were 

not different between treatments (Figures 2 A, B, Table 2). 

 

Figures 2 A and B 

 

The C amendments interacted differently with the two soils during the five sections (Table 2). 

None of the C amendments showed a distinctive degradation pattern according to the soil type 

except biochar, with higher CO2eq emissions from the loamy compared to the sandy soil 

throughout all sections, except Section 1 (Table 2).  

 

Table 2 

 

3.5 Miscanthus-C losses during the disturbance events and priming  

The fractions of Miscanthus-C and SOC in total CO2 emissions were different for the period 

before and during the priming experiment, revealing an altered degradation behavior (Table S.4). 

During Section 1 (days 0-131), the ratio of Miscanthus-C/SOC in total emissions followed the 

carbonization degree with highest ratios for feedstock and HTCs, followed by HTCw and 

biochar. The source partitions of SOC- and Miscanthus-C in total CO2 emissions in Section 5 

were different, as compared to the experimental period before. While the relative fractions of 

HTCw- and biochar-C in total CO2 emissions were higher, the relative fractions of feedstock and 

HTCs in total CO2 emissions were lower (Table S.4).  
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The mean daily Miscanthus-C loss in the five sections was lowest in Section 3 (freeze-thaw) (p = 

< 0.05), compared to all other sections, with no significant differences among the other Sections. 

Testing the losses of the single treatments for each soil showed very different daily C losses of 

the C amendments (Table 3). Mean daily C losses were highest in the initial phase of the 

experiment (Section 1, labile C) for feedstock and HTCs in both soils. Losses of HTCw were 

slightly elevated in the beginning (Section 1), decreased in the following Sections and were 

triggered again in Section 5 (priming) by glucose addition, similar in the two soils. Consequently, 

initial and final HTCw degradation rates (Sections 1 and 5) were higher than during the 

disturbance events (Sections 2-4: wet-dry, freeze-thaw and plowing). Biochar degradation in both 

sandy and loamy soil was slightly increased in the beginning, compared to Sections 2- 4, and was 

increased by glucose addition, resulting in highest mean Miscanthus-C losses in Section 5 (Table 

3). Expressed as percentages of the total Miscanthus-C loss, 1.3, 3.3, 16.0 and 52.2% and 3.2, 

5.3, 16.4 and 25.1% were lost in Section 5 from the feedstock, HTCs, HTCw and biochar 

treatments in sandy and loamy soil. 

 

Table 3 

 

3.6 Carbon balance and degradation rate 

The remaining C contents (SOC, Miscanthus-C and TOC) of the soil mixtures after 13 months of 

incubation (days 0-399) are given as percent of the initial C (=100%, t0) in Figure 3. The SOC 

losses from sandy soil were higher throughout all treatments. In sandy soil, SOC loss of the 

feedstock and HTCs treatments was similar to that of the control, whereas HTCw increased SOC 

losses. In loamy soil, SOC loss of the feedstock treatment was higher compared to the control 

soil, whereas no significantly different SOC loss was observed for the other treatments, except 
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for biochar. Biochar amendment led to significantly lower SOC losses in both soils, compared to 

the respective controls (Figure 3 A).  

Miscanthus-C loss followed the carbonization degree in sandy soil: feedstock > HTCs > HTCw > 

biochar. Also in loamy soil, feedstock/HTCs degradation was higher than that of HTCw/biochar. 

Feedstock degradation was higher in sandy soil compared to loamy soil, whereas it was vice 

versa for biochar with higher degradation rates in loamy than sandy soil (Figure 3 B, Figures 4 A 

and B). Comparing initial and end Miscanthus-C amounts of the single treatments revealed that 

all C amendments except biochar lost significant amounts of Miscanthus-C over the incubation 

period in both soils. Practically all C was lost from feedstock in sandy soil (97.65 ± 4.69%), 

whereas it was more stable in loamy soil (43.3 ± 9.0% C loss) (Table S.1: significant soil × 

treatment interactions). Degradation of HTCs and HTCw was not different between soil types 

with mean C loss of 42.9% from HTCs and 10.6% from HTCw. Biochar-C loss was insignificant 

in both soils with 98.5 and 96.3% of the initial C remaining at the end of the experiment in sandy 

and loamy soil, respectively.  

TOC (SOC+Miscanthus-C) loss from the treatments control, feedstock, HTCs and HTCw was 

higher in sandy soil, compared to loamy soil, whereas TOC loss from biochar treatments was low 

and not soil dependent. TOC loss was highest from the feedstock treatments in both soils, 

followed by HTCs>control>HTCw>biochar treatments in sandy soil and by 

HTCs/HTCw/control>biochar in loamy soil (Figure 3 C).  

 

Figure 3 

 

Total C build-up by C amendments was more pronounced in the sandy soil. There was a negative 

carbon build-up (decrease in TOC) due to feedstock amendment, and a significant linear increase 
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in C build-up, depending on the carbonization degree of the substrates, with C gains of initial C 

for HTCs, HTCw and biochar, respectively. In loamy soil, the C build-up was less pronounced 

(Table 4). 

 

Table 4 

 

All structural properties (elemental ratios H/C and O/C, cellulose and the aromatic component 

from the NMR measurements) were in line with the ratio of initial TOC / remaining TOC 

(Cin/Crem), independent of the soil type (p<0.001). In sandy soil, the correlations of Cin/Crem were 

highest for cellulose and H/C ratios (r²adj = 0.992 and 0.993, respectively); in loamy soil, best fits 

were obtained with O/C ratios (r²adj = 0.972) (Figures S.4 A and B).  

3.7 MRT and half life 

The single exponential decay model fitted the data with R² values ranging from 0.92 to 0.95. 

Both MRT and half-life of the C amendments depended linearly on their carbonization degree 

and on soil type, with the highest MRT of around 90 years for biochar in sandy soil (Table 4). In 

loamy soil, biochar MRT and half-life was significantly lower than in sandy soil (27 years), 

nevertheless it was still significantly higher than the MRT and half-life of all other C 

amendments (2-12 years). MRT and half-life of feedstock and HTCw was significantly higher in 

loamy soil compared to sandy soil (2 vs 0.3 years and 12 vs 10 years, respectively), whereas 

MRT and half-life of HTCs material were similar in both soils (≈ 2 years). 

3.8 Cmic and EOC with appending CO2 emissions 

Both mean Cmic and EOC were higher in loamy soil (Cmic = 266.8 µg g-1 dw, EOC = 200.2 µg g-1 

dw) compared to sandy soil (Cmic = 149.9 µg g-1 dw, EOC = 119.8 µg g-1 dw, p<0.001), 
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throughout all treatments except HTCw with similar values in both soils. HTCs led to highest 

EOC and Cmic amounts in loamy soil, whereas HTCw exhibited highest Cmic and EOC in sandy 

soil (Figure 5 A and B). Both Cmic and EOC correlated positively with the cumulated CO2 fluxes 

of the days 400-440 of the experiment. (0.681, p<0.001 and r=0.815, p<0.001) and final pH 

values (r = 0.67, p<0.001 and r= 0.68 p<0.001). The CO2 fluxes (days 400-440) were different 

for the factors soil and treatment with significant interactions for all treatments except the control 

treatment, where fluxes were similar in sandy and loamy soil. All other treatments exhibited 

higher fluxes in the loamy soil. The CO2 flux patterns were slightly altered compared to the 

experimental period before glucose addition, with a shift from feedstock mineralization towards 

HTCs and/or HTCw mineralization; fluxes from biochar treatment were reduced to levels similar 

to the time period before glucose addition, in both soils (Figure 5 C).  

3.9 PLFAs 

All bacterial (gram-positive and gram-negative) and fungal PLFAs were more abundant in loamy 

soil (total mean 22.4 nmol g-1 soil mix dry weight, HTCs > control/feedstock/HTCw/biochar), 

compared to sandy soil (7.7 nmol g-1 soil mix dry weight, no differences between treatments) 

(Figure 6). The C amendments had significant effects on most PLFA groups, with significant 

interactions regarding the soil type. In the loamy soil, HTCs caused a significantly larger 

abundance of gram-positive bacteria compared to all other treatments. The abundance of gram-

negative bacteria followed the sequence control/biochar ≤ HTCs/HTCw ≤ feedstock in sandy soil 

and control/feedstock/HTCw/biochar < HTCs in loamy soil. The abundance of fungal biomass 

was different according to the treatments in the sequence HTCs ≤ biochar ≤ feedstock/HTCw ≤ 

control in the sandy soil and control/biochar ≤ feedstock/HTCw < HTCs in the loamy soil.  
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In the loamy soil, fungi, gram-positive and gram-negative bacteria correlated well with EOC 

contents (r=0.778, p<0.001; r=0.710, p<0.001; r= 0.827, p<0.001). In sandy soil, only gram-

positive bacteria correlated weekly with EOC (r=0.535, p<0.05). Fungi, gram positive and gram 

negative bacteria as well as the total PLFA groups correlated with the cumulated CO2 flux (days 

400-440) (r = 0.657, p <0.001; r= 0.627, p<0.001; r= 0.645, p<0.001; r=0.725, p<0.001). 

4 Discussion  

4.1 C-degradation  

Laboratory incubation studies under constant conditions may underestimate the degradability of 

carbonized plant material (Ventura et al., 2014). Hence, in this study, a series of alternating 

conditions including N and labile-C addition were applied to accelerate degradation under high 

soil temperatures (except freeze-thaw cycles). The results suggest that especially C from 

feedstock and steam-carbonized HTCs was readily available to microorganisms, as indicated by 

high amounts of cellulose and large elemental ratios H/C and O/C (Siu and Reese, 1953; Eibisch 

et al., 2013). Water-carbonized HTCw was less degradable than HTCs and feedstock, but still 

significantly more degradable than biochar. Interestingly, HTCw triggered the degradation of 

native SOC rather than being mineralized itself, especially in sandy soil, as indicated by the 

isotope data shown in Figure 3. This behavior was also found by others and might origin from 

extra nutrients in HTCw available to microorganisms, thus increasing microbial mineralization of 

SOC (Steinbeiss et al., 2009; Bamminger et al., 2014). Nevertheless, the relative TOC loss was 

reduced by HTCw in sandy soil and was similar to the control in loamy soil, indicating, together 

with the relative C build-up at the end of the experiment, its suitability for C accumulation 

especially in sandy soils (Table 4, Figure 3). Biochar reduced the SOC- and TOC-losses from 
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both soils, though the reduction was more distinct in sandy soil, pointing to a negative priming 

effect. Negative priming, i.e. reduced SOC degradation following biochar amendment to soil has 

been observed before, mostly as medium- to long-term effect (5-16 months) (Jones et al., 2011; 

Zimmerman et al., 2011; Maestrini et al., 2014), whereas in the short-term (18-90 days), biochar 

amendment often increased the mineralization of SOC (Zimmerman et al., 2011; Maestrini et al., 

2014). Nevertheless, in our experiment, biochar did neither in the short- nor the long term 

increase the degradation of SOC independent of the soil type, nor was mineralized in significant 

amounts itself, which was also found by Cross and Sohi (2011). Consequently, the TOC contents 

in the sandy and loamy soils after biochar application remained significantly increased compared 

to all other C amendments, regardless of the alternating experimental conditions applied to foster 

decomposition. 

Biochar was less degraded in sandy soil, compared to loamy soil. The low initial SOC content of 

the sandy soil could imply that C-saturation had not occurred at the beginning of the experiment. 

Thus, a small but considerable C storage capacity, emanating from the clay content (5%) could 

have facilitated biochar stabilization by the formation of clay-biochar complexes (Baiamonte et 

al., 2014). Additionally, the increase of the soils´ WHC due to biochar amendment compared to 

the control could have facilitated the formation of soil aggregates in the biochar amended sandy 

soil (Piccolo et al., 1996; Glaser et al., 2002; Dugan et al., 2010), even though such effects are 

reported to occur only in the long term and with biochar application rates > 20t/ha (Borchard et 

al., 2014; Tammeorg et al., 2014). Moreover, these properties could apply to all C amendments in 

sandy soil and may thus not fully explain the stabilization of organic material by the biochar in 

sandy soil. Hence, sorption of (dissolved) organic material onto the biochar surface or 

encapsulation into biochar pores, limiting the substrate available to microorganisms, may better 

explain the negative priming effects observed here (Kasozi et al., 2010; Zimmerman et al., 2011; 
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Barnes et al., 2014; Lu et al., 2014). Chemical as well as structural properties of carbon(ized) 

substrates such as the elemental ratios of H/C and O/C and/or the amount of aromatic C 

compounds have long been identified as indicators for recalcitrance against degradation (Krull et 

al., 2009; Lee et al., 2010; Nguyen et al., 2010; Spokas, 2010; Schimmelpfennig and Glaser, 

2012; Singh et al., 2012), together with the ash content (Bai et al., 2013). This was confirmed by 

our experiment for the continuum of all four different C amendments, as the ratios of 

initial/remaining TOC correlated well with all structural properties (Figures S.4 A and B). 

However, as the C amendments, especially feedstock and biochar, interacted differently with the 

two soils, it seems obvious that soil characteristics such as diverse microbial populations in the 

different soils influenced the C degradation patterns as well, as was reported in other studies 

(Nguyen et al., 2014). Also, our observation that feedstock material was less degraded in loamy 

soil compared to sandy soil is confirmed by other studies (Zhang et al., 2014). Most likely, the 

lower C degradation rate in loamy soil can be attributed to the higher content of soil aggregates, 

rendering the amendments more recalcitrant against microbial decomposition as compared to 

sandy soil. 

Besides abiotic factors, negative priming of SOC observed with biochar was also attributed to 

biotic factors such as pH induced changes of the microbial population or inhibition of microbial 

metabolism by potentially toxic compounds released from biochar (Cross and Sohi, 2011; Jones 

et al., 2011; Zimmerman et al., 2011). Inhibitory effects e.g. by toxic components seem unlikely 

here, since the biochar did not contain toxic substances such as dioxins or polycyclic aromatic 

hydrocarbons when analyzed (unpublished results). Furthermore, substrate induced respiration 

measurements using subsamples of this experiment eight months after initiation showed that 

microbial biomass was increased but not decreased by all C amendments, compared to the 

control. Microbial biomass followed the reverse degradation order in the sandy soil (feedstock 
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>HTCs> HTCw > biochar > control) and the order HTCs > feedstock > biochar > HTCw > 

control in the loamy soil (Eckhardt, 2013). Nevertheless, negative priming caused by a decrease 

of the microbial and enzymatic activity has been found by others, possibly due to sorption of 

quorum sensing molecules onto biochar, rendering such molecules less available to soil 

microorganisms (Chintala et al., 2014).  

The slightly acidic pH of the sandy soil was increased significantly by biochar amendment at the 

start of the experiment and thus could have improved the milieu for microbial metabolism 

(Farrell et al., 2013); however, the observed decrease in C mineralization here counteracts this 

assumption.  

4.2 Kinetics, C loss and gain 

The MRT and half-life of the C materials could clearly be linked to their carbonization grade. 

Thereby, the structural properties such as cellulose content or the elemental ratios of H/C and 

O/C were suitable predictors for the C losses during the experimental degradation period over 

one year in both soils.  

The amount of C lost from the different C amendments during the experiment (Table 4) is 

slightly higher than data reported from other authors. Bai et al. (2013) used the same C-

amendments (except HTCw), mixed them with a range of soils and reported C-losses of 32-37% 

from feedstock (here: 43-98 %), 27-30% C-loss from HTCs (here: 41-45 %) and 0-3% C-loss 

from biochar (here: 2-5 %) over a period of 200 days. The differences are easily explained by a 

longer experimental duration, a higher incubation temperature and the alternating, diverse 

degradation-promoting conditions that were applied in this study. Nguyen et al. (2014) incubated 

a biochar produced at 450° C from switchgrass together with five different soils at 25°C and 60% 

WHC. Their reported C losses, in the range of 2.1-4.1%, are in line with the results obtained here.  
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Fang et al. (2014) incubated mixtures of woody (Eucalyptus salinga Sm.) biochar produced at 

550°C, with a range of soils over 12 months at 20-40°C and reported biochar-C losses of 0.30-

0.42% and 0.97-1.16% at 20 and 40°C respectively. Here, lower values may be explained by the 

difference in feedstock; woody biochars are considered more stable than biochar from more 

brittle plant material such as Miscanthus chaff, due to a higher amount of fused aromatic C-

structures and lower ash (SiO2) and mineral contents (Kloss et al., 2012; Singh et al., 2012; Zhao 

et al., 2013). 

The calculated MRT and half-lives for biochar in loamy soil in this experiment are rather short 

compared to the MRT of 550°C biochar reported in other studies (90-1014 years) (Keith et al., 

2011; Gajić et al., 2012). This might be attributable to the disturbance events plus N and glucose 

additions during the experiment, since the fluctuations in the C-degradation rates following these 

events were mostly very high and consisted of several degradation boosts. Thus, the influence of 

disturbance events on the degradation of C amendments might have been underestimated in 

modeling of their stability so far. Nonetheless, our general result, the prolongation of the half-life 

of uncarbonized Miscanthus × giganteus straw by hydrothermal carbonization and pyrolysis are 

in good agreement with the results of Bai et al. (2013) and Quayyum et al. (2012), although none 

of these studies used a continuum of four carbonization types or disturbance events, fertilization 

and priming. Thus, the results confirm the suitability of hydrochar (especially HTCw) and more 

so biochar to increase the soils´ TOC content and to sequester C even under exposure to 

degradation-promoting conditions.  

4.3 N2O emissions in relation to the carbonization grade 

All C amendments except biochar significantly increased the cumulative N2O emissions over the 

course of the incubation study compared to the control. Biochar reduced the N2O emissions by 
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26.5 and 8.5 % in sandy and loamy soil compared to the control however the reductions were not 

significant. The largest N2O emission increase was observed with the straw-like uncarbonized 

Miscanthus feedstock amended to loamy soil, while the increase was less in the sandy soil 

(although highest among all C amendments). The same effect – increased N2O emissions with 

uncarbonized compared to pyrolyzed wheat straw – was observed by Cheng et al. (2012) in a 

field study on Chernozem soil. Wolf et al. (2010) observed that grazing, i.e. the removal of grassy 

litter, reduced the N2O emissions of Mongolian steppe significantly, and that grassy litter 

decomposition may be an underestimated source of N2O formation in natural or semi-natural 

grasslands. The latter, as well as our findings, are in line with earlier observations in the grassland 

field site (where the loamy soil for the incubation had been taken): Schimmelpfennig et al. (2014) 

observed significantly increased N2O emissions in the second year after top-dressing of 

Miscanthus straw. No increase was found when the same amount of straw-C was applied as 

biochar. Rather, N2O emissions tended to be reduced during a freeze-thaw period 

(Schimmelpfennig et al., 2014). The reduction in N2O emissions by (woody) biochar amendment 

is a common finding confirmed by meta-analysis (Cayuela et al., 2014; Van Zwieten et al., 2015).  

For hydrochar, less information is available. While Malghani et al. (2013) observed N2O 

emission reductions following hydrochar application to non-fertilized soils, Kammann et al. 

(2012) reported that soil N2O emissions were greatly stimulated in an incubation study after 

mineral-N fertilizer had been added to loamy soil amended with two different hydrochars. In the 

above-mentioned grassland field study, Schimmelpfennig et al. (2014) found no changes in the 

N2O emissions due to hydrochar application. However, this study indicates that hydrochar 

amendments still stimulated N2O emissions significantly compared to the unamended control, 

but that the increase was reduced (more so with increasing HTC carbonization grade) and 

retarded in time and/or dependent on N-fertilization compared to the uncarbonized feedstock.  



28 
 

In our study, differences in the water/oxygen content of the soils were likely eliminated by 

adjusting the WHC (Case et al., 2012). However, continuous O2 consumption during the 

mineralization of the more labile C compounds may have reduced the redox potential of the soil 

mixtures, triggering the use of NO3
- as electron donor for denitrification (Miller et al., 2008). 

Especially in the SOC richer loamy soil, a higher amount of anaerobic microsites may have, 

together with the higher pH, promoted denitrifying bacteria (Firestone, 1982; Herold et al., 2012). 

Moreover, fungal co-denitrification often dominates N2O emissions in temperate grassland soil 

(Laughlin and Stevens, 2002). A larger fungal biomass fraction was indeed confirmed for the 

loamy-soil HTCs and HTCw treatments at the end of the incubation study (p<0.001), whereas the 

fungi in the feedstock treatment were only slightly increased. Here, the microbial community 

composition likely had changed over the course of the experimental period. The easily accessible 

feedstock C may have been depleted so that the fungal biomass was reduced again when finally 

measured. Summarizing the evidence obtained here and earlier (Schimmelpfennig et al., 2014), 

we have evidence that N2O production by denitrifying fungi may have been responsible for the 

higher N2O emissions with uncarbonized or weaker carbonized materials (Laughlin and Stevens, 

2002; Oehl et al., 2010), and that this effect was more pronounced in the loamy than sandy soil. 

Additionally, biochar but not hydrochar application offers the possibility to reduce N2O 

emissions from soils compared to the application of decomposable straw materials. The most 

interesting open question is if the combination of labile straw material with biochar would result 

in lower-than-straw-alone N2O emissions.  

4.4 Predicting N2O emissions: correlation of CO2 and N2O 

A high amount of cumulative CO2 emissions (i.e. mineralizable C) correlated with high 

cumulative N2O emissions. Vice versa, the lack of an additional organic C source (control) as 
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well as a C amendment with little mineralizable C (biochar) resulted in low N2O emissions. This 

behavior only became evident because of the carbonization gradient used in our experiment and 

due to the varied incubation conditions over 13 months. Other char-application studies where 

CO2 and N2O emissions were monitored simultaneously did not report a correlation; however, 

the fluxes were not cumulated for comparison (Van Zwieten et al., 2010). As to hydrochar, such a 

relation was found earlier, with high mean CO2/N2O fluxes from beet/bark hydrochar applied to 

a loamy soil, assumedly due to stimulation of microbial activity (Kammann et al., 2012). Our 

results suggest that using the CO2 emissions after litter amendment for predicting cumulative 

N2O emissions may be a promising approach that deserves further study.  

4.5 Methane fluxes 

The methane fluxes in the experiment were negligible in the sandy soil, whereas methane 

oxidation was improved by all C amendments in loamy soil, inversely to their carbonization 

degree (strongest with feedstock, lowest by biochar). Karhu et al. (2011) also observed a 

doubling of the CH4 uptake in grassland soil when biochar was ploughed into the top soil; the 

authors attributed this to improved soil aeration. This can largely be excluded for this study since 

the WHC was adjusted to equal values and the most labile substrates, where more O2 must have 

been consumed by decomposition, showed the strongest stimulation in CH4 oxidation. The 

capacity of soil to take up methane is generally a function of land use, with tilled agricultural soil 

exhibiting lower oxidation potentials than no-tilled, temperate soils (Mosier 1997). The methane 

oxidation capacity of soils was found to correlate with the N status of the soil, in a way that high 

amounts of available N limited the activity of methanotrophs in non-wetland soils (Chan and 

Parkin, 2001; Aronson and Helliker, 2010). Thus, interactions of the denitrifying and the 

methanotrophic/methanogenic microorganisms may have been underestimated so far. More 
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mechanistic studies are necessary to identify the causes for the observed increase in the CH4 

consumption following C amendment. 

4.6 Disturbance events 

Initial CO2 outbursts following the admixture of biochar, hydrochar and feedstock material such 

as straw to soil have been widely reported (Zimmerman, 2010; Qayyum et al., 2012; Eibisch et 

al., 2013; Fang et al., 2014), and have been confirmed by our experiment for feedstock and both 

hydrochars. In contrast to most reported studies, CO2 emissions from biochar amended soil in our 

experiment were at none of the measured time points higher than emissions from the control soil. 

Rather, they were mostly lower than the control, especially in the sandy soil, (except during 

freeze-thaw events). Such contrasting results can likely be explained by the different properties of 

the biochars used here compared to other studies (low temperature biochar ≤ 375°C (Bruun et al., 

2008), or a biochar with smaller particle sizes (Jones et al., 2011). Also, our biochar has been 

stored 12 months in a closed but not air-tight box before use, thus some production prone, easily 

degradable volatile compounds might have outgassed over the storage time. 

By applying N-fertilizer, we aimed at lowering the C/N ratio of the soil to facilitate C degradation 

and trigger CO2 and/or N2O emissions (Chantigny et al., 1999). This occurred for the first two 

fertilization events and led to a CO2 emissions peak in the feedstock and HTC treatments, 

indicating the presence of labile, biologically available C compounds. None of the later 

fertilization events triggered further peak emissions from any of the treatments, suggesting that 

most of the labile compounds had been degraded. Only the disturbance of the soil structure by 

simulation of plowing led to renewed C and N degradation of feedstock and hydrochar in both 

soils, assumedly due to destruction of soil aggregates, improving the accessibility of C 

compounds, and provision of oxygen (West and Marland, 2002). Similar results have been 
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reported from an experiment with two hydrochars and four biochars mixed with a Luvisol, where 

simulated plowing led to high CO2 and N2O emissions from the hydrochar soil mixtures, 

compared to the control (Kammann et al., 2012).  

Water logging of N-rich soil promotes denitrifying enzyme gene expression in bacteria using 

NO3
- as electron acceptor. The increase of the WHC to 100%, simulating heavy rainfall, led to an 

immediate short-term increase of CO2 and N2O emissions from all treatments, though emissions 

from biochar treatments were still lower than, or equal to, the control soil. Also, Kammann et al. 

(2012) reported high N2O emissions of biochar amended, N-fertilized and nearly water-logged 

soil (80% WHC).  

Freeze-thaw cycles had unexpectedly a rather small though stimulating effect on the GHG 

emissions. This might be explained by the experimental setup, i.e. the disturbed soil structure and 

removal of vegetation due to sieving of the soil. During freeze-thaw events, the die-off of fine 

roots and disruption of soil aggregates largely contribute to CO2 and N2O emissions (Logsdail 

and Webber, 1959). Thus, intact soil cores could have led to more distinct effects of frost-thaw 

cycles. Moreover, a different sequence of the disturbance events in the experiment, e.g. freeze-

thaw cycles at an earlier time point might have resulted in greater effects on the degradation of 

the C amendments. However, freeze-thaw cycles led to significantly higher although small 

amounts of CO2 emissions from biochar amended soil compared to the control soil, indicating 

some small effects of freeze-thaw events on biochar degradation. This can possibly be explained 

by the disruption of small biochar-soil aggregates, generating particles susceptible to microbial 

attack (Eastman, 2011), In another experiment, biochar significantly reduced both ammonium 

and nitrate leaching and N2O emissions from vegetated soil cores subjected to freeze-thaw 

events, assumedly due to N-retention (Kettunen and Saarnio, 2013). The same tendency was 
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observed in data from a grassland field experiment, indicating that this interaction requires 

further attention (Schimmelpfennig et al., 2014).  

4.7 Priming experiment  

Glucose addition led to positive priming of Miscanthus-C, indicating that Miscanthus-C was 

susceptible to co-metabolism during glucose mineralization, especially since N was not a limiting 

factor (Kuzyakov et al., 2000). The relative fraction of positive priming (although low in absolute 

terms) was most prominent for the higher-temperature C-amendments such as HTCw and 

biochar, especially for biochar in sandy soil, where the biochar may have been less protected 

within soil aggregates compared to loamy soil (Hamer et al., 2004). Glucose addition increased 

mean biochar mineralization by the factor 6.5, compared to the average daily flux of all other 

sections (Table 4), as was found also by (Kuzyakov et al., 2009), incubating Haplic Luvisol with 

ryegrass char. This could indicate that possibly similar biochar compounds may generally be 

prone to co-metabolization.  

Glucose addition had little priming effects on the degradation of feedstock and HTCs, likely due 

to the fact that these materials had been largely mineralized already (Table 3). Thus, labile-C 

priming (e.g. root exudates) and freeze-thaw cycles deserve further study with regard to their 

impact on long-term biochar stability.  

4.8 Microbial biomass and composition  

Microbial biomass and composition were analyzed at the end of the experimental period, 

corresponding to the end of the proliferation period following glucose amendment (Stotzky, 

1965). Therefore, the results reflect the microbial population and related microbial data at the 

experimental period when the glucose effect had declined. EOC, Cmic and all PLFAmic groups 

were higher in the loamy soil compared to sandy soil. This is likely due to the loamy texture, 
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supporting aggregate formation and habitats for microorganisms (Monreal and Kodama, 1997). 

Additionally, disturbance of the soil structure and aggregates during glucose admixture likely 

triggered the availability of aggregate protected SOC and EOC to microorganisms (Rovira and 

Greacen, 1957). The considerable drop of the pH of the soil mixtures, especially in the loamy soil 

(about one unit) confirms the higher biological activity in loamy soil, leaving protons as 

metabolite from oxidation. 

The increase in the microbial biomass and activity following EOC provision in soil, especially for 

fungi, is well known (Burford and Bremner, 1975). Interestingly, only HTCs increased the total 

microbial biomass in loamy soil significantly, coinciding with high EOC values in this treatment 

(Figure 5 a and b). An increase in Cmic due to hydrochar amendment (maize silage, application 

rate 4-8 g kg-1) compared to the arable control soil was also found by Bamminger et al. (2014), 

even in the same order of magnitude (doubling of Cmic compared to the control). Concentrations 

of nutrients plus depolymerization of C structures during the hydrothermal production process, 

increasing the availability of both nutrients and C to microorganisms are likely the reasons for the 

preference of microorganisms for HTCs, as compared to all other materials including the 

uncarbonized feedstock (Funke et al., 2013a; Funke et al., 2013b).  

Cmic, PLFA and especially EOC in biochar amended sandy soil were low, leading consequently 

to low CO2 emissions (Figure 5 c). A lower fungal and total biomass in the biochar- compared to 

the control soil indicates on the one hand higher persistence of microbial biomass in the control 

soil after glucose addition, on the other hand that biochar decreased the availability of organic 

material to microorganisms, possibly by sorption mechanisms or blocking of pores, also inducing 

the negative priming effect found earlier in the experiment. In loamy soil, biochar had no such 

effect; if EOC sorption occurred, the high background C values, as compared to the sandy soil, 

may have overlaid the influence of sorption. Since the incubation temperature was very high, the 
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microbial community might have adapted and changed during the experimental period. The 

results might therefore not be comparable to field studies, in-situ experiments and incubation 

experiments under temperature regimes simulating the current climate.  

4.9 Remarks on the experimental setup 

One limitation of our experimental setup was a limited number of CO2 isotope measurements. 

The extrapolation of one isotope measurement to the whole experimental period until glucose 

addition might have disregarded any changes in the Miscanthus-C fraction during the different 

sections. However, results from Luo et al. (2011) and Nguyen et al. (2014) suggest that most of 

the source variations in the CO2 occur during the early degradation period of 22-30 days. Thus, 

the time point of our 13CO2 measurement at the end of Section 1 represents the rather moderate 

C-degradation period when the labile fraction already had been mineralized. As a consequence, 

our data more likely underestimate than overestimate the Miscanthus-C fraction in total CO2 

emissions. 

Another limitation of the experimental setup is the interdependence of the degradation events, as 

they were applied consecutively instead of as parallel treatments. The sequential application of 

the degradation events may have overlaid the effect of one single event. However, the repeated 

exposition to degradation promoting events may also lead to intensification of the processes 

leading to C-loss, triggering positive feedbacks and legacy effects. Thus, our experiment creates a 

worst-case scenario for the degradation of the C-amendments. Less extreme experimental 

conditions might have resulted in a higher stability of the C-amendments.  
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5 Conclusion 

In this study, the intrinsic recalcitrance of the C amendments was the most important factor 

determining degradation. However, the experimental setup i.e. the use of sequential disturbance 

events could have blurred the influence of one single disturbance event. Further studies that focus 

more closely on the influence of specific disturbance events such as frost-thaw cycles or wet-dry 

cycles on GHG emissions and C degradation are necessary to provide a clearer picture. Highest 

degradation rates were found for feedstock, and lowest for biochar. On average, CO2 accounted 

for 86.5% of the cumulative GHG equivalents, highlighting the importance of the stability of C 

amendments in soil with respect to GHG mitigation and C sequestration. The cumulated CO2-

emissions correlated with the cumulated N2O-emissions, an effect that is worth to be studied 

further, to be able to better predict the environmental consequences of biochar/HTC application 

to soil. C was lost in significant amounts from all C amendments except biochar over the 

experimental period in both soils. The CO2 emissions from biochar amended soil were, 

throughout all degradation events, never higher than emissions from the control soil. Rather, they 

were mostly lower than the control, especially in the sandy soil (except during freeze-thaw 

events). Additionally, biochar induced a negative priming of SOC, whereas HTCw and feedstock 

led to a positive priming effect in sandy or loamy soil. The mechanisms and processes leading to 

negative priming of SOC following biochar amendment require further research. Also, as 

incubations only allow for first insights, verification of the degradation behavior of C 

amendments under the influence of degradation promoting disturbance events in field 

experiments, including vegetation and its root-C delivery as well as its below-ground micro-

biome are necessary. 
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Tables 

Table 1: Elemental composition of the carbon amendments, means ± SD (n=3). Oxygen values 

were determined by difference (100-the sum of the other elements and ash). All values refer to 

the dry weight. Letters depict significant treatment differences (One way ANOVA, Holm-Sidak 

Post-hoc test P<0.05).  

 

Table 2: Mean cumulated GHG (CO2eq) fluxes, means (n=4) ± SD during the different sections 

[g CO2eq kg-1 soil mix]. Letters indicate significant differences between the treatments in each 

section across both soil types (One-way ANOVA and Holm-Sidak Post-hoc tests, CI=95%). 
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Table 3: Mean daily char-C-loss [mg d-1] during the five sections, means ± SD  

 

Table 4: Remains of initial char-C, TOC build-up on day 399 of the experiment in %, mean 

residence time (MRT) and half-life [years] of the carbon amendments in the two different soils 

(mean ± SD). Letters depict significant differences between the treatments (ANOVA on Ranks, 

followed by SNK-post-hoc-test, CI = 95%). 

 

Table S.1: Statistical results of the two way ANOVA with the factors soil, treatment and soil × 

treatment effects (CI = 95%); MRT, mean residence time; WHC, water holding capacity. 

 

Table S.2: pH values of the soil-substrate mixes, at initiation and end of the experiment (n=3 ± 

SD). Letters indicate significant treatment differences at the different time points 

(ANOVA+Holm-Sidak post-hoc test (CI = 95%) 

 

Table S.3: Greenhouse gas emissions (CO2, N2O, CH4) over the incubation period, expressed in 

GHG equivalents with their respective shares in percent 

 

Table S.4: Shares of char-C in total CO2 fluxes [%] on the 21st of September 2012 (end of 

Section 1) and the 31st of May 2013 (Start of Section 5), as determined by Keeling Plots and an 

isotope mixing model 

Figure captions 

Figure 1: Cumulated mean CO2, N2O and CH4 fluxes over time (left, a, d, g; and right, c, f, i) 

and total GHG flux sums at the end of the experiment (middle, b, e, h). Error bars indicate 
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standard deviation (n=4); letters mark significant differences between treatments (one way 

ANOVA and Holm-Sidak post-hoc test (CO2, N2O), or ANOVA on Ranks and Tukey post-hoc 

test (CH4), CI = 95%). 

 

Figure 2: Total CO2eq fluxes [g CO2 kg-1 soil mix, left Y-axis] of the five treatments over the 

incubation period (days 0-399) with mean and standard deviation. The white area marks the 

WHC [in %, right Y-axis]; differently patterned areas mark the five Sections of the disturbance 

events. A: sandy soil, B: loamy soil  

 

Figure 3: Percental SOC, char-C and TOC-remains (A, B and C) at the end of the incubation 

period (day 399, n=4), means ± SD. Letters depict significant treatment differences, as 

determined by one way ANOVAs and Holm-Sidak or LSD Post-hoc tests or an ANOVA on 

Ranks with a SNK Post-hoc test (CI = 95%). 

 

Figure 4: Percental char-C-loss over the incubation period, separated according to the different 

sections. Letters depict significant differences among the treatments (Kruskal-Wallis-ANOVA on 

Ranks and Tukey test, CI=95%). A=sandy soil, B=loamy soil. 

 

Figure 5: Mean and standard deviation of Cmic, EOC [µg g-1 soil mix] and cumulated CO2 fluxes 

[mg g-1 soil mix] at the final period of the experiment in the two different soils. Letters depict 

significant treatment differences (Two way ANOVA and Holm-Sidak post-hoc test, CI = 95%). 

 

Figure 6: Total mean PLFA concentration [nmol g-1] ± SD and their gram+, gram- and fungal 

shares given in grey shades. The white lowercase letters indicate significant treatment differences 
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in gram+ bacteria concentrations, black lowercase letters mark treatment differences in gram- 

bacteria concentrations, Greek letters show differences between fungal PLFA concentrations and 

uppercase letters give differences in total PLFA concentrations. 

 

Figure S.1: Initial maximum water holding capacity [%] of the soil-substrate mixtures. Letters 

depict significant differences between treatments in sandy (small letters) and loamy (big letters) 

soil (two-way ANOVA with Holm-Sidak Post-hoc test CI = 95%). 

 

Figure S.2: Pearson correlation of cumulated CO2 and N2O fluxes [g kg-1 soil mix]. 

 

Figure S.3: Shares of the single GHGs in total CO2eq fluxes [g CO2 kg-1 soil mix] of the two 

soils. Latin letters and asterisks mark differences according to the single GHGs (one way 

ANOVA followed by Tukey HSD post-hoc tests, CI = 95%), Greek letters mark significant 

differences of the total cumulated CO2eq emissions. Note different scales. 

 

Figure S.4 A and B: Non-linear regressions of the elemental composition and structural 

properties of the different carbon amendments with C initial/C remaining ratios. A=sandy soil, 

B= loamy soil. 
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