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Main text 25 
Music, despite its variety across the world, exhibits some cross-cultural similarities. Evidence 26 
from a broad range of human cultures suggests the existence of musical universals 1, here 27 
defined as strong regularities emerging across cultures above chance. In particular, humans 28 
demonstrate a general proclivity for rhythm 2, though little is known about why music is 29 
particularly rhythmic, and why the same structural regularities are present in rhythms around 30 
the world. Here we empirically investigate the mechanisms underlying musical universals for 31 
rhythm, showing how music can evolve culturally from randomness. Human participants are 32 
asked to imitate sets of randomly generated drumming sequences, and their imitation attempts 33 
become the training set for the next participants in independent transmission chains. By 34 
perceiving and imitating drumming sequences from each other, participants turn initially 35 
random sequences into rhythmically structured patterns. Drumming patterns develop into 36 
rhythms which are more structured, easier to learn, distinctive for each experimental cultural 37 
tradition and characterized by all six statistical universals found among world music 1, 38 
appearing adapted to human learning, memory, and cognition. We conclude that musical 39 
rhythm partially arises from the influence of human cognitive and biological biases on the 40 
process of cultural evolution 3. 41 
 42 
Percussion instruments may have provided the first form of musical expression in human 43 
evolution. Great apes - our closest living relatives - show drumming behaviour 4, which they 44 
can learn socially 5, producing some human-like rhythmic sequences 6. Hence, percussive 45 
behaviour may have already been present in our ancestors some million years ago before the 46 
split between human and Pan lineages 2. Archaeological findings also suggest that the first 47 
human musical instrument might have been percussive, as also attested in modern hunter-48 
gatherer societies around the world 7. This makes rhythm a particularly apt musical dimension 49 
to reconstruct crucial steps in the evolution of music. 50 
 51 
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Six rhythmic features can be considered human universals, showing a greater than chance 52 
frequency overall and in all geographic regions of the world. These statistical universals are:  53 

• a regularly-spaced (isochronous) underlying beat, akin to an implicit metronome;  54 
• hierarchical organization of beats of unequal strength, so that some events in time are 55 

marked with respect to others;  56 
• grouping of beats in 2 (e.g. marches) or 3 (e.g. waltzes);  57 
• with a preference for binary (2-beat) groupings;  58 
• clustering of beat durations around few values distributed in less than five durational 59 

categories;  60 
• use of durations from different categories to construct riffs, i.e. rhythmic motifs. 61 

 62 
Until now, research on musical universals has focused either on individual psychological 63 
processes 8, investigating rhythm perception/production in meticulously controlled 64 
environments 9,10, or large-scale phenomena, performing cross-cultural analyses of world 65 
musical traditions 11,12. Combining these approaches, here we show that basic psychological 66 
mechanisms (working memory, perceptual primitives, categorical perception, etc.) can lead to 67 
large-scale musical universals via cultural transmission. Our experiment aims at 68 
reconstructing in the lab (Figure 1a) how initially unstructured sounds might have been 69 
shaped into complex musical systems by early humans perceiving and imitating them 7,12,13.  70 
We test experimentally controlled human micro-societies and show that indeed cultural 71 
transmission accounts for the emergence of both structural regularities and all predicted 72 
rhythmic universals. Our method builds on previous experimental methodologies, which 73 
showed how systematic structure may emerge from weak learning biases 14. 74 
 75 
Similarly to the vertical transmission shaping the complexity and variety of musical cultures 76 
3,12, in our experiment each participant hears and has to imitate drumming patterns received 77 
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from a previous participant, who himself has copied them from someone else and thereby 78 
potentially introduced errors. In measuring the changes that occur to the drum patterns, we 79 
can observe how cognitive biases for rhythm are magnified and mirrored in musical structure, 80 
and how initially independently reproduced sequences come to pattern together as part of an 81 
overall rhythmical system 15. As predicted, after several experimental generations, initially 82 
random sequences transform into increasingly structured and learnable music-like patterns. In 83 
addition, these patterns show convergence towards all the six rhythmic universals found in 84 
human musical cultures 1. 85 
 86 
First, sequences acquire systematic structure. Systematicity is a measure of mutual 87 
predictability among the elements of a system, quantifying how much structural information 88 
about a whole system is provided by each constituent element. In musical harmony for 89 
instance, rock-n-roll is very systematic, because knowing a musical excerpt provides a better 90 
than chance guess on chord progressions of a broad range of songs, while dodecaphonic 91 
music is less systematic. Here we find an increase in structural similarities and combinatorial 92 
structure over generations (Page’s trend test; L=1558.0, m=6, n=9, p<0.001; Figure 1b) 93 
 94 
Second, sequences become easier to learn. A system or structure is highly learnable if it can 95 
be rapidly acquired with low error by an organism. Reproduction errors (time distance 96 
between participants’ output) decrease over generations (Page trend test; L=833, m=6, n=8, 97 
p<0.0001; Figure 1c). Learners in later generations found the rhythms easier to imitate 98 
accurately, indicating that patterns increasingly fit participants’ cognitive biases. 99 
 100 
Third, timing patterns converge to durational categories. The frequency distributions of inter-101 
onset intervals (IOIs i.e. time between consecutive drum hits) of all chains show a similar 102 
pattern across experimental generations: Initial uniform distributions (the random patterns 103 
presented to the first generation) converge on chain-specific clusters of IOIs by the final 104 
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generation (Figure 2). A K-means cluster algorithm shows that rhythmic patterns converge to 105 
3 durational categories (Table 1S in supplement), matching the statistical universal across 106 
world musical cultures which predicts less than five categories 1,11. The range of durations 107 
produced by our participants is consistent with musical rhythms, as used in rhythm 108 
experiments 9. The first cluster in all chains has a median of 203 ms (Table S1), close to 200 109 
ms, a recurrent durational value in musical rhythm and meter 16. Moreover, the resulting 110 
clusters’ centroids are related by ratios close to integer ratios (Table S1). 111 
 112 
Fourth, the increase in systematicity and learnability maps to the emergence of repeating 113 
structures (phase-space plots of IOIs in Figure 3a). Specifically: (a) rhythmic patterns acquire 114 
motivic structure, another musical universal 1, i.e. rhythmic “riffs” emerge corresponding to 115 
polygons in phase-space coordinates, where the number of vertices equals the length of the 116 
repeating riff within a pattern 17; (b) riffs are used multiple times by each participant across 117 
separate drum patterns, shown by similar polygons overlapping in one state-space plot; (c) 118 
motivic patterns evolve gradually as they are passed from earlier to later generations (Figure 119 
3a, similar polygons in different plots of one chain); (d) riffs partly differ between chains 120 
(different polygons in different chains). 121 
 122 
Fifth, sequences become more metronomic (isochronous), hierarchically structured (metrical), 123 
and composed by durations related by small-integer ratios. Isochrony and meter in perceived 124 
music are usually probed by asking participants to tap along, testing whether their taps occur 125 
at simple multiples or at divisors of the occurring musical intervals. As our task involves 126 
musical production, we reversed the above logic: participants creating a metrical grid with 127 
binary and ternary subdivisions and an underlying regular beat 18 would produce: (a) adjacent 128 
IOIs related by small integer ratios, (b) with many values close to 1:1 (equal-length IOIs), (c) 129 
or ratios of 2 and 3 (showing binary and ternary subdivisions) 18, and, (d) strongest beats 130 
occurring at IOIs twice or three times multiple of each other, suggesting musical meter. We 131 
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find that distributions of ratios in the last generation (Figure 4a-b) significantly differ from a 132 
simulated uniform ratio distribution, predicted under null hypothesis of no pairwise structure 133 
between IOIs (2-sample Kolmogorov Smirnov test; all D>0.08, all p<0.01, see SI). This holds 134 
for both distributions of adjacent IOIs and of IOIs between high-intensity hits, suggesting the 135 
existence of structural relationship between IOIs. We then tested whether peaks in the ratio 136 
distributions (Figures 4a-b) correspond to specific constant relations between IOIs (see 137 
Methods). The highest peak in Figure 4c occurs at 1.015, and the median of the distribution is 138 
.968. Both values are close to 1:1, providing moderate evidence for isochrony, another 139 
universal. We then test whether the highest peaks in Figures 4a-b coincide beyond chance 140 
with those expected theoretically in actual music. For adjacent ratios, we find four peaks, 141 
namely at: 1:2, 1:4, 3:2 and 3:4. The match between ratios expected in music and 142 
experimental ratios is not attributable to chance. (The corresponding Jaccard index, measuring 143 
overlap 19, is J=0.222. A randomization test returned an average Jaccard’s index J=.064, 144 
pseudo p-value: p’=.029, see Methods.) A similar analysis on the distribution of ratios of IOIs 145 
between strong beats (median=0.947), found support for the hypothesis that meter is 146 
exclusively binary (J=.028, p’=.045), with strong and weak beats alternating, but not 147 
exclusively ternary (J=.028, p’=1.0). Strong beats occur above chance in intervals that are half 148 
or double each other in length (i.e. related by 1:2 and 2:1 ratios). Notes of ternary length exist, 149 
but do not always coincide with the metrical grid (e.g. a binary meter with many notes of 150 
length 1/4 and 3/4). This suggests the presence of (a) an underlying regular beat, which is (b) 151 
composed of alternating weak-strong beats, and (c) used as a reference duration to generate 152 
other notes’ duration (by multiplying and dividing it by 2 or 3), providing evidence for the 153 
remaining universals. 154 
                     155 
Sixth, chains evolve independently. We calculated the Kolmogorov-Smirnov D statistic for 156 
each generation and pairs of participants using their distribution of IOIs to quantify the degree 157 
of cultural divergence. Chains significantly diverge over generations towards separate 158 
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lineages with different timing structure (L=1586.0, m=6, n=9, p<0.001; Figure 3b). Moreover, 159 
all IOIs distributions of the final generations are significantly different between chain pairs 160 
(Kolmogorov-Smirnov tests, all D<0.3, all p-values <0.01, Table S2 in supplement). Hence, 161 
the drum patterns within the same lineage participate in a system of rhythmic patterns sharing 162 
similar characteristics or motifs. As in actual music 12, chains gain more structure over 163 
generations, though each transmission chain develops its own set of structural features. 164 
 165 
It has been debated whether some human biological traits evolved under selective pressures to 166 
specifically hear and perform music 2,7,20-22. Our data supports an alternative hypothesis: 167 
musical structure appears to evolve out of, and get shaped by, more general constraints on 168 
learning and memory. In this experiment, rhythmic features evolve cumulatively and 169 
gradually from randomness. We obtain divergent musical cultures, where each “musical 170 
culture”, corresponding to an experimental chain, constitutes a system by itself. The 171 
transmission process we re-created in the lab leads to the appearance of design: the patterns 172 
evolve in such a way that they appear well adapted to the challenge of being learnable. 173 
Generation after generation, learners introduce errors in their efforts to replicate the sequences 174 
they hear. The process eventually results in the emergence of rhythmic patterns that are easier 175 
to reproduce. Systematic similarities between patterns emerge within a chain: Patterns that no 176 
longer act independently may facilitate learning over generations, as it is easier to remember a 177 
small number of motifs rather than thirty-two totally independent patterns. Participants were 178 
chosen to be non-musicians, so no previous skills in music performance can account for the 179 
quick generation of musical patterns we observe. They were instructed to recreate each 180 
sequence as closely as possible, neither to innovate, nor to treat the sequences as being 181 
related. Crucially, as in human music, our laboratory experiment leads to emergence of 182 
commonalities, but also diversity. This experiment provides evidence for the universality of 183 
musical features emerging through cultural transmission 1,3. 184 
 185 
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Similarly to previous results on the evolution of linguistic structure 15,23,24, we hypothesize 186 
that a few perceptual, learning and production biases may be responsible for the regularities 187 
evolving in our drumming patterns. Formation of durational categories and small integer 188 
ratios between intervals might be partially amenable to categorical perception of rhythmic 189 
sequences. In fact, small ratios function as attractors when musicians are asked to categorize 190 
notes of varying durations not related by integer ratios 25. The proximity, although not 191 
equality, to integer ratios dovetails with previous findings in music psychology 26. Emergence 192 
of few durational categories and motifs may instead be a by-product of the human tendency to 193 
compress sensory stimuli, possibly dictated by working memory constraints and limited 194 
capacity for processing information 27. Conversely, motor biases seem to only moderately 195 
influence the structures obtained: humans’ preferred tapping rate of 600 msec 17 is rarely 196 
found in our IOI distributions and clusters (Table 1S and Figure 2). However, our experiment 197 
cannot disentangle which human biases generating musical features are basic and which are 198 
acquired, and at least two alternative hypotheses can account for our results. In other words, 199 
the fact that our participants have already been exposed to a musical culture may be shaping 200 
the results. Two points speak against this interpretation, however. First we see clear 201 
divergence between chains, suggesting that there is no single culturally acquired attractor that 202 
is driving the evolution of the systems. Secondly, there are striking parallels in the evolution 203 
of systematic structure between this experiment and another sequence learning experiment in 204 
the non-musical domain 15. Ultimately, cross-cultural replications of this experiment will be 205 
needed to accurately gauge the influence of acquired biases in this task.  206 
 207 
Music, language, and dance all involve copying to some extent, though imitation/copying is 208 
only one of many factors in their evolution 3,21,22,29. Although the motivations to copy are 209 
likely to differ, the outcomes seem to be similar. We believe the assumption that early 210 
humans might have had a motivation to copy music-like sequences is quite realistic. Several 211 
hypotheses on the origins of the biological capacity for musical rhythm involve some 212 
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motivation to copy or imitate. These hypotheses often suggest imitation, learning or 213 
synchronization of audio-motor behaviours as a necessary step to achieve inter-individual 214 
coordination, group cohesiveness, mating success or territorial defence, providing in turn 215 
evolutionary pressures on the development of modern humans’ rhythmic abilities 20. 216 
 217 
Human music is inherently structured, showing a few structural similarities across musical 218 
cultures and traditions. Why do these similarities arise? How do different musical traditions 219 
end up with similar features? We have addressed these questions empirically: In the 220 
laboratory, we set the conditions for random percussion patterns to be transmitted, similarly to 221 
real musical traditions. As a result we are able to witness the evolution of musical rhythmic 222 
structure in real time as it responds to human constraints and converges towards all six 223 
statistical universals found among world rhythms. Musical rhythmic universals arise because 224 
human behaviour and cognition slightly transform what is copied 13,23,28,29. These 225 
transformations, amplified by the process of cultural transmission, lead to diverse musical 226 
traditions, containing nonetheless a few universals: traces of the biology of the organisms 227 
who created them. 228 
 229 
Methods 230 
Participants. Forty-eight participants (mean age 23y, 4m; females = 37) were recruited from 231 
the University of Edinburgh’s graduate employment service “to participate in a 30-minute 232 
drumming experiment”. Each received £5 for participating. Musicians (having formal musical 233 
training or regularly practiced a musical instrument) were excluded from participation. 234 
Sample size was established a priori based on a meta-analysis of previous iterated learning 235 
experiments 14,24,30-35. 236 
 237 
This experiment is modelled on a simple transmission chain paradigm, in which learners 238 
receive training input from the output of the previous learners 36. Participants were randomly 239 
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assigned to six different lineages (transmission chains: C1,C2,...,C6), each containing eight 240 
“generations” of learners (1,2,...,8). The first generation of participants in all chains heard 241 
different randomly generated patterns as training input (first column in Figure 2 and Figure 242 
3a). 243 
 244 
Stimuli. Participants in each generation were presented with 32 drum patterns. These patterns 245 
were random drum sequences (Random/Generation 0) or sequences produced by a previous 246 
participant (Generation 1-8). The 32 initial and independent drum patterns were each 247 
composed of 12 MIDI snare drum hits (see supplementary). Each chain had its own unique 248 
set of 32 initial random patterns. Each snare drum hit in the initial sequences had random 249 
velocity (force and speed used to play an instrument) and IOI (duration between the start of 250 
one note and the start of the next note). An additional cymbal sound, always presented 1.5 251 
seconds after the last snare hit, signalled the end of a sequence. The cymbal timing was 252 
neither counted as part of the pattern nor included in the analyses. Participants heard and 253 
reproduced two blocks of the same thirty-two drum patterns, with the order of drum patterns 254 
within each block randomized. The first block of patterns was intended for the participant to 255 
practice drumming and copying. Patterns reproduced in the second block, recorded on a 256 
laptop, were used as training stimuli for the next learner in the chain.  257 
 258 
Procedure. Participants were given headphones, a single drumstick and an Alesis 259 
SamplePad, connected to a Macbook Pro laptop via a Duo-Capture EX USB-MIDI interface. 260 
The Python code recording drumming patterns rounded temporal information to the nearest 261 
millisecond (although the theoretical maximum resolution of MIDI is slightly better than 1 262 
ms). The interface had four independent drum pads: Three produced the snare drum sound, 263 
while one produced the cymbal sound participants struck to conclude a pattern. Participants 264 
were instructed to reproduce each pattern immediately after hearing it to the best of their 265 
ability. Each sequence was recorded and given to the next participant in the chain. 266 
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Participants were unaware that they would be listening to stimuli produced by a previous 267 
learner. After the behavioural task, participants completed a questionnaire (see supplement). 268 
 269 
Analyses. The output patterns were analysed to determine if they would evolve to become 270 
easier to learn over generations and if the initially independent sequences evolve in such a 271 
way to form rhythmic-like systems with structural regularities. Data analysis was performed 272 
in R, Stata 11.0 and using custom-written Python scripts. All analyses were performed on the 273 
inter-onset intervals (IOIs) between contiguous drum hits within a pattern. In fact, 274 
experiments in human perception of musical rhythms have shown that the IOI is usually more 275 
important than the length of the notes themselves 37. Several quantitative measures were 276 
adapted in order to assess the learnability and structure of the patterns 24,27,38-46. 277 
 278 
Ratios were taken to normalize with respect to tempo and to compare structures (rather than 279 
absolute durations) across patterns. For each ratio distribution, we found the location of the 280 
maxima by taking the 2nd derivative of the KDE function. We then tested whether these fixed 281 
IOIs relations (i.e. the peaks in Figure 2) coincide beyond chance with those expected 282 
theoretically. The most parsimonious way of generating a musical duration from another is to 283 
multiply or divide it by 2, 3 or 4. Hence we predicted to find with high frequency ratios of 1:1 284 
(equal duration IOIs), 1:2, 1:3, 1:4, 2:3, 3:4, and their reciprocals, giving a total of 11 285 
expected theoretical ratios. As the predicted ratios spanned 11 possible values, we extracted 286 
the 11 most frequent ratios from our empirical distributions. We then matched expected with 287 
empirical ratios (with a 0.01 tolerance on ratio differences), and quantify the match using the 288 
Jaccard index, a measure of the overlap between two sets 19. Given two sets, the Jaccard index 289 
is calculated as the ratio between their union and their intersection, i.e. the number of 290 
elements in common divided by the number of overall elements. Finally, we performed a 291 
Monte Carlo simulation with 1 million iterations to test whether the matching of predicted 292 
and found peaks was attributable to chance. This provided a pseudo p-value, calculated as the 293 
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relative number of randomizations with an average Jaccard index greater than or equal to the 294 
empirical Jaccard index, i.e. the relative number of cases for which a list of 11 random ratios 295 
has equal number or more matches with predicted ratios than the 11 empirical ratios. 296 
 297 
Increase in structure/systematicity measure G. Unlike previous cultural transmission research, 298 
the transmitted behaviour in this experiment is continuous (i.e. time intervals) rather than 299 
discrete. We discretized the intervals into 3 categories using a K-means clustering algorithm 300 
(Table S1), mapping each duration to the tercile it belonged to (e.g. three durations like {0.1, 301 
0.8, 0.4} would map to {short, long, medium}). The number of categories in the K-means 302 
algorithm was established using the ‘Elbow’ method 47, with 3 categories emerging as the 303 
most parsimonious clustering for each chain (see Supplement). We then calculated a 304 
grammatical structure index G (a modified measure for entropy comparable with previous 305 
studies 41) for each participant. 306 
 307 
Decrease in imitation errors E, equivalent to an increase in learnability/imitation fidelity. This 308 
is calculated as the (edit) time distance between two drum patterns: the total cost of the 309 
minimal cost set of substitutions, insertions, or deletions among IOIs necessary to transform 310 
the pattern of durations a participant has heard into the pattern she has reproduced, where edit 311 
costs are taken to be the absolute difference in time between durations 43. The time distance 312 
between identical patterns equals zero. Notice that, unlike other metrics in musicology 313 
assuming beat induction or metrical hierarchies 48,49, this edit distance minimizes assumptions 314 
about metrical, top-down processing. 315 
 316 
Data Availability. The data that support the findings of this study are available for download 317 
as supplementary material. 318 
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 454 
 Figure Legends 455 
 456 
Figure 1: Cultural transmission over generations by iterated learning. Iterated learning refers 457 
to a process by which the individual learns a new behaviour by observing another individual 458 
who acquired the behaviour in the same way 28. This method directly taps into the dynamics 459 
of cultural transmission, thereby enabling an empirical approach to human cultural evolution 460 
36. Iterated learning of artificial sounds 24, visual representations 29 and language-like systems 461 
23,28 can lead to a large range of outcomes. However, two characteristics seem to emerge in 462 
most experiments: random patterns evolve into sequences which exhibit increasing 463 
learnability and structure over generations of learners 23,27. (a) The first two transmission steps 464 
in a chain of drummers. We generated sequences of drumming patterns with random velocity 465 
(hit strength) and time between hits. These random sequences (Random generation 0, leftmost 466 
note sequences) sound completely arrhythmic and mimic incidental occurrences of sound 467 
sequences, either naturally produced or human-generated, that an early music-less hominid 468 
might have attended to. We then present 32 of these random sequences to an experimental 469 
participant (Generation 1), who is asked to faithfully copy the rhythm on a drum set 470 
immediately after each of the 32 presentations. The sequences thereby produced, with all their 471 
copying errors, form the set of drum patterns presented to the next participant in random order 472 
(Generation 2). This process is repeated until the chain reaches 8 participants (rightmost 473 
rhythmic patterns). Also, to control for the effects of the initial random patterns or particular 474 
participants in a chain, the experiment is repeated in 6 independent chains (not shown), 475 
totalling 48 participants. (b) Increase in structure/systematicity measure G, corresponding to a 476 
modified measure for entropy (c) Decrease in imitation errors E, equivalent to an increase in 477 
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learnability/imitation fidelity, calculated as the (edit) time distance between two drum 478 
patterns. Error-bars represent bootstrapped 95% confidence intervals across chains. 479 
 480 
Figure 2: Frequency distributions of inter-onset intervals (IOIs) in drumming sequences for 481 
each chain (rows) and generation (columns). IOIs are pooled across all 32 patterns and plotted 482 
using Kernel density estimates (KDEs). IOI distributions reflect the timings between the start 483 
of one drum hit and the start of the next drum hit played by the participant. Random 484 
generation 0 (leftmost column) corresponds to six uniform distributions of the randomly 485 
generated patterns: the chains did not start with any structural patterning with respect to time. 486 
Over the course of generations there is a gradual development of interval durations, becoming 487 
more categorical (corresponding to more peaked distributions) towards the last generation 488 
(rightmost column). From left to right, the figure shows how each chain slowly converges 489 
towards a different distribution of IOIs from the other chains upon the final generation. 490 
Centroids for each last generation’s distribution can be found in supplement. Extreme data 491 
points, corresponding to values >1.1s, and representing <5% of all data, are not shown. 492 
 493 
Figure 3: Emergence of rhythmic riffs and cultural specificity. (a) State-space diagrams of all 494 
chains (top to bottom) and generations (left to right). Each state-space diagram depicts one 495 
participant’s output (all 32 patterns). In a state-space diagram, the duration of each note (x-496 
axis) is plotted against the duration of the next note (y-axis) as a dot; consecutive dots are 497 
joined by a line. This is repeated for all 32 patterns. Each state-space diagram depicts one 498 
participant’s output. The state-space plots here show the evolution of patterns of length≥3, 499 
with increasing regularities over generations 17. Closed polygons represent repeating 500 
drumming patterns. For instance, chain 5 shows a clear emergence (already by the third 501 
generation) of a repeating pattern of length 3, illustrated by a triangle. Chain 3 converges 502 
instead towards drumming patterns containing a combination of two similar ternary patterns, 503 
inferred by the two non-overlapping triangles. Chain 2 converges towards patterns including a 504 
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non-repeating sequence of length 5, deduced by the 5-edged segmented line. Also, notice how 505 
the vertices of the polygons map to the centroids found with the K-means clustering algorithm 506 
(in supplement): e.g. chain 5’s centroids are at 177, 436 and 665 msec, while chain 3 507 
centroids’ are at 202, 355, and 764. These approximate values can be found when examining 508 
and comparing last generations’ phase state plots of chains 3 and 5. (b) Rise of divergence 509 
measure D across chains. Over generations, variability between chains increases. This, 510 
together with the increase in G, suggests that a distinct yet systematic musical “culture” 511 
emerges in each chain. 512 
 513 
Figure 4: Statistical universals in durational patterns. (a) Frequency distributions of ratios 514 
between adjacent IOIs pooled across all last-generation participants, calculated using Kernel 515 
density estimates (KDEs). For each pattern, we calculated the ratios between all adjacent IOIs 516 
in that pattern (INI1/INI2, INI2/INI3,...). Here, we show the pooled frequency distributions 517 
across all 32 patterns produced by the 6 participants in the last generation. The distribution 518 
shows peaks (local maxima) centred at 1:2, 1:1, 1:3, 2:3 and 5:2 (solid lines); (b) Frequency 519 
distribution of ratios of durations between the 50% strongest beats (all drum hits above the 520 
median hit strength) within a pattern, pooled across all last-generation participants. The solid 521 
lines represent the 1:2 and 2:1 (binary) ratios, while the dashed lines represent the 1:3 and 3:1 522 
(ternary) ratios. While several hypothesized ratios emerge as peaks in the distribution (e.g. 1:2 523 
and 2:1), there are also peaks that do not map to precise integer ratios, attributable to a 524 
number of potential factors (cultural, experimental, etc.). Extreme data points, corresponding 525 
to values >4.5, and representing <5% of all data, are not shown. 526 
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